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Abstract

Modulation of the plasma heating power leads to a modulation of the electron
temperature which can be measured spatially-resolved using ECE techniques.
The T, amplitude is proportional to the local power density if the modulation
frequency is so high that heat conduction effects can be neglected.

If an injected neutral beam is modulated, the modulation of the resulting heat-
ing power is damped by the finite slowing-down time of the beam ions in the
plasma. The damping factor is proportional to 1/1f if 1f > 0.5/tmax (f =
modulation frequency, | = harmonic number, tn.x = complete slowing-down
time).

The expected modulation of the electron temperature is investigated here with
special emphasis on the conditions with the stellarator experiment W7-AS.

Die nachstehende Arbeit wurde im Rahmen des Vertrages zwischen dem

Max-Planck-Institut fiir Plasmaphysik und der Europdischen Atomgemeinschaft iiber die

Zusammenarbeit auf dem Gebiete der Plasmaphysik durchgefiibrt.




1. Introduction

It has become a common technique to measure the deposition profile of ECRH power in a
plasma by modulating the power with a frequency up to 10 kHz and measuring the response
of the electron temperature using ECE measurements [1, 2, 3, 4]. The amplitude of the

T. modulation is determined. As demonstrated in section 2, the temperature modulation

is determined by the local power density and not by heat conduction if the modulation
frequency is sufficiently high.

For neutral beam injection, neither the total heating efficiency nor the profile of the power
deposition has been measured so far. The power modulation will certainly be less sharp
than the beam modulation because of the finite slowing-down time of the injected ions.
The physics of ion slowing-down is investigated therefore in section 3. The energy transfer
to the plasma electrons and its temporal development after switching the beam on or off
is dealt with in section 4. In order to quantify the frequency dependence of the damping
factor of the resulting power modulation, a Fourier analysis of this power is made in
section 5. In section 6 the expected modulation amplitude of the electron temperature is
calculated, and in section 7 the findings of this paper are discussed.

2. Temperature modulation

In a slab model, the temperature modulation T(z, t) and the 1-th Fourier component of the
power modulation P(z) = F(x) sinlwt can be treated in a linearized diffusion equation

(5]

gnatf}(.r,t) = P(z) sinlwt + n \ 0*Ti(x,t) . (2-1)
With the Ansatz
Ti(z,t) = Tye %/« sin(lwt — z/Xe + ¢1) , (2-2)
thus
AT = lwTye /> cos(lwt —x/Ae + &) (2-3)
OXT, = (2/A3) Ty e "/ cos(lwt — z/Xe + 1) , (2-4)

it follows from eq. (2-1)

9 v
(g nlw — “/'\12’\) Ty e~*/* sin(lwt — z/\e + & + 7/2) = P sinlwt . (2-5)

Introducing a linearized power profile around z = 0

A(z) = A(0)+ Az, (2-6)
into eq. (2-5) gives
R
= 2-7
)‘E .PI' ( ‘)
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Eq. (2-5) reveals that a measurement of the local temperature amplitude can deliver the
local power density if the heat conduction term is negligeable. This is fulfilled if
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= Modulation of the heating power in a plasma may be used
to determine the power profile by measuring the resulting
temperature modulation if the frequency is so high that the
diffusion length within one modulation period is small comn-
pared to the profile gradient length.

Taking y = 10* cm?/s, Ae & 5 ecm for W7-AS and A\, = 20 cm for ASDEX Upgrade, the

condition for a local measurement becomes

100Hz for WT7-AS
1
f>>{5Hz for AUG .

The power density then becomes

3
R = nloT . (2-9)

3. Physics of ion slowing down

The energy loss of injected beam particles in a plasma can be described by

dE ;
o —(v*+ V" E (3-1)
where the energy loss rates v® and v' describe the energy transfer to plasma electrons and
ions. They are given e.g. in ref. [6].

In the case of neutral injection heating of a plasma, these rates can be written rather
simply using the Stix-approximation [7]:

ve > U > v (3-2)
(v = velocity of slowing-down ions, ve, v; = thermal velocities of plasma electrons and
ions, respectively). Eq. (3-1) can then be integrated analytically (see Appendix I) giving
E 2 tmax S t 2‘,3
= = |lexp[Z-max ") _1 4
E [exp ( 3 ) } (3-3)

with the critical energy



2/3
B = (M ! ) mT, (3-4)
4 m;/me
A
=148 F Te 3 (3-0)

the maximum slowing-down time

2 Eo\*/?
tmax = = teln | [ =2 1
X=73 “[(EC) T

and the electron slowing-down time

1 3(4mep)? m T

te = — = -7

ve 8v2r etdn. /m. (3-7)
A(T./eV)3/2

T (3-8)

