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Abstract

A consistent description of the propagation of an e.m. field perturbation through a
succession of cut-offs and mode conversions in a Vlasov plasma is derived. Whereas
the quantitative description confirm some qualitative expectations, the results about
the transmitted energy are less obvious. In particular, the transmitted energy is larger
when the direction of the incident wave is such that the cut—off is encountered first,
than for the opposite direction. Moreover, the transmission coefficients for forwards
and backwards waves strongly depends on the plasma parameters.

1. Introduction

A consistent description of the propagation of an e.m. field perturbation through a
succession of cut-offs and mode conversions is of obvious interest in HF heating problems
— in particular ICRH, where the presence of such ‘relevant points ’ is essential. It is
moreover recalled that the presence of cut-offs and/or mode conversions forbids using
the Kirchhoff’s law E = (1 —e") Iy, (7 is the optical depth and I, is the black-
body emissivity), which is sometimes applied outside its validity range (see e.g. Shvets
& Swanson, 1993). When a group of ‘relevant points’ is given, it is enough to consider
a plasma slab with the z—direction normal to the cut-offs and mode conversion curves
(whith abscissa z,) contained in it; the inhomogeneity in the slab is due to density
and/or equilibrium magnetic field variations, and is assumed to be weak. This is an
appropriate description also for ion cyclotron heating problems (see e.g. Perkins, 1977).
The plasma is described by the Maxwell and the linearized Vlasov equations. The
displacement currents are derived in Section 2 from the Vlasov equation with the ansatz
E;(z) exp (i [kz(z)dz) for the electric field (with Ej; slowly varying with z). They
are a good approximation when p(z,v,t)|0zkz/kz| <1, which is a less stringent con-
dition than the often used p|kz|<1. Then a nonlinear differential equation for k;(z)
is obtained from the Maxwell equations. The approximate solutions of this equation
are derived with usual methods in Section 3 by considering the derivatives of k(z) as
small quantities. The (well known) fact that these solutions are not valid in the neigh-
bourhood of the ‘relevant points’ shows that it is wrong to deduce an equation for the
‘relevant points’ by letting ik, — d/dz in the local dispersion relation developed in
powers of k2 (as done, for example, in Swanson 1995), thereby ignoring the presence of
the derivatives of k(z). The correct solutions of the nonlinear equation in the intervals
of interest are derived in Section 4 for a particular group of ‘relevant points’ consisting
of a cut—off and two mode conversions. This example has been chosen because it is
of interest in ICR heating problems (see e.g. Perkins 1977) and is, moreover, complex
enough to illustrate the method. The solutions valid in the various intervals are con-
nected by a ‘matched asymptotic procedure’(see e.g. Murray, Asymptotic Analysis).
Preliminary, necessary results are obtained in Section 5. The connection is done in
Section 6 when the incoming perturbation reaches first the cut-off and then the mode
conversions (source in —co), and in Section 7 when the source is in +oco. The Poynt-
ing vectors for the transmitted waves in the two cases are derived in Section 8. The
results are summarized in the Conclusion.




2. The equation

For a consistent description of the propagation of an e.m. field perturbation through
a succession of cut—offs and mode conversions it is sufficient to solve the problem in a
plasma slab with the z-direction normal to the cut-off and mode conversion surfaces.
Variations in z are due either to the dependence of the equilibrium magnetic field on the
tokamak major radius R (the situation to be found in the ion—ion hybrid resonance
heating), or to minor-radius variations of the density (as in the ion—cyclotron mode
conversion). Then one has (see also Perkins, 1977) k; = k. + (r/qR)ky cos 8, where 7
is the tokamak minor-radius, @ is the poloidal variable and ¢ is the tokamak safety
factor. Let the electric field be of the form (with k for k; from now on):

E;(z)exp (i fk(a:) dz).

The dependent variables are k(z) and two of the three Ej; in this paper the choice
is

E,=const, P.=E.;[E,, Py=E/E,.

In the integrals over time and velocity that appear in the displacement current the
upper limit of the integral over z is z + p(t,z,v). It will be assumed that

z+p T
[ = [-pk and Ej(z+p)=~ Ej(z).

