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Abstract

The Alfvén continuum in an asymmetric plasma configuration that is an ex-
act solution of the equilibrium equations of ideal magnetohydrodynamics is
treated. The equilibrium is parallel to an infinite straight magnetic axis about
which the magnetic lines of force form closed magnetic surfaces. For small
plasma beta, the Alfvén continuum is governed by an ordinary differential
equation along the magnetic force lines. Properties of the equation are ex-
plored, and the Alfvén continuous spectrum is determined. It is found that
the Alfvén continuum has two components: a localized component character-
ized by modes that decay to zero along magnetic field lines, and a non-localized
component characterized by modes that approach non-zero constants at the
plasma ends. The spectrum of the localized component is restricted to real fre-
quencies; the spectrum of the non-localized component covers the entire com-
plex frequency plane. For real and imaginary frequencies, a detailed study of
the continuum is made. It is found that the non-localized modes can be joined
generally with those on neighboring field lines to form modes that smoothly
cover the entire magnetic surface. The localized modes, the nonsymmetry
induced Alfvén eigenmodes (NAE), do not occur in symmetric plasmas.




1. Introduction

The shear Alfvén continuum of ideal magnetohydrodynamics (MHD) has
received considerable interest and attention in the past because of its potential
importance for plasma heating and current drive, and because of its possible
effects on plasma stability. Applications of the shear Alfvén wave continuum
modes are based on the spatial singularity that characterizes the mode ampli-
tude. This singularity reflects the existence of a continuous spectrum of eigen-
modes. What is known about the Alfvén continuum has arisen principally from
studies of MHD wave phenomena in equilibria with spatial symmetries, such as
the one-dimensional cylindrical screw pinch and the two-dimensional toroidal
tokamak. The shear Alfvén continuum in asymmetric equilibria has received
minimal attention. In the absence of spatial symmetry, existence of MHD
equilibria has not been clearly established. This lack of an existence proof
and the mathematical difficulties associated with asymmetric geometries have
likely impeded studies of Alfvén wave behavior in three-dimensional plasmas.
Recently, however, a class of asymmetric MHD equilibria, each of which is an
exact solution of the ideal MHD equations, has been found.! These particular
equilibria are parallel to a straight, infinite, magnetic axis. The magnetic lines
of force twist about the axis and form closed magnetic surfaces. The study
reported here treats the shear Alfvén continuum in this class of straight asym-
metric MHD equilibria.?2 Emphasis is placed on small beta plasmas. Under the
condition of small beta, an ordinary differential equation along the force lines
of the equilibrium magnetic field governs the shear Alfvén continuum mode.
In the vicinity of the magnetic axis, the mode equation can be expressed in
an explicit form that can be solved analytically along particular magnetic field
lines. The analytic solution reveals that the Alfvén continuum has two compo-
nents: a localized component characterized by modes that decay to zero along
magnetic field lines, and a non-localized component characterized by modes
that approach non-zero constants at the plasma ends. The allowed frequencies
of the localized modes are real and discrete, while the non-localized modes ex-
ist for all complex frequencies. Since the non-localized mode frequencies have
no restrictions, instability is implied if the frequency has a negative imaginary
part. This instability, however, depends on boundary conditions specified at
the ends of the infinite plasma configuration. It is not excited by forces in-
ternal to the plasma. The localized modes, which in this study are termed




nonsymmetry induced Alfvén eigenmodes (NAE), are new. They do not occur
in symmetric plasma configurations. Numerical solutions of the Alfvén con-
tinuum equation on other field lines and on magnetic surfaces further from
the magnetic axis confirm the generality of this classification of the continuum
modes. Properties of NAE will be described. Although this study is based on
a particular asymmetric straight configuration, it is speculated that the results
have relevance in asymmetric toroidal plasmas.

The plan of the paper is as follows. In Sect. 2, we present and discuss the
equations that will serve as the basis of our spectral analysis. Section 3 intro-
duces the particular three-dimensional equilibrium that we treat. In Sect. 4 we
introduce the characteristic form of the Alfvén spectral equation and describe
features of the localized and non-localized solutions of this equation. Section 5
deals with solutions of the characteristic spectral equation on magnetic field
lines near the magnetic axis. In this Section, the NAE’s are introduced. The
spectrum on field lines that lie beyond the near region of the magnetic axis
is treated in Sect. 6. We summarize the results of our analysis and the key
conclusions in Sect. 7.

2. Basic Equations and Problem Formulation

Our spectral analysis is based on the linearized equations of ideal compress-
ible MHD. We assume that the equilibrium state of the plasma is characterized
by a magnetic field B, the associated current density J, and a pressure P. Force
balance on a fluid element governs the equilibrium configuration,

VP=JxB. (1)

A fundamental assumption of this study is that Eq. (1) is satisfied by a mag-
netic field that spans nested surfaces, F(r) = const, with B- VF = 0. In the
presence of spatial symmetry, such solutions of Eq. (1) do exist. In the absence
of spatial symmetry, existence of equilibrium solutions has been questionable.?
Recently, however, a class of spatially asymmetric equilibria, each of which is
an exact solution of Eq. (1), has been found.! These particular equilibria are
parallel to a straight, infinite, magnetic axis. The magnetic lines of force twist
about the axis and form closed magnetic surfaces. It is this class of MHD
equilibria that is assumed here.



Wave propagation is governed by the linearized MHD equations,*

iwpopv = (B- V)b + (b V)B — 4oVp™, (2)
iwb=B:-V)v-(v-V)B-BV:.v, (3)
iwp=-v-VP—-yPV v, (4)

where b, v, and p represent, respectively, the magnetic field, the velocity field
and the fluctuating pressure of the wave, p* represents the total perturbed
plasma pressure, p* = p + B - b/, and the parameters po and -y designate,
respectively, the vacuum permeability and the ratio of specific heats. In addi-
tion, a harmonic time dependence of the form exp(iwt) with frequency w has
been assumed.

The derivation of the Alfvén continuum equations from Egs. (2)-(4) for
general three-dimensional MHD equilibria with magnetic surfaces has been
given in Ref. 5. Alfvén waves are found to be coupled with slow magnetosonic
waves, in general. In the limit of small plasma beta, 8 < 1, this coupling is
removed, and a single scalar differential equation for the waves in the Alfvén
continuum is obtained.® Qur treatment is based on this equation, which is
Eq. (9) in our manuscript. For the sake of completeness, we briefly summarize
here the main steps of its derivation.® Our justification for taking cases with
P — 0 is that we want to focus our interest on the effects of nonsymmetric
geometry and therefore want to eliminate distracting side effects.