A(ne/cm=3) ®

The following quantities for plasma and beam, typical of W7-AS, will be used as an example

ne=1x10"em™3

T. = 500eV
A=15
A=
A =2
Ey = 50keV .
They give
te = 2.37ms
E. = 7.4keV
FEo/E. = 6.76

loaw = 1901, =—4.061 s

4. Energy transfer to the electrons and its temporal development
Assume an jon beam is deposited in the plasma with the power density
Py=Eyn. (4-1)
Without losses, the energy distribution of the slowing-down ions will be (using eq. (AI-11))
n
—dE/dt
. VE

=te ——

E3/? + E2/?

f(E)dE = dE

dE (4-2)
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which is drawn in Fig. 1. The total power density given to the electrons

Ey
P, = /VeEf(E)(lE (4-3)

0

can be calculated analytically using the distribution function (4-2). This is done in Ap-

pendix IT and delivers
E
P.=Pog ( E) (4-4)

where the function g(z) is given in Appendix II.

When the beam is switched on at time t = 0, the power transfer to electrons is smaller
than given in equation (4-4) as long as the population of slowing-down ions is not filled up
completely (t < tpax). If the first ions are slowed down to E(t) the instantaneous power
transfer will be

E(t)
E.

E
Pe(t)l,, =7 Eog( E—O) —E(t)g

or with the abbreviations go = g(+/FEo/E:) and g, = g(\/E(t)/E¢)
Pe(t)l, =7t [Eogo — E(t)gi] - (4-5)

When the beam is switched off at t = 0 after having been on for a period longer than tp,,x,
the power transfer will be

Pe(t)|or = E(t) g - (4-6)

The time dependence of the normalized electron heating power is shown in Fig. 2 for the
case that on and off times are just equal to ¢, ax.

For practical purposes like Fourier analysis, the function g; as used in egs. (4-5) and (4-6)
should be of a simpler form than the combination of eq. (4-4) with eq. (3-3). A simple fit
to [E(t)/ Eo)g: in eq. (4-6) is

h(t) = [h2 (1 — t/tmax)? + ha (1 = t/tmax)*] g0 (4-7)

where hy and hy are chosen such that at t =0
h(0) = g(t =0) = g

1

W(0) = g(t=0) =

e
which gives

h2 =1- h4 (4'8)
1 tmax
et = § 4-
hy - 1 (4-9)
)




The example of section 3 gives the numbers

go = 0.75447
hy = 0.70909
hs = 0.29091 .

5. Modulation of the beam and the corresponding Fourier representation
of the heating power

A square wave modulated heating power with the period 7 = 27 /w and the duty cycle d.

P Py forO<t<d. 1
Tk fetdr<t< iy,

can be represented by the Fourier series (see Appendix III)

n
P:ao—{-ZA[ sin(lwt+¢’l) (5'1)
I=1
with the coefficients
ag=d. Py (5-2)
ot
i |sin 7ld.| P, (5-3)
7l
¢ = 2 — 7ld. . (5-4)

The amplitudes of the Fourier harmonics | vary thus with 1/1. The amplitudes of the first
three harmonics are shown in Fig. 3 as a function of the duty cycle d.. The second and
third harmonics have equal amplitudes for d. = 0.4195 and d. = 0.5805.

If a beam is square modulated the resulting modulation depth of the heating power will
be smaller because of the smoothing effect of the finite ion slowing-down time. We may
expect that the smoothing factor Agmeoth Will strongly depend on the ratio of the Fourier
frequency If to the inverse slowing down time 1/t,ax. A Fourier analysis of this frequency
dependence is made in Appendix III. The result is drawn in Fig. 4. It shows that Asmootn
slowly decreases from 1 to = 0.4 if the frequency 1f approaches 1f|_;, = 1/tmax. For higher
frequencies, Asmooth decreases almost inversely with the frequency

0.4
1ftmax

Asmoolh ~

for  1f > 0.5(1f)erit = 1/tmax - (5-5)




6. Expected modulation of the electron temperature
The modulations of temperature and power are correlated as given in eq. (2-9)
. 1141

el = oy {el -
3rlfn
Leaving aside the effect of the duty cycle d., eq. (AIlII-25) gives the modulation power

(6-1)

2
Pe,l — r_lgOAsmoothD (6-2)

where, again, Asmooth 1s shown in Fig. 4 and discussed in the last section. For low frequen-
cies If < (1f)crit = 2/tmax, Asmooth = 1, and the temperature modulation is not influenced
by the finite slowing-down time. With the parameters of section 3 and