The first of these approximations is correct if p|0-k/k|<1. The correction to the second
is of order p?, and will be neglected. In this way one obtains the local approximation
of the dielectric tensor €;;, which can be used also for plk|21 (if p|Ozk/k|«1). In
accordance with the assumption the P; are given by the local approximation, that is
by:
n? — es3 Elz(ﬂ2 — €33
Pp=———, P, = . 1

’ nyn Y nyn(ezp — nf —n?) )
With the notation Pj = (d/dz)P; one has P; = 0. F; +2nn'0,2 Pj; thus the first term
will be neglected because the direct dependence on = is slow. The Maxwell equations

(with €13 = €23 =0 for simplicity):

(e11 — 1) Ex(2) + €12Ey(3) — i(c/w)n 8- By (2) = 0,
e21Ex(7) + (€22 — nf + (¢?/w?)0sz) Ey(z) =0,
—i(c/w)n, 0= Es(z) + (€33 + (c?/w?)8zz)E\(x) = 0, (2)

thus become:
(€11 — n;f)Px + €12Py(z) +nyn =10,

€21 P; + (€22 — nZ —n® +i(c/w)n’ + 2in(c/w)(P,/Py) + (cz/wz)(P;/Py))Py =0,
(nyn — iny (c/w)(Py/Pz)) Pz + €33 — n? 4+ i(c/w)n’ =0. (3)

Since Pj ~ 2nn'0n2P;, and the P; are given, the solvability condition of the system
(3) is the following nonlinear differential equation for n:

(€11 — nf) (€22 — n? — n? +i(c/w)n’ + 2in(c/w)(Py,/Py) + (cgfwz)(P;’/Py)) -
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(e3z — n? +i(c/w)n’) + €35 (eaz — n® + i(c/w)n’) — nyn(nyn — in, (c/w)(Py/Px)) -
-(e22 — nf — n® + i(c/w)n’ + 2in(c/w)(P,/P,) + (*/w?) (P, /P,)) = 0. (4)

Equation (4) will also be written as D =iA, where A contains the derivatives of n,
so that

D = (e11 — nf)(e22 — nf — n*)(es3 — n®) + €3y (eas — n°) — nin?(ea2 — nf —n?) =0 (5)

is the local dispersion relation. Usually n’ is treated as a small correction in equation
(4); then an approximate solution is obtained by adding to the solution k2(z) of D =0
the correction d given by:

8/ =1iB, where 8= A(k2)/D'(k2), (6)

and the prime of D denotes partial derivation with respect to k2. Since k =~ k, +
d/2k,, this solution is acceptable only far enough from cut-offs (k, = 0) and of
mode conversion points (D’ = 0). In the neighbourhood of such points n’ cannot be
considered as a mere correction, so that it is wrong to use there differential equations
derived from the local dispersion relation by the replacement ik — d/dz, as is often
done (see for example Swanson, 1995). In this paper equation (4) is solved correctly by
retaining only the terms of A linear in n’. This approximation is justified because the
derived solution satisfies |k’/k?| <1, as will be shown in Section 4. The approximate
form of A is thus (with a change of notation for A):

An' = ((eu - n,?)(egz + €33 — n,f - 2n?) + efz - nﬁn2)+

+4n?(e33 — n® — nfn?)(0n2 Py/ Py) + 2nin®(ea2 — nf — 1n?)(8n2 P2/ Pr) - (7)

3. The approximate solution

Some more details about the approximate solution will be useful in the following sec-
tions. We begin with the cut—off, which is assumed to be at the point = = z.. Let us
introduce an interval S. (of yet undefined width) that contains the point z., and an
interval s. that does not contain z. but is partly superposed to S.. The approxi-
mation deduced in this section is valid in s.; in s.N S, it is equal to the asymptotic
approximation of the true solution valid in S;, as will be shown in the next section.
In s.NS. one can obviously write

D(kg, z) ~ ng'(O, z.)+ (z — z.)D;, and D'(kg, z) =~ D'(0,z.). (8)

Since it can be seen that A(n, = 0,n = 0) = D', to simplify the exposition it will be
assumed D’ =~ A, so that the effect on the electric field of the correction of £, due
to d;n is the factor |ko|~P</2, with B, =~ 1. The approximate solution is valid in the
interval |z[3/2>1, where z= (D;;/AB:)Y3(z — z.). It can be extended formally to
the whole s. if the =z dependence of D is weak.
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In the case of a mode conversion at = = z, with k? = k2, intervals S, and s, are
introduced similarly to before. In s, NS, one can write