It is convenient to introduce magnetic surface coordinates (r,72,7?), where
7! is identical to the magnetic surface function F, r! = F, while 7% and 7° label
points on the magnetic surfaces 7! = const. Associated with this set of curvi-
linear coordinates are contravariant and covariant components of each vector
field. Let v* and b* be the contravariant components of v and b associated with
the coordinates 7%, i.e. v = v - Vri, i =1, 2, 3, etc. In the system of coupled
differential equations for (p*,v',v?,v%,b%, 0%, b%) that results from Egs. (2)-(4),
only two equations contain normal derivatives out of the magnetic surfaces,

namely Y
3];1 =n@") +7@) +50°) , (5)
g—:; = (") + @) + %) - (6)

If both 5* and v? in Egs. (5) and (6) can be expressed in terms of p* and v',
the normal derivative of p* and v!' (and of the other components) exist and
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are well behaved. The contravariant component b* can be expressed explicitly
in terms of v!, v* and p*
b = G(v',v°,p*) . (7)

The elimination of v3, however, causes problems. It can be expressed, ulti-
mately, in terms of vs, the covariant component of v associated with 73, which
in turn is governed by an inhomogeneous partial differential equation

B? [(VF)2

(VF)2B o Heaaiia

B- V’Ug] + MQPDJZ’U;; = H('ul,p*) ’ (8)

where B? and (VF)? designate, respectively, B-B and VF-VF. The symbols
1 to ¥ in Eqgs. (5) and (6), and G and H in Egs. (7) and (8) denote functionals.
They represent linear polynomials in their arguments, or in derivatives thereof,
in directions tangential to the magnetic surfaces. Details are given in Ref. 6.
Equation (8) is a partial differential equation with derivatives on the left-
hand side appearing only through the operator B - V. Therefore, it is a hyper-
bolic equation with the lines of force of B as the characteristic lines. Along
the characteristics, it becomes an ordinary differential equation. The problem
is to find solutions Eq. (8) that are single-valued over magnetic surfaces. Ex-
istence of such solutions depends on solutions of the associated homogeneous

equation
B? (VF)?
(VF)? B?

If the only solution of Eq. (9) is the trivial null solution, u = 0, then Eq. (8) can

B-V[ B-Vu]+uopw2u=0. (9)

be solved for 3, and the system defined by Egs. (5) and (6) can be integrated
to give analytic solutions. If Eq. (9) possesses a nontrivial solution, however,
the inverse of Eq. (8) does not exist. In this case singular solutions about
the magnetic surface F' = const under consideration may exist. Existence of
solutions of Eq. (9) depends on w and F. That set of w for which Eq. (9)
is solvable on a magnetic surface defines the low-3 Alfvén continuum of ideal
MHD.

Equation (9) corresponds in a certain sense to Alfvén waves propagating
along and confined to the immediate vicinity of a magnetic field line. The vec-
tor fields b and v are polarized within the magnetic surface.? This polarization
is produced by singling out the coordinate r! = F as the deciding coordinate
for singularities, as appears in Egs. (5) and (6).



Other choices of the direction of singularities than above are also possible.
The resulting Alfvén waves have components out of the magnetic surfaces as
well. The distinction between these two types of Alfvén modes and their sepa-
rate contribution to the MHD spectrum was worked out from a principal point
of view in Refs. 7 and 8. If the normal component of the polarization does not
vanish, the waves experience the full force of normal equilibrium gradients, such
as the pressure gradient, the shear, etc. Consequently, this other type of Alfvén
mode may easily become unstable under unfavorable conditions. Their contri-
bution to the MHD spectrum, therefore, is called the “ballooning spectrum” in
Ref. 8, in contrast to the “Alfvén continuum” part which is the subject of our
investigation. In recent years also the stable part of the ballooning spectrum
has gained widespread attention, since it comprises the “toroidicity induced
Alfvén eigenmodes” (TAE) and their relatives. These modes are relevant e.g.
in the context of scattering and ensuing loss of fast fusion alpha particles (see,
e.g. Ref. 9 for two seminal papers on the subject). We do not discuss here this
type of mode with normal component of polarization.

In the following Sections of this paper, the solvability of Eq. (9) for the
asymmetric equilibrium found by Kaiser and Salat! is treated.

3. Equilibria without Continuous Symmetries

In Refs. 1 and 10, several classes of explicit MHD equilibria without con-
tinuous symmetries were derived. These asymmetric equilibria satisfy exactly
Eq. (1). One such equilibrium that is particularly attractive for investigat-
ing linear wave propagation in low-f plasmas has the following magnetic field
expressed in terms of (z,, z) Cartesian coordinates,!

B =V x[H(z,y,2)Vz]+V x V x [K(z,y,2)V2] , (10)
where
hn 4
H(zgy, 2) = T [e"z cos(Az) + e~ cos()\y)] , (11)
K(z,y,2) = ng [e"z cos(Az) + e cos().y)] ; (12)
VK2 =2
n= —“r— . (13)

The real constants h, k, and 7 in Egs. (10)-(13) govern the strength of the
magnetic field, while A and « are real constants that govern the spatial scale
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lengths of the equilibrium configuration. Without any loss of generality, we
assume that X and k are positive. The associated pressure of the configuration
P(z,y, z) is given by

P(z,y,2) = Po— 0.5(h* + k*)n° [eg'“ sin?(\z)

+ 2[1 — cos(Az) cos(Ay)] + e~ sinz(,\y)] : (14)

Surfaces of constant pressure, P(z,y, z) = const, which are the magnetic sur-
faces spanned by Eq. (10), form a periodic distribution of closed nested surfaces
about magnetic axes that are parallel to the z-axis from z = —00 to z = +00.
The z and y coordinates of the magnetic axes are respectively z = 2wm/A
and y = 27n/), where m and n are integers. The pressure on each magnetic
axis equals the constant Py. Our spectral analysis will be based on the equi-
librium configuration that is contained within the domain —m/A < z < /A
and —m/\ <y < m/A, with the z-axis of the Cartesian coordinate system as
the magnetic axis.

In Egs. (10) and (14), the limit A = & is a constant pressure configuration
with a curl-free and therefore a vacuum magnetic field. Although the pressure
does not vary in space in this special case, nested magnetic surfaces still exist.

They are defined by B - VF = 0 where
F(z,y, z) = e**sin?(\z) + 2 [1 — cos(Az) cos(Ay)] + e > sin’(Ay) . (15)

Surfaces of constant F(z,y,z) are magnetic surface for n = 0, as well as for
n # 0, because Eq. (14) can be cast in the form
P(IE, Y, Z) e PD
)

= %(h2 + k) F(z,y,2) . (16)

Since the right-hand side of Eq. (16) is independent of 7, constant pressure and
magnetic surfaces are defined by F(z,y, z) = const. The Cartesian components
of the vacuum magnetic field that span constant F(z,y, z) vacuum surfaces are
derived by setting x = A and 1 = 0 in Eqs. (10)-(12). They are given by

B, = — =L e**sin(kz) ,
B

B, = —22 e **sin(ky) , (17)
B £x —Kz

B, = T [e** cos(kz) + e cos(ky) ] ,




:

where B, equals the value of B, on the magnetic axis in the plane z = 0, which
corresponds to k = By/2.