W
Po=05—7,
cm
the temperature amplitude becomes
b 5 o P
< Bolo
L = 6-3
17 3n2 nlzf 1)
1.6 kHz
o TC\’ . (6"1)

If higher frequencies have to be applied, the power amplitude is smoothed according to
eq. (5-5). The resulting temperature modulation becomes

0.0270 1 go Fo tmax

e R T T D (6-5)
2.9 (217Hz\?
TE’]N_I'( lf ) eV . (6—6)
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7. Discussion

The calculation of the T, modulation in modulated beam experiments in W7-AS shows
that for an interesting range of frequencies (> 100 Hz), the finite ion slowing-down time
does damp the T, amplitude. The damping, however, is not exorbitantly high if the Fourier
frequency 1f is kept below 500 Hz and at low harmonic numbers 1.

A good spatial resolution is obtained if the ECE diagnostic can be used for the determina-
tion of the T, amplitudes. This method can, however, only be used if the electron densities
are low, so that w, < w.. For the maximum magnetic field strength of WT7-AS (2.5 T),
this density limit becomes n. < 6 x 10!* em™3. To avoid ECE-beam deflection the limit
should even be put lower at ne < 5 x 10" cm™? [8].

If measurements at higher densities are done, soft-X diagnostics can be used (9], perhaps in
a similar way as was done by Laqua [10]. The disadvantage of this method is that it only
delivers line integrals of the bremsstrahlung radiation. Local radiation intensities have to
be determined by an Abel conversion. The variation of n. and T, along a line of sight
causes tyax to vary and with it not only the local smoothing factor Agmeotn but also the
relative phase shift (AIII-27). The integration along a line with varying phase shifts gives
an additional damping of the measured Fourier amplitude.

Several additional issues should be mentioned:

- The treatment has been done for a single species beam. If a real modulated beam
experiment has to be evaluated, it must be taken into account that the beams contain
certain fractions of half and third-energy particles. Their slowing-down times are
slightly shorter and their branching ratio into electron heating is smaller than with
full-energy ions.

- The equipartition time between plasma electrons and ions is comparable to the ion
slowing-down time. The reaction of the plasma ions on T, has to be included in the
energy balance equation (2-1).

- For modulated ICRH experiments, a similar frequency dependence of the resulting
T. modulation is expected, because the time constants for energy exchange between
resonantly heated ions and plasma are similar to NBI.

- The measurements of T} j(r) could give supplementory information to the measurement
of Tey(r). The T; diagnostics available nowadays, however, (mainly CX-analyzers)
don’t have the necessary time resolution [11].




Appendix I: Ion slowing down

The energy loss of injected beam particles to electrons or ions in a plasma is given in ref. (6]

dE 8
i, A5 AI-1
dt |4 e S1D
m
WP =2 (m—ﬁ M — M') vl (AI-2)

3 ﬂ'\/i e? e% Aﬁ ng
Y —
07 (4meg)? /m E3/2

M(z) = ®(Vz) - % ze ¥

i % 0/ dtVi e | (Al-4)

E mg
T=— —— Al-5
T3 m ( )
e, m, v, E = charge, mass, velocity and energy of injected beam particles, respectively,
the index 3 refers to plasma ions or electrons, Ag = Coulomb logarithm.

Using the Stix-approximation (7]

Ve > VDY, (AI-6)
the factors in eq. (AI-2) become
2 (M-"i - M’) NS (AL7)
m; m;

3/2
NG R e L . (ALS)
Me 3vVr ¥V m \T.

Limiting ourselves to hydrogen isotopes for beam and plasma, and setting the Coulomb
logarithms \; = A = )\, we get from equation (AI-3)

T V2 etdne
 (4me9)? ymE3/2

The total energy loss becomes (A, A; = atomic mass numbers of beam and plasma, re-
spectively)

=U0

(AI-9)

o=

e _i
Vg =V

- _( +V)E (AL-10)

= _% [1 + (%)m} E (AI-11)

with



R

2/3
E. = (M - ) mT. (AI-12)
4 m;/me
A
= 1'—18 2—/3 Te (AI-13)
1
and
. 2 3/2
:, 1 3(dmeo) m T, (AL14)
ve 8vV2r etldn. /me.
A(T./eV)3/2
_ 3.18 x 10° 2Ze/eV) (AI-15)

A (nefcm™3) o

In order to follow the time evolution of the energy of an ion after the moment of its birth

at time t = 0 with energy Ep, we

have to integrate eq. (AI-11):

dt dE
. E [1 +(EC/E)3/"’]
t
dr Vudu
te ) u3/2 + E3?
0 o
E/E.
. f udu
Bl w21
Eo/E.
t 2 _a/2 E/E.
—Z =3 In (u -+ 1) .,
2. (E/E.)**+1
= =1 Al-16
3B Ep P+ 1 (A0
ex _g_t_ = (E/EC)3/2 t1
P\ 2% ) = (Bo/E)T +1
2/3
E Eo\*? 3 i
In this approximation, the ions are completely slowed down during the time
2 Eo\*/?
t =thax = gte In (E) +1] . (AI-18)

After switching on or off the beam, it takes this time until the population of slowing-down
ions is built up or vanishes completely, respectively.