D(k2,z) = (£ — zp) Dy + (k2 - kf,)2D”(kf,, £p)/2),
D'(kZ,z) = (k3 — kp)D" (kp, 7p) - (9)
Hence the correction of the integral of k, over z due to d:k is:

o\ s 2/ 2
- [SS 0 - [ty e GO 00

4k2D’ 4D" k2 — k2) K2 — k2’

where (, = A/2kZD". Tt is important to note that [, is not necessarily positive, so
that — in the region where k2 >0 — the modulus of the electric field can increase or
decrease by increasing |z —z,|, whereas in the case of a cut—off it can only decrease by
increasing |z — z|. The solution now derived is valid in the interval |2|3/2>1 (with
z = (D,m/Aﬁp)l/S(m — zp)) of s, NSy, but not in the whole s,, because equation
(9) implies D’'(k2,z,) = 0.

4. The correct solution

The solution will be derived for a succession of cut-offs and mode conversion points
that is physically interesting (it is found in the jon—ion hybrid heating, see for example
Perkins), and is complex enough to illustrate the method. The first ‘relevant point’ is a
cut-off at £ = ., with k2 >0 for z < z.. Then two mode conversions follow, in = =
zm and T = Tn, with k2(zn,) = —k2, and k2(zn) = k2Z; Kk} is positive for z > an.
Thus the local dispersion relation has two real k? solutionsin z < T,, andin = > .
The intervals introduced in the previous section are now si, Sa, 83, S4, S5, 56, 57; the
intervals S; contain the corresponding relevant point.

With the notation k2 = k2 + 2kpk; for the solutions in the neighbourhood of the

mode conversion points, the following properties are immediate consequences of the

local dispersion relation:

o In order that k2 >0 in z < z. it must be D;; > 0.

o In order that k2 berealin s3NSs where k2= —k2, it must be k% <0, and thus
(since « < T,,) DD/, >0. The sign of (B, depends on the sign of A(kZ,).

o In S4Nss one has = > z,,, and thus k% > 0.

o In s;NSg it must be k% < 0 and thus D;{D/m < 0. Since it is assumed that A
has no zeros between z,, and z,, Bm and [, have the same sign.

In the neighbourhood of the cut-off in z. equation (4) becomes
kD' + (z — z) D)y = iA0:k, (11)

a Riccati equation. It is reduced to a linear differential equation by the ansatz

B.F'/F =ik, thatis E, & FBe,



As (B.= A/D' =1 (see preceding section), one obtains for F' the Airy equation
F" —(z —zc)(D;z/D")F =0. (12)

The argument of the Airy functions is one of the three values obtained by multiplying
the (real) quantity z = (z —z.) (—D/z/D’)'/® with the third roots of unity. The final
result being the same, z is chosen as argument.

-5

The equation valid in the neighbourhood of the mode conversion points is

. Ok
(k2 —!:f,)zl)"/2+(:1:—*1:1,,)D/_T =1A%. (13)
It is convenient to introduce the function K = k® — k2 (so that k = k, + K/2k, =
kp + k1); with it equation (13) becomes

K
K*D"[2+ (z — zp) Dz — (iA/2ky) %—m =0, (14)

or ak
k% + (z — zp) Dy /2k2D" — (iA/2k2D") ?)".T,l =0. (15)

This is again a Riccati equation; the corresponding linear Airy equation is obtained
with the ansatz ik, = B,F'/F, where f, = A/2k2D". The Airy functions have the

argument z = (z — z.) (—D;z/AB,)'/3. The electric field is given by
E, x etkrT FBp,

Only few properties of the Airy functions are needed in the following. The Airy func-

tions are entire functions of their argument. Their asymptotic approximations for real
argument are (with d = 1/271/2|z|*/4 and y = (2/3)|2*/2?) :

Ai(z) =~ (d/2)e™Y, Bi(z)=de¥ for z>0;
Ai(z) =~ d sin (y + 7 /4) , Bi(z) ®dcos(y+w/4) for z<0.