General geometrical features of the vacuum surfaces are illustrated in Fig. 1
for F(z,y,z) =1 and the axial extent in the range —2.3 < z < 2.3. Bold lines
identify four specific magnetic field lines: one in a “polar” position, one in an
“equatorial” position, and two in intermediate positions. It can be seen that
the transverse cross sections of the magnetic surfaces become progressively
compressed and narrower towards the ends of the configuration. In the limit
z — +o0, the cross section actually condenses into an infinitely thin sheet. As
we will demonstrate later in this paper, part of the shear Alfvén wave spec-
trum is strongly influenced by this singularity. Further details of the magnetic
surfaces F' = const are discussed in Ref. 1.

In the following Sections, the vacuum configuration F'(z,y, z) = const with
A = k will be used in conjunction with Eq. (9) to explore the shear Alfvén
continuum in a low-3 asymmetric MHD plasma. Explicit representations of the

spatially dependent coefficients of the continuum partial differential equation
will be readily derivable with Eqgs. (15) and (17).

4. Alfvén Continuum of a Low-3 Plasma

The Alfvén continuous spectrum of a low-3 plasma is governed by Eq. (9).
In this Section, we explore solutions of this equation for the asymmetric equi-
librium defined by Eqs. (15) and (17).

Equation (9) is a second order hyperbolic partial differential equation.
Along the characteristic lines, which are the force lines of B(r), the opera-
tor B - V becomes the directional derivative B d/d¢, where £ is the arc length
of the magnetic field line. The characteristic form of the Alfvén continuum
equation is thus the ordinary differential equation,

g[wd_U] +N0(VF)2PW2

| B ar A, (18)

where the spatially dependent coefficients must be viewed as functions of £
because the position vector r depends on the path length along characteristic
lines. Since the field lines extend from z = —oo to z = +00, it is advantageous
to transform the independent variable to z from £. Along a field line, we then
regard the transverse coordinates = and y as functions z, where z(z) and y(2)
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are governed by

dria B dy

&

—— —_— ].
AT e o)
The derivative d/d¢ transforms as
do eRiid
Tt (20)

Substituting Eq. (20) in Eq. (18) results in an ordinary differential equation
that governs the z-dependence of u along a force line of B,

2l Je] + rsterute) =0, 1)
where .
B, 4
p= a H G B Q ) (22)
B?
Q= ak (23)

and the parameter A equals the frequency squared divided by the square of
the Alfvén speed on the magnetic axis,

2
_ Hopw
A=t5 (24)

The vector field B that appears in in Egs. (22) and (23) is the equilibrium
magnetic field normalized with respect to By/2, B=2B /Bo. The coefficients
p(z) and s(z) depend on the solutions of Eq. (19) for z(2) and y(z). These
equations can be solved explicitly up to quadratures, as demonstrated in Ap-
pendix A. Moreover, in some cases, they can be solved analytically, as we show
in Sects. 5a and 5b. However, although quadratures do exist, they are not con-
venient to use. Numerical solutions of Eqs. (19) will in many cases be useful
to specify p(z) and s(z).

Equation (21) governs the modes in the Alfvén continuum. The property
of these modes, and therefore the nature of the Alfvén continuum, depends on
the asymptotic behavior of u(z) as z — too. Two general classes of solutions
and therefore spectral components can be identified according to whether the
integral [*° u2(z) dz is bounded or unbounded. If X u?(z) dz is bounded, A
is a discrete eigenvalue and therefore in the discrete spectrum. The associated
mode function u(z) is a discrete or localized eigenfunction. If [T u?(z)dz



is unbounded, A is a continuum eigenvalue and therefore in the continuous
spectrum. The associated mode function u(z) in this case is a continuum or
an non-localized eigenfunction. Another descriptive designation of the non-
localized eigenfunctions that we shall employ is eztended eigenfunctions. It is
mentioned that “discrete” and “continuous” eigenfunctions refers to properties
of the modes in the direction parallel to the magnetic field lines. Both modes
belong to subsets within the set of modes of the Alfvén continuum, which is
related to possible spatial singularities in the direction normal to magnetic
surfaces.

The solution of Eq. (21) as an eigenvalue problem for A generally has
to be approached numerically. However, analytical solutions can be found
along certain field lines near the magnetic axis, which is the z-axis of the
Cartesian coordinate system. In this special case, the field line equations
given by Eq. (19) can be solved analytically, and this results in analytical
expressions for the coefficients p(z) and s(z). On particular field lines even
the eigenfunctions and eigenvalues can be derived analytically. This greatly
facilitates the interpretation of the numerical results in the other cases. In
Sect. 5 this near-axis case will be considered, while the general case will be
addressed thereafter.

5. Alfvén Continuum near the Magnetic Axis

On magnetic surfaces close to the magnetic axis, the transverse coordinates
satisfy the inequalities |kz| < 1 and |xy| < 1. In this Section, we explore the
Alfvén continuum modes and the associated spectrum in this spatial region.

If |kz| and |ky| are sufficiently small, it is convenient to expand the Carte-
sian components of the magnetic field and the surface function F' in Taylor
series about the z-axis. To lowest order, Egs. (17) and (15) yield, respectively,

B, = —e"*kz
B, = e "ky, (25)
Bz — % 4 g K2

and
F(z,y,2) = (e"z + e'“) (e*“":ac2 + e_"zyz) ! (26)
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These expressions in turn yield
B = (e"” + e‘"‘z)2 ; (27)
2
(VF)2 =4 (enz -k e—nz) (e2nz$2 + e—2nzy2) 5 (28)

With these approximate expressions for B2 and (VF)?, the following expres-
sions for p(z) and s(z) are readily derived from Egs. (21)-(23),

p(z) =4 (e’“ + e"“’) [ez"":r:z(z) + e‘2'°"y2(z)] ,
2 32(2) + e~ 272 (2) (29)

S(z) =16 ahz | =Kz :

where z(2) and y(z) are the transverse coordinates of a magnetic field line that
Eq. (19) defines. Using Eq. (25) for By = BoB,/2 and B, = BB, /2, Eq. (19)
can be readily integrated. Solutions for z(2) and y(z) read

Qe—Kz 1/2
z(2) =5y (—-—~e—) ,

Kz —Kz
e t+e (30)
ek )1/2

eK.Z _|_ e—HZ

y(z) = yo(

where z, and yo are the transverse coordinates of the field line in the plane
z = 0. These expressions can also be derived using Eq. (A.5) of Appendix A.
It should be noted that the functional forms of z(z) and y(z) are independent
of the values F that label magnetic surfaces. This is not a general feature of
the magnetic configuration. Only on surfaces close to the magnetic axis do
z(z) and y(z) become independent of the value of F. This implies that the
field lines near the magnetic axis have no shear. Equations (30) show that field
lines with 2o = 0 have z(z) = 0 for all z, and therefore remain in the “polar”
plane defined by = 0. Similarly, field lines with yo = 0 have y(z) = 0 for
all z, and therefore remain in the “equatorial” plane defined by y = 0. This
property of the field lines is a consequence of the mirror symmetry in z and
y of the magnetic configuration. For all other field lines the slope dy/dz is
always positive for y > 0 and negative for y < 0. Therefore, in the direction
of increasing z, the field lines depart from the equatorial plane into the north
or south polar direction. Asymptotically, for z — +o0, for example, all field
lines tend to a finite value of y, namely yoo(¥0) = V210, and to z, = 0. At
the opposite end, the roles of z and y are interchanged. Typical magnetic field
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lines that illustrate these properties are shown on the magnetic surfaces given
by Fig. 1.

