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In a recent investigation. Thyagaraja et al' raked up an old dispute re-
garding the frequency spectrum of one-dimensional magnetohydrostatic equi-
libria (circular cylinders or plane slabs): They claim that, for a fixed two-
dimensional wave vector in the pressure surfaces, the continuous spectrum
contains not only the Alfvén continuum and cusp continuum, but also the
two magnetosonic continua postulated a quarter of a century ago by Grad,?
but then refuted by Appert et al®> and Goedbloed.? They also claim that
the cusp continuum disappears in the homogeneous limit. It is now shown
that there are no magnetosonic continua (the singularities that could give
rise to these being removable), and that no continuum disappears in the ho-
mogeneous limit (the Alfvén continuum becoming an eigenvalue of infinite
degeneracy, and the cusp continuum an accumulation point of eigenvalues).

We start from the equations of linearized ideal magnetohydrodynamics,
Fourier-decomposed in time by assuming a time dependence expiwt (the
frequency w then acting as an eigenvalue parameter), and written in units
such that the vacuum permeability equals unity:

wpu~+Vp+ B xcurlb+b x curl B =0, (1)
wp+u-VP+yPdivu =0, (2)
iwb — curl (u x B) = 0. (3)

Here, v = 5/3 is the ratio of specific heats, p is the equilibrium mass density,
P and B are the equilibrium pressure and magnetic field vector, p and b
are the corresponding perturbations, and u is the perturbing velocity vec-
tor. The domain is a torus, so that all physical quantities are periodic in
two coordinates. The radial boundary conditions (i. e. those at the sur-
face) need not be specified because the continuous spectrum, unlike discrete
eigenfrequencies, does not depend on these.

Attention is restricted to plane slab equilibria because these, while shar-
ing with a circular cylinder the essential features of the continuous spectrum,
are simpler. Equilibrium quantities thus depend only on one ‘radial’ Carte-
sian coordinate z, and perturbing quantities depend on the two ignorable
coordinates y and z only through a factor expi(k-x), where x is the position



vector, and the two components k, and k. of the wave vector k take discrete
values (viz. multiples of some inverse lengths). Following Appert et al,® we
express the perturbing pressure p in terms of the perturbing total pressure
p+ = p+ B - b and then eliminate all dependent variables except u = u,
and v = 1wpy. Equations (1)-(3) then reduce to the two first-order ordinary
differential equations

BACu +Av=0, v -Au=0, (4)

where the primes denote the derivatives with respect to @, B = B> + P
(with B? = |BJ?),

A=uw?p—F C=uwp-pF (5)
(with F =k-B and 8 =yP/B2), and
A =wip® - Bik‘?w?p + yPE*F? (6)

(with £ = |k|?). Once the system (4) is solved for u(z) and v(z), the two
remaining components of u are computed algebraically from

wip(k-u) =i(k*v + F*'), w?pA(B-u)=iF(Dv+ B*Ad") (7)

(with D = w?p — k?B?).

A continuous spectrum requires some singularity in the equations (this
being necessary, but not sufficient). Since there are obviously no singularities
other than the zeroes of A (Alfvén continuum) and C' (cusp continuum),
there are no other continua. However, if the quantity v is eliminated, then
a denominator A appears in both the resulting Hain-Liist equation® for the
radial velocity u (which led Grad? to believe that the two zeroes of A give rise
to two magnetosonic continua), and the algebraic equations (7) for the other
velocity components (which led Thyagaraja et al' to the same conclusion).
The use of the perturbing total pressure as a dependent variable shows that
the zeroes of A are removable singularities.

In the homogeneous case, equilibrium quantities are independent of =, and
the frequency intervals A = 0 and C' = 0 are single points. It is shown that
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these points still belong to the continuous spectrum: If 4 = 0, then v = 0,
and arbitrary functions u(2) are solutions. Hence the Alfvén frequency is
an eigenfrequency of infinite degeneracy; it also belongs to the continuous
spectrum because the function u(2) need not be square-integrable. If A # 0,
then the dispersion relation is

wip? — B2 K%w?p + yPR?F? = 0, (8)

where K2 = k> + A2, and A is an eigenvalue of the equation u” + A\?u = 0
(K = k + AVx is the three-dimensional wave vector). The roots of Eq.
(8) are the frequencies of the magnetosonic waves. They depend on the
radial boundary conditions because the eigenvalues A do. The usual periodic
boundary conditions u(z + L) = u(z) yield X = 2an/L (with an arbitrary
integer n), while the general one-point boundary conditions u(0) = 3,4'(0),
u(L) = —f3u/(L), which are more appropriate for simulating a genuine torus
(8 = 0, for instance, corresponds to a perfectly conducting rigid wall, and
37! = 0 corresponds to an adjacent vacuum), yield

(Br+ B2)Acot AL = 1 — 3, 8:)%. (9)

The eigenvalues A, and hence also the magnetosonic frequencies, are thus
real, and accumulate at +oc, for any boundary conditions of interest. In the
limit K? — oo, with fixed F', one root of Eq. (8) diverges and the other
approaches the zero of C'. The point C' = 0, though not an eigenfrequency,
is thus an accumulation point of eigenfrequencies and hence belongs to the
continuous spectrum. It does not depend on the radial boundary conditions
even though the eigenfrequencies do.
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