With ¢ = exp(ir/3) and £ = 3V/3T(2/3)/T'(1/3) = 1.37, in z = 0 one has (the
prime denotes derivation with respect to z):

Bi'/Bi= ¢, Ai'/JAi=-£, (Bi-iAi)//(Bi-iAi)= (4.

The following identities can be helpful in evaluating the results:

1—¢g=—¢>, 1-¢*=¢, 1+¢=2i4(1—¢)=(1+¢")p. (16)




5. Connection of the WKB solutions

Suppose that in S3 N s5 the solution is ko = ikm + ks(z) (km and ks positive,
for definiteness; the notation ks instead of ki for clarity). It should be connected in
s5 N Sg with one of the solutions valid there, which are of the kind k, = kn + ike(z);
the connection criterium is that k,p and ko; do not change their sign in s5, so
that k, and ke have both to be positive. Thus an approximation of D = 0 valid
in ss is required. To this purpose let us consider a point !, > z,, that belongs
to SsNss and define ys = k2(z!,). When D is expanded about (zh,,ys) (where
D' ~ (z, — ) D!,) one obtains the dispersion relation

(y — ¥5) (@i — Tm) Dy + (& — 730) Dy = 0. (17)

Is it possible to chose a point z! < z, of s5sN Sg— where the solution is ys =
k2(z!) — such that equation (17) be valid in all (zl,,z5)? The answer is positive if
one has

(y6 i y5)(£:n = mm)D:-:':, oy (:L‘i: - x:fn)D/a: =0. (18)

Since yg — ys ~ k2, + k2 + 2i(kmks — knke), equation (18) is equivalent to the two
conditions:

knka = kmk5 ’ (kfn + k.ﬁ)(ﬂ?:,n - 1.‘-,.-,1)D.::.L + (23:1 = :E:,n)D/a: =0. (19)

With the notations am = z&, — Tm € k? = bman, (and similarly for the index n)
equation (19) can be written

kibnan = k2 bnGm 5 (k,zn + ki)amD:;l/D/x +a, — Cn'=Tmi — Tn . (20)
The solutions of the system (20) determine (z;,,z;,) and thus the required dispersion
relation (17).
The connection of the solutions valid in Sy N's3 and in s3N S, is easier: it is enough
to use equation (11) without 9k (if z. and zm, are not too wide apart).

If in the intervall S; N ss the electric field is proportional to
exp (i [ ksdz)
Tm

(the lower limit of the integral is approximated with z,, instead of being z7,), in
s5 N Sg it is proportional to

Tn T T
exp [z [ ksdz +i fl%d:c} — K exp (i [ksdz).
Tm Ty Tn

The last exponential is the asymptotic form of the solutions valid in Sg, as shown in
Section 4.

In the interval s3 a similar procedure leads to the introduction of the corresponding
quantity K.



6. Source in —oo

We now have all the elements necessary to write E, in the various intervals. Through-
out the next sections following definitions will be used:

(Bi—iAi)f=F, Ai¥=G, Bf=H.

When the source is in —oo, in z < z. a perturbation propagates in the positive
direction and a reflected perturbation propagates in the negative direction, with A2
that correspond to the upper branch of the local dispersion relation. The asymptotic
approximations of the Airy functions show that the incident perturbation is represented
by the function F and the reflected by F*. Thus for z < z. the electric field is given
by

E, et = 1F*(2) + Ry F(2) + Ry e (21)

The third term (with %k, real positive) describes the reflected field whose k belongs
to the lower branch of D = 0; for this branch the WKB approximation is correct. In
a symbolic and compact form the first two terms are represented by the triplets

in. 51 ST (ILE*0, Fr(2))0 (R./F0) B@))!

If the argument is not specified, it is z = 0. The amplitude normalization simplifies
the form of the continuity conditions. The third term does not change in the transition
to x > x., because it is well described by the WKB approximation.