After substituting Eqgs. (30) into Eqgs. (29) and the resulting expressions for
p(z) and s(z) into Eq. (21), the governing equation of the Alfvén continuum
becomes

COSh2(K.Z) d l( Kz,.2 —Kz 2) d_u

— Au=0. 1
erzx? + e~rzyl dz Gufed &t dz]+ el (31)

The form of Eq. (31) can be simplified by transfoming the independent variable
from z to a new variable 7 that is defined by

dz
= cosh(kz) . (32)
Substitution of Eq. (32) in Eq. (31) results in the following equation for u(7),

d*u i —ys  du
—+Au=0.
dr? + Ke"’-:r:% + e~kzy2 dr T w (33)

The integral of Eq. (32) that satisfies 7(0) = 0 is
tan(k7) = sinh(kz) . (34)

This expression implies that the infinite range of z, —oo < z < oo, transforms
to a bounded range in 7, —7/(2k) < 7 < 7/(2k). Equation (34) further yields
that 7(z) — £m/(2k) exponentially in |2| as z — %00,

. m —Kz

Jim 7(2) = ST 26 (35)
: T

zHr_nooT(z) T gt 2e"%, (36)

Because the range of 7 over the plasma configuration is bounded, the iden-
tification of the spectrum that Eq. (33) governs is considerably simplified. The
spectrum is dependent on the behavior of u(7) as 7 — +m/(2k), which cor-
responds to z — Zo00. If 7y and y, are not zero, the coefficient of du/dr in
Eq. (33) approaches zero in both limits. Therefore, assuming that du/dr is
bounded and that zy and yo are not zero, the limiting spectral equation as
T — £7/(2k) is ;

% +Au=0. (37)
The two special cases 7o = 0 and y, = 0 will be taken up in Sect. 5b. Equation
(37) is a second order ordinary differential equation with constant coefficients.
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Therefore, it is readily solved analytically. For A # 0, the general solution can
be expressed as
u(r) = C1eVAT 4 Che VAT (38)

where C, and C, are arbitrary integration constants. Because 7(2) is bound for
all z, the implication of Eq. (33) is that for all values of A and therefore for all
values of the frequency w, the solutions of Eq. (33) asymptotically tend toward
constants, which means that u(z) is bounded over the infinite range —oco <
2 < oo for any complex w. The implication of this key result is that the entire
complex w-plane belongs to the continuous spectrum. Continuous spectra
of this type have previously been identified and described.!* For particular
combinations of the integration constants, u(z) may actually vanish in the
limit z — oo. If it can be established that u(z) also vanishes as z — —oo, the
associated value of w would belong to the discrete component of the spectrum.
In order to establish existence of a discrete spectrum, it is necessary to integrate
Eq. (33) over the infinite range —oo < z < 00.

It is pointed out that for A = 0 Eq. (37) has a nontrivial solution that is
linear in 7. Because T is bounded, this special solution also belongs to the
continuous component of the spectrum.

5a. Magnetic Field Lines z} = yj

One particular case of Eq. (33) that can be treated analytically is z§ = ve.
This case governs the Alfvén spectrum along the four magnetic field lines that
lie in the middle of the quadrants of the z = 0 plane on a fixed magnetic
surface. With 72 = 92, Eq. (33) becomes identically Eq. (37). Therefore,
the general solution for u(7) for all 7 in the range —m/(2x) < 7 < 7/(2kK) is
Eq. (38). As already pointed out, the entire complex w plane belongs to the
continuous spectrum. In addition to the continuous spectrum, there is also a
discrete spectrum. Discrete modes require u(z) — 0 as z — +00. By choosing
the integration constants C, and C, appropriately in Eq. (38), it is readily
established that the modes in the discrete spectrum are given by

Um(z) = cos[marctan(sinh 2)] , for m=1, 3, 5,... , 5
Um(2) = sin[marctan(sinh 2)] , for m=2, 4, 6,... o
where to simplify the notation the free integration constant and the parameter
% have been set equal to unity. To return k explicitly into the expressions
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for u(z), only two replacements are required: A/x? in place of A and kz in
place of z. Thus, no loss of generality is incurred by assuming x = 1 from the
outset. This will be done in the analysis that follows. The discrete eigenvalues
associated with each value of the integer m read

Apm=m?. (40)

This shows that the frequencies in the discrete spectrum are real, and that
the associated plasma motion is stable. With the help of trigonometric identi-
ties, the expressions for the eigenmodes can be expressed in other forms. For
example, the lowest three eigenmodes modes can be expressed as

1
u(2) = coshz ’
sinh z
aehs cosh? z ’ (41)
1 — 3sinh?z
us(2) = cosh? z

In Fig. 2, the eigenfunctions u;(z) and u(z), with eigenvalues A; = 1 and
Ao = 100, respectively, are shown. The mode u;(z), which is the simplest one
computationally, will be used repeatedly for comparison with other cases.

It is pointed out that the occurrence of modes in the Alfvén continuum
that are localized on magnetic field lines, i.e. that have a finite longitudinal
extension along a field line, is an effect not reported previously. Localized
modes on magnetic field lines result from the lack of a continuous symmetry
in the configuration. In axial symmetry, for example, whatever the details, the
coefficients of the eigenmode equation are periodic functions of the poloidal
angle alone. In this case all solutions are known qualitatively from the Floquet
theory of differential equations with periodic coefficients.'?> Of course, none of
the solutions is localized.

Discrete Alfvén modes in a nonaxisymmetric toroidal (nonequilibrium) con-
figuration, in contrast to a straight configuration, were discussed and inves-
tigated numerically in Ref. 13. A similarity between the Alfvén eigenmode
equation in nonsymmetric toroidal geometry and the Schrodinger equation
with quasiperiodic coefficients was observed. For the latter equation the ex-
istence of localized modes, in addition to extended modes, is known.'* The
configuration treated in Ref. 13, however, was not an MHD equilibrium but a
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simplistic 6-function-type model. In this configuration a transition of a partic-
ular extended surface-covering mode into a localized mode on a field line was
observed if the torus was made progressively fatter. A transition from contin-
uum Alfvén modes to localized Alfvén modes was obtained also in a simplistic
model of force free equilibria if the magnetic field lines are sufficiently chaotic.'®

It may be instructive to compare the occurrence of discrete modes here and
in the “ballooning spectrum”, mentioned in Sec. 2. In the Alfvén continuum
the axisymmetry of the coefficients in the mode equation can be broken only
by the nonsymmetry of the equilibrium itself. In the “ballooning spectrum”
discrete TAE modes are found already in axisymmetric configurations.’ In the
latter case finite shear separates neighboring field lines on different magnetic
surfaces in a secular way. This also breaks the axisymmetry in the mode
equation.