The representation (21) cannot be used for z > z.; indeed, the asymptotic approxima-
tions show that the first two terms increase exponentially in z> 1, which is physically
unacceptable. Thus the field in = > z. is written as a linear superposition of the func-
tions G (exponentially decreasing) and H (exponentially increasing), the coeflicients
of the superposition being chosen so that the field and its derivative are continuous in
.. Accordingly, the part of the field not proportional to Ry is described by

in S Nsz: (e1/G,0,G(2)), (c2/H, 0, H(2)),

where the constants c;  are yet arbitrary. The continuity conditions are:
I+R;=c1+e, I¢* + R1i¢p = —c1 +c2. (22)
It is convenient to solve equations (22) in the form

(1+¢)Ry=—-(14+¢")I4+2c2, (1+d)cr=(d—¢")1+(1—¢)ca. (23)
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As we have seen in Section 3, the upper branch of the solutions of D = 0 are k2 =
~(BnH'/H)? in S; Ns3 and k2 = —k2Z + 2iky,ky, with k2 < 0, in s3 N S5,
The connection of these solutions is obtained by assuming that k,; does not change
sign in s3. Since the part of the field proportional to ¢; has a negative derivative
with respect to z in S; N s3, according to our criterium it has to be proportional to
exp (—km(z — Tm)) in s2 N SF. Moreover, the part due to the Airy functions has to
give a positive contribution to the z-derivative because the solution of D =0 belongs
to the upper branch. When f3,, < 0 the corresponding triplet in s3 NSy is thus
(c1/HK,, ikm, H); K. is the factor introduced in Section 5:

T




6= exp [z fmkodm} \

Tc

with ko7 < 0. The amplitude of the other two terms of the electric field contain the
factor exp (km(z — Tm)). The triplet with cz belongs to the upper branch; thus the
part due to the Airy functions must have 8, < 0 and therefore the function to be
chosen in s3N Sy is G. The last triplet belongs to the lower branch, so that the
Airy function contribution must have 9, > 0; thus the function to be chosen is H. In
conclusion, the triplets are

in s3NS; : (cl/HKc, ik H(z)), (CQKC/G, —ikm, G(z)), (Rng/H, —ikm, H(z)) .

The triplets for the case By, >0 are obtained from those for 3, < 0 by interchanging
the functions G and H.

In S; Nss the Airy functions correspond to propagating perturbations and the triplets
are:

in S7Nss: (di/Fs, ikm, Fs(2)) (do/Ff, —ikm, F§(2)) .

where the d, are yet arbitrary and the function F; canbe F or F*. The continuity
in z,, of the field and of its derivative require (for Bm positive or negative):

di+dy =c1/K.+ 2K+ RaKa,

d.1 —dg =C1/KC—'CQKC—R2K2. (24)

At a mode conversion one should also require the continuity of the second derivative,
which is given by

Boof = (—k2f + 2ikpdsf + Ogaf) €557 .

The term proportional to kf, has the same form as the condition for the continuity of
the field (the first of the (24)), and therefore disappears. Moreover 0., f| < |kp0s fl,
so that the continuity of the second derivative in Zpm requires

dyps — dad = 6m(—c1/Kc — c2Kc + RaK) , (25)
where 6,, = Bm/|Bm|. It is convenient to solve equations (24) and (25) in the form:
di =c1/Ke, (1+6m¢:)d2 =2c K. + (1+5m¢’4)cl/Kc:

(14 6m@s)K2K Ry = (14 dmda)er + (1 — Smd3)K2ca . (26)

h SR Y

The connection of the solutions valid in S7 Nss with those valid in s5 N Sg is done
again by imposing that k,; and ko,r do not change their sign. One recognises that
(when f,, <0) the function F in S7 Nss corresponds to kn in S, and ik,, in
S7 Nss corresponds to the function G in s5N Sg. On the other hand, the sign of
kor in S7 Nss is not yet determined, so that the triplets are written in the general
form:

in 55N Sg: (di/GKm, 65kn, G(2)), (d2Km/H, —05kn, H(z)).,
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where 85 = + 1. The factor K,, has been introduced in Section 5:
Tn
K, =exp |i [ kodz| ,
Im

with ko; < 0. Again, when f3,, is positiv one has to interchange the functions G and
H.

SR

The situation in the intervals Sg and s7 is more complex. As is well known, the upper
branch of the solutions of D = 0 describes backwards waves — a concept that has a
meaning only for a ‘wave packet’, and not for only one value of w, as here. However,
in order to make the choice as general as possible the triplets are written in a form that
describes both possibilities (wave and energy propagation parallel or anti-parallel) at a
time; when f3, is negative one can write:

in S(? Mnsz: (t]/Fﬁ, Ockn, FG(Z)) s (tz/F*, ki F*(Z)) ;

where the ¢, are yet arbitrary; d¢ = +1 and Fg is equal to F' when ég =1 and
to F* when g = —1. The first triplet corresponds to the upper branch of D =0. If
86 = 1 it is assumed that the energy propagates in the same direction as the waves. If
86 = —1 the assumption is that the energy propagates in the opposite direction as the
waves. The second triplet corresponds to the lower branch of D = 0.

When f3, is positive one has to chose Fg = F* for d¢ =1 and F instead of F* in
the second triplet.

The continuity conditions in z, of the field and its first two derivatives can be written
in a compact form by introducing the parameter 6, = (3,/|B,[; then they are:

t1+t2=d1/Km+d2Km, 56t1+t2=55(d1/Km—d2Km),

d6t106 + t20°" = 6n05(d1/Km + d2Km) . (27)
With the definitions
A = 6,0606(1 — 85) + 6,8% (85 — 6) — 05(1 — d6) ,
B = 0,86¢06(1 + 05) — 6,¢% (85 + 06) — 05(1 — J6) ,
equations (27) are solved in the form:

Ady /K + BdoKp =0, (1= 66)Bty = ((1—85)B — (1 +d5)A)d1/Km,

(1 —d6) Bty = ((65 — 66) B + (85 + 06)A)d1/Km - (28)

The first two equations (26) and the first of the (28) yield:
(1+ 6md})Acs + B(2c2K2 + (1 + 6mpa)er) K2 =0, (29)

or:
2, K2 = — [(1+ 6més) + (1 + 6me3)A/BK}] c1. (30)

9




Hence |c2|? < |c1|?, and with the second of equations (23) one obtains:

e /1= (¢—¢*)/(1+9), 22 K2 /1= (¢* — ¢)(1 + meba)/(1 + ) .
With this result the reflection coefficient becomes:

1+¢ (1+ 6mda) (™ — ¢)
1+ ¢* (1+¢*)1+¢)K? '
The solution will now be univocally determined by the condition that the reflected
energy be less than the incident, i.e. that |Ry/I| < 1. In fact, with Ry given by (31)
this condition implies 6m@par > 0, thatis ¢4 = ¢* and Fy = F*. The continuation
of the solutions in the interval ss then imposes the choice d5 = —1.
The transmission coefficients given by equations (28) are now:

(1 - 66)KcKmt1 = 2¢1, (1 —86)BEKmt2 = (-1 -8)B+(-1+ d6)A)cr.  (32)

(31)

Rl/I =-1+

Since B (1 — &s) one has to chose 8¢ = —1, which means that waves and energy
have opposite propagation directions. The choice §g = —1 implies ¢ = #%=, so that
equations (32) give, with the help of (16):

b, — B
KKnpti=c1 = (9—9¢")/(1+8), KcKmtz= —Ac;/B — a r_ﬁg . (33)

Hence |to/t:]? = |(1 — ¢)/(1 + $)>2 — 1/3 when f, is positive, and lta/t1]? =
|(1+¢*)/(1— #*)|2 — 3 when [, is negative.

In conclusion, most of the energy is reflected at the cut—off; the transmitted energy is
transported preferentially by the waves of the lower branch of D = 0 when £, is
negative, and by the waves of the upper branch when f, is positive.

7. Source in 400

In this section we consider the case of waves incident from +oo on the mode conversion
point at © = z, along the lower branch of D = 0. If the problem of the relative
propagation directions of energy and waves of the upper branch solutions of D=0 1is
let for the moment unsettled, the triplets are

in 52 Ns7: (I/F, —kn, F(2)), (R1/Fs, dckn, Fo(2)), (Ra/F*, kn, F*(2)),

where dg = *1 and, consequently, when [, 1is negative Fg = F (6 = 1; same
propagation direction for energy and waves) or F* (d¢ = —1; opposite propagation
directions). The first triplet represents the incident field. The second (third) represents
the reflected field described by the upper (lower) branch of D=0.

When [, is positive one should interchange the functions F and F*.