Continuum modes for the 2 = y7 case are represented by Eq. (38) with no
constraint placed on A. By choosing the integration constants C: and C; ap-
propriately, symmetric and antisymmetric mode u(z) and uq(2), respectively,

result,
us(z) = cos [\/K arctan(sinh z)] , (42)

uq(z) = sin [\/K arctan(sinh z)] : (43)

As z — o0, both modes approach non-zero contants. Figure 3 illustrates
the spatial features of these modes for A real and positive. For the symmetric
mode, A is set equal to 1/ v/3; for the antisymmtric mode, A is set equal to
100/+/3.

An important issue related to the continuum modes is stability. Since no
restriction is placed on the frequency, complex w with negative imaginary part
is allowed. Such modes are unstable. The mathematical reason why w may
be complex is the finite range of the independent variable 7 in Egs. (33) and
(38). Since 7 cannot exceed 7/(2x) nor be less than —m/(2x), u(z) in Eq. (38)
is bounded in magnitude for any complex w and therefore A. Only if K = 0
can |u(z)| be unbounded. Another way to identify possible restrictions on w is
to derive from Eq. (33) a bilinear functional representation of A. If Eq. (21) is
multiplied by the complex conjugate of u(2) and then integrated from z = —oc0
to z = 400, one obtains after partial integration

+a +a  |dul?
23, = ¥
Y. s|ul dz—R+f_a P dzl dz, (44)
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where

o Jdu|™
R(u*,u) = —pu 7 L (45)

and a approaches infinity. Periodicity of the configuration together with pe-
riodicity of the modes with respect to z would imply R(u*,u) = 0. Under
these conditions, and since both p and s are positive for all z, Eq. (44) would
imply that A is real and greater than or equal to zero, and therefore a stable
continuum. Our configuration, however, is not periodic in z, as readily estab-
lished with Eq. (17) and Fig. 1, and therefore R(u*, ) is not manifestly zero.
Consequently, Eq. (44) alone cannot imply stability of the continuum. Under
certain conditions, R(u*,u) can actually be simultaneously negative and larger
in magnitude than the integral in the right-hand side of (44). This suggests
that an unstable continuum is in fact feasible.

A factor that plays a pivotal role regarding the existence of the unstable
continuum is the singular end-regions of the magnetic configuration, z — =oco.
Both regions are characterized by B — co. Because B attains infinity, the
Fourier mode amplitude u(z) attains a constant bounded value at each end of
the configuration for any complex w. This implies that the associated time-
harmonic Fourier mode u(z,t) could be specified at z = +oo. For example, it
is possible to assume

Jim u(z,t) — et . (46)

For finite z, the functional form of the Fourier mode is found by multiplying
Eq. (38) by exp(iwt) and setting C; = exp[in/(2c4)] and C; =0,
. 1 T

u(z,t) = expiw [t - ar(z) - —22—;] 3 (47)
where A has been expressed as, A = w?/c%. Here, c4 is the Alfvén speed on the
magnetic axis in the plane z = 0, c4 = By//pop. Equation (47) represents
a wave that propagates towards z = oo. If the imaginary part S(w) < 0,
the magnitude of the wave amplitude |u(z,t)| increases exponentially with
increasing ¢ for any z. The unstable continuum modes are of this type. This
“continuum instability”, however, should not be viewed as one driven by forces
internal to the plasma since its existence is tied to appropriate data that must
be specified at the end regions of the plasma configuration. It is mentioned
that the stable and unstable continuum modes can be interpreted in terms of
waves propagating along magnetic field lines. A treatment of the governing
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wave equation and the initial value problem related to the unstable continuum
will be reported in a separate publication.

Within the context of unstable modes, it is appropriate to discuss the
conditions under which A, which is proportional to w?, would be real. Modes
from the Alfvén continuum form a subclass of MHD modes. For MHD modes in
general, it is well known that for configurations of finite extent and for suitable
boundary conditions on the plasma surface, the mode equations are self-adjoint
and consequently w? is real.'® The same conclusion would hold for periodic
boundary conditions. When the configuration is straight and open, as is the
one that we are currently exploring, these premises do not hold. However,
in order to relate our results to a torus, which requires periodic boundary
conditions, it is reasonable to assume self-adjointness and hence reality of A.
In appendix B the boundary conditions compatible with self-adjointness of
our mode equation, Eq. (31), are explored. The numerical solutions that we
present below are based on real A.

Examples of unstable continuum modes are shown in Fig. 4 for two sym-
metric cases. It is evident that the modes are stronger in the end regions than
in the central regions. At a larger value of |A| (solid curve with A = —100/+/3),
this effect is more pronounced than at A close to the marginal point (dashed
curve with A = —1/4/3). It can easily be seen analytically that unstable con-
tinuum modes can at most have one zero crossing. Antisymmetric versions,
therefore, qualitatively look like their symmetric counterparts, except that at

= 0 they continue with u(z) = —u(—2z).

It is instructive to comment at this point on the Alfvén spectrum in the
limit x = 0. In this case, the magnetic field goes over into a constant straight
B, field. Equation (31), the spectral equation, simply becomes d?u/dz%+Au =
0, which has the general solution u(z) = C; exp(iv/Az) +C; exp(—iv/Az). This
result implies propagation at the familiar Alfvén phase speed w/k, = By//Iiop.
Complex wave frequency in this case would imply spatial growth of the wave
amplitude. Consequently, the wave frequency w must be real, implying that
A > 0. Moreover, all real w belong to the continuous spectrum since the
integral [*% u?(z)dz diverges. There are no discrete modes. As we have
demonstrated, the effect of the three-dimensionality and of the singular end
regions in the case k # 0 is that some values of A are transferred from the
continuum into the newly created discrete spectrum, and that the oscillations
of the extended modes are suppressed in favor of a nonzero constant value of
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u(z), in the end regions.

So far, from the analytic solvability of Egs. (31), (33), a fairly complete
overview of the spectrum on the “central” field lines with z2 = 2 was ob-
tained. It turns out that Eq. (33) can be solved analytically also on the special
“limiting” field lines at yo = 0 (“equatorial” lines) or o = 0 (“polar” lines).
The cases yp = 0 and zy = 0 are treated in the following Section. Since at one
end of the configuration such field lines run along a thin ridge and on the other
end in the middle of a flat region, a pronounced asymmetry between z — +co
and z = —oo is to be expected for the eigenfunctions.

5b. Magnetic Field Lines yp =0 and z; =0

For the special field line yy = 0, it is best to base the spectrum analysis on
Eq. (31). With y, set equal to zero, it reduces to

e dz

cosh?z d , du
e
dz

—] + Au=0, (48)

where x has been set equal to unity. Transformations of the dependent and
independent variables that simplify Eq. (48) are z — £ and u(z) — w(f),
where!”
u
— arctane™ , W= ———. 49
; Tre= i
The infinite domain —oo < z < oo corresponds to the finite domain 7/2 > £ >
0. The dependent variable w(£) satisfies a second order ordinary differential
equation with constant coefficients,
d?w

qe (4w =0. (50)

Two independent solutions of Eq. (50) are sin(vM¢) and cos(v M¢E), where
M =1+ 4A. Therefore, assuming M # 0, the general solution for u(z) can be
expressed as

u(z) =vV1+4e 2 [Cl sin (\/_Marctan e_") + Cy cos (\/H arctan e"z)] i (51)

where C] and C; are constants. For M = 0 the solution is

u(z) = V1+e 2 [Cl arctane™* + Cz] 2 (52)
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In the limit z — +oo the solutions for M # 0 and M = 0 are bounded.
However, in the limit z — —o0, the solutions may be unbounded. Boundedness
of the solutions as z — —oo requires the following necessary conditions on C;
and C; be satisfied,

Cy sin(VMn/2) + Cycos(VMn/2) =0, for M#0,

(53)
Cim/24+C,=0, for M=0.

Substituting these relations in Eqs. (51) and (52) results in the following ex-

pressions for u(z)
u(z) = vV1+e 2 sin [\/H (% — arctan e_’)] , for M#0, (54)
u(z) = vil+ers (% — arctan e'z) ; for M=0. (55)

It turns out that the conditions (53) are also sufficient for the boundedness of
u(z). The limits of u(2) as z — foo are

vM
UL =M, Uy = sin zﬂ, for M#0,

4. =111g Uy =i for M=0.

(56)

From Egs. (56), it is evident that no localized modes exist on the field lines
with 1o = 0. This is so because at the end z =+ —oo, where the field lines end
up on the ridge instead of the flat side, the mode amplitude u_ never drops to
zero independent of the value of A. The spectrum thus is purely continuous.
Analogous to the case z2 = yZ, the continuous spectrum includes the entire
complex w plane. Unstable continuum modes are therefore allowed.

A remnant, so to speak, of discrete modes is given by Eq. (54) with VM =
2m, m = 1,2,---, because, according to Eqgs. (56), u(z) still attains zero as
z — 400. In terms of A, this constraint on M implies A = A, where

T % , (57)
which is close to the corresponding expression, Eq. (40), found for the field
lines labeled 22 = y2. If A = A, the associated mode amplitude, Eq. (54),
simplifies considerably. For example, the lowest two modes become

2
u1(Z) =m 3

e2z e (58)
us(2) =—4m .
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The multiplicity of the continuous spectrum for z3 = y3 is lost in Eqgs. (54)-
(55), since the ratio of C;/C; is now fixed.

Several stable continuum modes computed from Eq. (54) are shown in
Fig. 5 for A = 0.125, 0.75 and 100. Among them, A = 0.75 corresponds to a
“remnant” mode. Compared to the modes on the z2 = y2 field lines, shown in
Fig. 3, the yo = 0 modes are much more pronounced towards the singular side
z <0.

For unstable modes, depicted in Fig. 6, the tendency to avoid the central
region agrees with the behavior for z3 = y2 shown in Fig. 4. On the singular
side, the mode amplitude tends to be smaller.

The equation governing the mode structure on the field line zy = 0, derived
from Eq. (31), follows simply by replacing z in Eq. (48) with (—z). All solutions
for this case are therefore obtained by replacing z with (—z) in the mode
functions derived in this Section.

5c. Intermediate Magnetic Field Lines 0 < a < 1

So far we have explored the spectrum and the eigenfunctions on the field
lines labeled y2/z3 = 1, y2/z2 = 0 and y2/z2 = co. Now we treat general
values of @ = y2/z3. This can only be done numerically. The essence of
the results is a smooth transition from the behavior at the middle field lines
towards the limiting field lines. Two techniques were used to solve the problem
numerically. The first technique is based on a commercial eigenfunction and
eigenvalue solver. A second technique that proved particularly useful is based
on the standard shooting method to determine the value of the derivative
du/dz at some position z < —1 that is required to produce a desired value of
u at some position z > 1. A comparison of both methods and with analytic
solutions produced excellent agreement.

Numerical results for the discrete spectrum and for localized modes for a in
the region between zero and one are shown in Figs. 7 and 8. Note that in the
region 1 < a < oo, namely in the regions between the middle field lines and
the polar field lines, the solutions of the mode equation can be obtained by a
simple transformation from those of the region 0 < a < 1. This follows from
Eq. (31) which remains unchanged if 3 and y? are interchanged, i.e. if a is
replaced by 1/a, and z is replaced by —z. This mirror symmetry corresponds
to the mirror symmetry of the equilibrium configuration.
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In Fig. 7, the lowest two eigenvalues A,, are displayed as functions of a.
The dependence on «, in both cases, is slight, in particular for o of order one.
It is monotonous only for A; but not for A,. The limiting values for o < 1 are
close to 0.75 and 3.75, respectively. These are the eigenvalues of the lowest two
remnant continuum modes, as discussed in connection with Eq. (57) above.

Figure 8 shows how the lowest discrete eigenfunction, u;(2), depends on c.
The value of « decreases by a factor of 10 from-curve to curve, from o =1 to
o = 1079, The rightmost curve corresponds to the analytic solution u,(z) from
Egs. (41). It is evident that the extension of u(z) towards negative z increases
logarithmically for decreasing @ < 1, while the extension on the side z > 0
stays more or less fixed. This tendency fits in nicely with the analytic results
obtained above for & = 0 since, with decreasing «, a flat region develops at
z < 0 and grows in extent. In the limit @« — 0 (which cannot be handled
well by the numerical routine), the flat region becomes infinitely long, and no
decay towards zero takes place anymore. Note that the normalization of the
curves in Fig. 8 was chosen by the eigenfunction solving routine.

For continuum modes, at a fixed value of A, numerical experience indicates
that an infinity of modes exists also for « in the region 0 < a < 1, just
as for @ = 1. This is corroborated by Figs. 9 and 10. Both figures show a
sequence of numerically obtained continuum modes %(z), with an arbitrary
value of A = 1/+/3 held fixed. The sequence parameter « has the values
a =1, 107!, 1072 and 1073. In Fig. 9, the solution for & = 1, which is the
upper thick curve, coincides with the symmetric analytic solution, Eq. (42). In
Fig. 10, the solution for @ = 1, which is the thick curve that passes through the
origin, coincides with the antisymmetric analytic solution, Eq. (43). In both
figures the modes u(z) with decreasing « tend towards the same limit. This
agrees with the analytic continuum mode for « = 0 and A = 1/v/3, Eq. (54)
(second thick curve). Since sequences exist that originate from symmetric
and from antisymmetric modes at o = 1, it is plausible that sequences from
intermediate modes exist as well. Figures 9 and 10 were obtained using the
shooting method described in the first paragraph of this Section.