In the next interval the triplets for [n negative are:

in ssNSS: (c1/H, —kn, H(2)), (c2/G, kn, G(2))

where the c, are yet undetermined. The triplets for B, positive are again obtained
by the interchange of the functions G and H.

The continuity conditions in z, of the field and its first two derivatives can be written as
in the preceding section in a compact form by introducing the parameter I T
then they are:

I+R1+R2:C—1+C2, I—(SGR,l—RZ-‘:Cl—CQ,
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—I¢_6" =+ R156¢5 + quba" — (Sn(Cl 4+ Cg) 2 (34)
Tt is convenient to solve these equations in the form:
for 56 =1 : (5] =I, Rl + R2=Cg y Jn((}l)ﬁ—d)é") Rl = —(1+5n¢—6")1— (1 —6n¢5" )(,‘2 " (35)

for d6=—1: Ray=cy, c;=1+ R;, (1+5n¢5)R1=—(1+6n¢5_6")1—(1—5n¢5")(,‘2. (36)

The argument applied in the previous section for the solutions k, in s5 can now be
repeated. When in S4> Nss [Pm is negative, k, in the interval Sg corresponds to
the function F in S7 Nss, and the function G in s5N S5 corresponds to ik,, in
S7 N ss. Thus the triplets for 3, < 0 are:

in 87 Nss: (c1f/ F*Km, —tkm, F*(2)), (c2Km/F, ikm, F(z)),

where K, is the same as in the previous section. In order to obtain the triplets in the
case 3, > 0 it is enough to interchange F and F™*.

= N

In the interval s3 NSy the possible triplets are:
in s3NSy: (dl/G, —ikm, G(z)) : (dz/H, 1 H(z)) i
(ds/H, —ikm, H(2)), (ds/G, ikm, G(2)) .

If Bn <0 the triplets with d; 2 describe perturbations whose exponential behaviour
due to = k,, is attenuated by the functions G and H; thus they correspond to the
upper branch of D = 0. The triplet with d4 corresponds to the lower branch; it
has 9; < 0, a property that does not change along the propagation (which is well
described by the WKB approximation), and that makes it unacceptable for a reflected
wave. Hence it must be d4 = 0. The case §,, > 0 is again obtained by the interchange
of G and H. The continuity conditions in z,, are in any case:

d1+d2+d3=C1/Km+Csz, dl—d2+d3“—‘61/Km—CgKm,

On(d1 + dg — d3) = c1¢°" /K — caK 5" . (37)

It is convenient to solve these equations in the form:
2d1 = (1 + 6,8 )c1/Km — (1 + 8,07 ) Kpco,  dy = Kpea,

2d3 = (1 — 6,0°")c1/Km + (1 4+ 607" Ky . (38)

In the next interval [, is only positive; thus the triplets are
in Sy Ns3: (di/HK,, O, H(z)) , (d2K./G, 0, G(z)) A
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The triplet with d3 characterizes a perturbation corresponding to the lower branch of
D = 0; it is well described with the WKB method and therefore does not appear. In
the last interval the only possible propagation is towards —oo, and thus one has

in s;N85: (t1/F,0, F(z)).

The continuity conditions in z. are:
t1 =d1/KC+d2KC, tld):(fq/Kc—dch. (39)

They yield
t, =dy/K.+d2K, (1—¢)dy = (1+ ¢)K2d>. (40)

The 8 equations (34), (37) and (40) solve the problem. First the relation between ¢
and ¢, is derived from equations (38) and (40):

(1+6,¢%)er — (2(1+ )KZKZ /(1 - )+ (1 + 8,0~ )K2)c2 = 0. (41)

Therefore cz = (1+ ¢)(1 + 6.0 ) c1/2(1 + $)K2ZKZ,; thus |ef® < |1 |2

The choice 8 = 1 is not acceptable, because it would give ¢y = I; thus most of
the energy should be trasmitted, in contradiction with the fact that the transmission
coefficient t; = 2K .Kmcz/(1 — ¢) is exponentially small.

With g = —1 one has Fg = Fén and

ca = (I+R1)/2(1+ ¢)K2ZK2 .