Recall that o can be interpreted as a “poloidal” coordinate on the mag-
netic surfaces (if z is viewed as a “toroidal” coordinate). Thus, the sequence of
modes in Figs. 9 and 10 shows that for fixed frequency, i.e. fixed A, continuum
modes exist that cover the magnetic surface smoothly. It is straightforward to
also join the octants 0 < @ < 1 and 1 < a < co smoothly. It is a remark-
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able result that the continuum Alfvén modes familiar from e.g. axisymmetric
toroidal configurations'® survive also in configurations without symmetry. In
the toroidal model problem mentioned before, this result was also observed.!3:?
In Fig. 7 the frequency regions where any continuum mode can be smoothly
extended to cover the entire magnetic surface are delimited by horizontal lines.
It is inside the “empty” bands where such global continuum modes, as shown
e.g. in Figs. 9 and 10, exist. In the bands around A,,, m =1, 2,.. ., however,
a localized mode coexists with continuum modes at least along one field line
(per octant).

Note that in the sequence of modes in Figs. 9 and 10 the boundary values
u_ at z — —oo need not be fixed for all field lines at the same constant
value (= 1). Instead, the values of u_ may be chosen as an arbitrary periodic
function of a poloidal angle (except for & = 0 were u_ must be non-zero). This
introduces one more degree of freedom for these global Alfvén modes.

6. Alfvén Continuum on Arbitrary Magnetic Surfaces

In this Section, we treat the spectral equation on field lines that lie outside
the near region of the magnetic axis. If the field lines are not restricted to the
vicinity of the axis, no exact analytic results can be obtained. Numerical solu-
tions of the spectral equation are required in order obtain detailed information
about the continuum.

Some general properties of the continuum can be found by considering the
spectral equation at for z — £oco. In this limit, the field line equations can be
approximated by (see Egs. (17))

d d
EI; = —tanz, - —2=esny, (59)

which can be integrated to give
sinz =sinz, - e~ 72 | tan? % = tan? 11_21 - exp (e“Q"‘ - e'z") ,  (60)

where the solution passes through the point (z,v1,2), with 1 € 2 < 2.
It is evident from Eq. (60) that the z coordinate of the field line approaches
zero asymptotically as e=*, and y tends towards a constant value exponen-
tially. This agrees with the near-axis case, Eqgs. (30), with the exception that
y? need not be small here. Using the exact equilibrium quantities, Eqgs. (15)
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and (17), the asymptotic forms of p and s for z? < 1 and z > 1, as derived
from Eq. (22), are p = z%3* and s = 4z%e®, respectively. These expressions
are independent of the potentially large asymptotic value of %2, and also agree
with the near-axis result given by Eqs. (29). Thus, as a function of the distance
to the axis, the field line orbits and all other relevant equilibrium quantities
remain asymptotically identical in the equilibrium end-regions on all magetic
surfaces. Consequently, the general qualitative features of the continuum will
be identical to those found in the region about the magnetic axis. In par-
ticular, the continuum consist of two components, a localized component at
real frequencies, and a extended component at all complex frequencies. The
extended component of the continuum can be unstable.

As mentioned previously, eigenvalues and eigenmodes can be found in prin-
ciple by substituting into Eq. (21), the mode equation, the quadrature repre-
sentations of z(z) and y(z) derived in Appendix A, and solving the resulting
eigenvalue problem for u(z) and A. For the present purposes, however, it is
advantageous to solve numerically Eq. (19) for z(z) and y(z) and the mode
equation for u(z) without the use of the quadrature expressions. Using this
purely numerical technique, we studied the effect of the distance to the axis on
discrete and continuum modes. We treated only a few cases that illustrate the
properties of the continuum modes away from the near-region of the magnetic
axis. For example, only modes symmetric in z were considered.

In order to obtain the solution of Eq. (21) for the eigenmodes u(z), the
shooting method from some fixed initial point 2. <« —1 to some fixed end
point zy > 1 was applied in two steps. First only the field line equations
given by Eq. (19) are considered. The initial values z_ and y_ for z and y,
respectively, at z = z_ have to be determined in such a way that the central
values zy and yg are equal and assume a value within a desired range. In the
second step of this process, the mode equation, Eq. (21), is solved together
with the field line equations. The initial values z_ and y_ are now fixed,
and the shooting parameter at z = z_ is du/dz. For discrete modes, A is an
additional shooting parameter.

The result, for discrete modes with two nodes, is shown in Fig. 11. The
thick curve is the analytic solution u3(z) from Egs. (41) with A = 9. It
corresponds to the limit dy — 0, where the distance parameter dy is defined
by dy = |zo| = |yo|. The other two curves correspond to dp = 0.5 and 0.8, and
the corresponding eigenvalues are A = 7.85 and 5.81, respectively. While the
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amplitudes in the figure are arbitrary, it can still be seen that the eigenmodes
get slightly narrower with increasing distance to the axis. The effect of dy on
the eigenvalue, obviously, is rather strong.

The effect of dy on a stable continuum mode is shown in Fig. 12. A equals
1/+/3 throughout. Here, the thick curve is u(z) from Eq. (42) as in Fig. 9.
The other curves correspond to dy = 0.3, 0.5 and 0.8. The central peak of
this mode increases with increasing distance to the axis, and it gets slightly
broader. Analogously, for unstable continuum modes, the central depression,
visible in Fig. 4, becomes slightly broader with increasing dp.

All together, the effect of the distance to the axis is simply a quantitative
one. Discrete and continuum modes persist at values of dy that are not small.

7. Summary and Conclusions

In this paper the shear Alfvén continuum in a spatially asymmetric plasma
configuration has been explored. The equilibrium, which is an exact solution of
the equations of ideal magnetohydrodynamics, is parallel to an infinite straight
magnetic axis.! The lines of force of the equilibrium magnetic field form mag-
netic surfaces that close about this axis. For a low beta plasma, the Alfvén
continuum mode is governed by a second order ordinary differential equation
along the magnetic force lines. It is this case of a low beta plasma that has
been explicitly treated.

On magnetic surfaces that neighbor the magnetic axis, the second order
continuum equation reduces to a form that is solvable analytically along cer-
tain magnetic field lines. Using the analytic solutions, two general classes
of solutions and therefore spectral components of the low beta mode equa-
tion have been identified: a localized component characterized by modes that
decay to zero along magnetic field lines, and a non-localized component char-
acterized by modes that approach non-zero constants at the plasma ends. The
allowed frequencies of the localized modes are real and discrete, while the
non-localized modes exist for all complex frequencies. Plots of the localized
and non-localized mode functions were presented. For the non-localized mode,
the numerical plots were restricted to purely real and imaginary frequencies.
Non-localized modes in the continuous spectrum along a specific field line can
be joined in general with those on neighboring field lines to form modes that
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smoothly cover the entire magnetic surface. These extended continuum modes
are the analogues of the Alfvén continuum modes that occur in the presence of
either cylindrical, helical or axial symmetry. Numerical solutions of the Alfvén
continuum equation on other field lines and on magnetic surfaces further from
the magnetic axis confirm the results obtained with the analytic solutions.

Since the non-localized continuum modes exist for all complex frequencies,
instability is implied if the frequency has a negative imaginary part. This
instability, however, depends on boundary conditions specified at the ends of
the infinite plasma configuration. It is not excited by forces internal to the
plasma.

The localized modes, which in this study have been termed nonsymmetry
induced Alfvén eigenmodes (NAE), are new. They do not occur in symmetric
plasma configurations. It is conceivable that they play an important role in
the interaction of the plasma with externally applied waves or fast particles.

Although this study is based on a particular asymmetric straight config-
uration, it is likely that the results have relevance for asymmetric toroidal
plasmas.

Appendix A: Integration of field line equations

Equation (19) for the field line coordinates z(z) and y(2) can always be
integrated up to quadratures if magnetic surfaces F’ (z,y, z) = const are known,
as is the case here. This can be seen as follows. An ansatz for the magnetic
field B in the form

B = [VF(z,7,2) x VG(z,y,2)] (A.1)

is made. The intersection of the surfaces F' = const and G = const are field
lines since B - VF = B - VG = 0 implies embedding of B in both surfaces
and the intersection of two surfaces is a line. The relation F(z,y, z) = const
can be inverted, to give y = Y(F,z,z). This defines a function G(Fz,z) =
G(z,Y (F,z, 2), z) which allows the new representation

B = [VF(z,y,2) X VG(F,z,2)] . (A.2)

Again, B - VG = 0, so that G = const at F' = const also describes magnetic
field lines. Once G is determined, however, G(F, z, z) = const is a (in general
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implicit) representation of the solution z = z(z). Analogously, with a function
H(F,y, z) the solution for y = y(z) can be found.
From Eq. (A.2) one obtains

-B, B

BIG:?)‘F’ 63G=ayF

(A.3)

where 8, = 8/dz, etc. The y component of Eq. (A.2) is equivalent to B-VF =
0 and thus is trivially satisfied. From Egs. (A.3) a compatibility condition

results,

82,G =G . (A.4)

Using 9,(B - VF) = 0 and V- B = 0, it can be shown that Eq. (A.4) is
automatically satisfied. Consequently, Eqs. (A.3) can be integrated, with the
result

%:y Bl

G(F,z,z) = 3 7

(F, 3, 2) +f dzaF(Fmo, 7), (A.5)

where z and z are arbitrary integration constants. If the field line G = Gy =
const is supposed to pass through the point z = 7y and z = z, the constant
Gy is zero. Equation (A.5), with G = 0, represents an implicit form of the
promised coordinate function z = z(z). Analogously, y = y(z) is obtained. In
general, and in particular for the present functions B(z,y,z) and F(z,y, 2),
the quadratures involved cannot be resolved analytically.

Appendix B: Self-adjointness and boundary conditions
Let the operator £ be

ce vt o]

with real coefficients s(z) and p(z). Equation (21) then takes on the form
Lu=Au. (B.2)

Multiplication of Eq. (B.2) with s(z) and a solution v(z), and integration from
—a to +a gives, after two partial integrations,

+ (u, L) (B.3)




where

+a
(9= [ sfLgaz, (B4)
and a — oo is intended. The operator L is self-adjoint, provided the quantity
S vanishes,
du  dv[™™
S(v, u) (pvdz pudz) 2% R(v,u) (u,v) =0 (B.5)

Taking for u the most general solution, and v = u*, this condition implies
S(u*,u) = R(u*,u) — R(u,u”) = 2iSR(u*,u) =0, (B.6)

i.e. the imaginary part of R(u*, u) has to vanish. From Eq. (44), with complex
A, and R = RR + iR, it follows that S = 0 is equivalent to SA = 0.
This conclusion — that A should be real — is valid, provided R is bounded.
For z3 = yZ, R can be evaluated and is found to be bounded without any
restrictions on the boundary values of w.

For yy = 0, this is not the case in general. For M = 1+4A > 0, for example,
R diverges proportional to e, for a — co, as an analysis with Egs. (48) and
(51) reveals. The divergence originates at the end z — —o0. It is only avoided
if u(z — —oo) stays bounded, or, equivalently, if du/dz = 0 there. With these
boundary conditions the conclusion that A be real is recovered.

Note that the boundary conditions just mentioned are identically satisfied
not only if 2 = y2 but also if 75 and y, are not zero.
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Figure 1: Magnetic surface F' = 1.0. With four field lines (thick).

10

Figure 2: Eigenfunctions u,(z) (dashed) and wu;(2) (solid). For zZ = 9&.
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Figure 3: Stable continuum modes u(z) for eigenvalue parameter A = 1/ V3
(dashed) and A = 100/+/3 (solid). For z} = u;.

Figure 4: Unstable continuum modes u(z) for eigenvalue parameter A =
—1/+/3 (dashed) and A = —100/+/3 (solid). For z2 = y2.
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Figure 5: Stable continuum modes u(z) for eigenvalue parameter A = 0.125
(short dashed), A = 0.75 (long dashed) and A = 100 (solid). For y, = 0.
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Figure 6: Unstable continuum modes u(z) for eigenvalue parameter A =
—0.125 (short dashed), A = —0.75 (long dashed) and A = —100 (solid). For

Yo = 0.
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Figure 7: Dependence of eigenvalue A; (lower curve) and A, (upper curve) on
field line position o = y2/z3. Horizontal lines delimit regions with or without

localized modes.
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Figure 8: Dependence of eigenmode u;(z) on field line position . Rightmost
curve: o = 1. Curves to the left: o decreases by a factor of 10 from curve to
curve.
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Figure 9: Dependence of continuum modes u(z) on field line position oz a =1
(symmetric solution, thick curve), & = 107, 1072, 10~ (curves in descending
order) and o = 0 (lower thick curve). With A = 1/+/3 fixed.
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Figure 10: Dependence of continuum modes u(z) on field line position a:
a = 1 (antisymmetric solution, thick curve), @ = 107}, 1072, 1073 (curves in
ascending order) and 7 = 0 (second thick curve). With A = 1/+/3 fixed.
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Figure 11: Dependence of localized symmetric eigenmode u3(2) on distance to
the axis. Distance parameter doy < 1 (thick curve), do = 0.5 (middle curve),

and dy = 0.8 (lower curve). For z3 = 3.
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Figure 12: Dependence of symmetric continuum mode u(z), with eigenvalue
parameter Ay = 1/v/3, on distance to the axis. dp < 1 (thick curve), dy =
0.3, 0.5 and 0.8 (largest amplitude). For z3 = y3.
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