Thus equation (36) for the reflection coefficient R, becomes:
(146,06 + )Ry =—(1+0,07% + €)1, (42)

where € = (1 — ¢)(1 — 8,¢% ) (1 + 6.¢°")/2(1 + #)K2K2, .

In conclusion, since |1 + 6,¢%|/|1 + 6,¢7%| =1 and Rp = cp, most of the energy
is reflected into the backwards waves. The transmission coefficient that follows from
equations (40), (41) and (42) is:

KKty = 0,(¢% — ¢7%) /(14 4). (43)

8. Poynting vector

It is not difficult to see that 8;(Sz) =0 (the mean is taken over the time) and that
(4m/c)(Sz) = (¢/w)( Eyr Oz Eyr) — (Eyg(nzEzr — (c/w)0z)E\ ) (44)

In order to evaluate this expression one needs the polarizations given by equations (1),
where P, and P, are (almost) imaginary. The Poynting vector is first evaluated in
z = x, when the energy source is in —oo, for the case B, < 0. Then the amplitude
of the upper branch trasmitted wave is smaller than that of the lower branch, for which
one has in x, :

12



By =L tye-it-kr-ka3) | . B R KL
Then one easily obtains:
(EyrOzEyr) — -—k,,(EgR), (EyzEzr) =0.
Since (EyrEyr)=0 and (E? )= (FE? ) =|t2|>/2, one finally has:

(4m/c)( Sz ) = n(1+ Pp)|tal?/2. (46)

When the source is in oo, in z = z. one has only one transmitted wave, with
E, =t e"iwttk:2) 5 B ~i¢(-D;;)/3E,.

The polarizations Py, are formally the same as before, with n = —i(c/w)f¢(—D,,)'/3;
moreover, k, is replaced by (w/c)ny; thus one obtains:

(4m/c)(Sz) = —nr(1+ P2p)[t|?/2. (47)

The amplitudes |t| and |t;]| in (46) and (47) have the same order of magnitude, so
that the ratio of the two Poynting vectors is approximately given by

(Sz )n _ ky
(Sz)e ~ £é1(=D;g) 173"

(48)

a quantity that is clearly much larger than unity.

Conclusion

In the preceding sections a method to deal with a succession of cut-offs and mode
conversions — as can be found in ICRH situations — has been developed. The region
of interest can be treated as a slab where equilibrium magnetic field and/or density
depend on z. The possible dependence on the poloidal variable 6 of the equilibrium
magnetic field can be considered as a local parameter. The ansatz E;(z)expi [kdz
for the components of the electric field (where E; vary slowly with z) yields a system
of differential equations valid for p|d;k/k| <1, and then a nonlinear equation for k().
This equation has been solved in the separate intervals containing the ‘relevant points’.
For each given position of the source (in —oco or in +oo) the solutions valid in the
various intervals have been connected by a ‘matched asymptotic procedure’ (see e.g.
Murray) and by continuity conditions at the ‘relevant points’, thus giving the reflection
and transmission coefficients. Some obvious qualitative expectations are confirmed by
the quantitative results: when the first ‘relevant point’ reached by the waves is the cut-
off most of the energy is reflected. When the waves reach first a mode conversion along
the lower branch of the local dispersion relation (forwards waves) most of the energy is
reflected into the upper branch (backwards waves). Other results are less obvious:
o The energy transmitted when the waves encounter first a mode conversion is much
more than that transmitted when the waves encounter first the cut—off. Indeed, their

ratio is proportional to k, DY? (the other factor being of the order of unity, see
[z Y
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(48)), and is thus the ratio of the characteristic length of the local dispersion relation
to the wavelength at the mode conversion.

o When the waves are reflected at the cut—off, the ratio of the transmission coefficients
for forwards waves, |t2|2, and for backwards waves, |t;|?, can be 3 or 1/3, ac-
cording to the sign of f3,, that is according to the relative sign of D"(k2) and of
A, the coefficient of n’ (see equation (7)).

An important formal feature of the problem is that it is solvable only if it is assumed
that the waves described by the upper branch solution of the local dispersion relation
transport energy in the direction opposite to their phase velocity. An obvious condition,
if one remembers that the upper branch waves are backwards — a rather intriguing one,
when one notes that this concept presupposes a ‘wave packet’, and not only one value
of w, as is the case here.
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