It is convenient to rewrite E = E(t) of eq. (AI-17) into

3tma.x"'t =i
= |exp 2 T =1 | .

10

E

= (AI-19)




Appendix II: Energy transfer to the electrons

The total power density given to the plasma electrons, eq. (4-3), with the ion distribution
function (4-2) becomes

Eq

E3/2

P.=n f YT dE (AII-1)
+ E;

V Eo/E-:

0

) e ) E
e B / = dz using o= £’ (AII-2)
0
and with 22 = Eo/E.
°oP, [ z*
= dr All-
F s / 3 +1 v ( 3)
0
E,
= Pog ( ‘E‘O) (AII-4)
where
1 (z +1)? 2 2r—1 1 =«

Il

1
Blel=— [12 + =1In arctg (AII-3)
: 3

2-z+1 3 Vi V33

In the limit E > E., the function g approaches 1 — the power is mainly deposited into the

electrons. In the unrealistic limit E <« E, the power is mainly given to the ions. Electron
and ion powers are the same for

To=155 =  Eo=241E.. (AII-6)
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Appendix III: Fourier analysis of the heating power

If the heating power is modulated with the period 7 = 27 /w and the duty cycle d.

p— Py forO0<t<d.7
10 fordr<t< T,

the corresponding Fourier series of the power is

n
P =ag+ Zal coslwt + by sinlwt .
I=1
with the coefficients

der
1
apg = ; /Pgdt:dcpo
0
5 d.t P
a = — / Py coslwtdt = il sin 2xld,
T 7l
0
5 der P
by == [ Pysinlwtdt = — (1 — cos 2xld,)
T nl

0
For practical purposes, the Fourier representation

P=ay+ Z A sin(lwt + &)
=1
seems better suited than (AIII-1) with the coefficients

g = \/8.]2 + b|2
tgd = aj/by

which give

Ty
Al 2 |sin 7ld,| P,

¢ =

wl

(AIII-1)

(AIIL-2)

(AIIL-3)

(AIII-4)

(AIIL-5)

(AIIL-6)
(AIIL-7)

(AIIL-8)
(AIII-9)

If the beam is switched periodically, the electron heating power will be smoothed because
of the finite ion slowing-down time. If the modulation period is larger than #g.x, the
slowing down distribution at a certain instant is determined completely by the switching
situation within the last period. If the modulation period becomes shorter than ¢y,.x, more

periods have to be included in the determination of the ion distribution function.

In order to simplify the mathematical representation, we will use the following definition

12




of the heating function during the beam “afterglow” (compare with egs. (4-5) and (4-6))

go=§ (\/ EO/EC) fort =10

gt = g ( E(t)/EC) for0 <t < tmax
0 fOI‘ t 2 I{ma.\: ]

where E(t)/E. is determined by eq. (3-3). Switching on the beam at t = #,, gives an
additional normalized heating power p. = P./(nEp) at t > ton (following eq. (4-5)) of

E(t —ton)

Pe,on — 80 — EO Bi—ton »

(AITI-10)

whereas switching off the beam at t = tog can be treated at ¢t > toq like leaving the
previous beam on and adding a negative power of

E(t-t,
Peoff = — |80 — —(‘E—ﬁ)gc—:u” : (AIII-11)
0

When a pulse is on from #,, until t,q, its remaining contribution to the heating power at
t > toff IS
E(t —tor) E(t — ton)

Pe = Eo Bt—torr — T Bt—ton -

(AIIL-12)

If this pulse is switched on at t,, = —m7 and switched off at top = —(m — d.)7, the
remaining contribution to the heating power is

Eft+ (m —d)r E(t+ mt
[ ( ) ] Et+(m—d )T — Q gt+mr - (AIII-13)
EO Eo

Pem =

The contribution of the beam pulse within the actual period (on at ¢t = 0, off at d.7) is

o8 for 0<t<dcr

Pe =19 E(t-d. E(t
—'-(-—"E-O“L)gg_.dcr— ELo)gt for dCT <t<T.

If m, is the maximum number of beam pulses contributing to the actual period, the heating
power will be

E(t i
go — LEO) gt mE;]pe.m for Q'€ t <d:r

Pe =

E(t —d.7 E(t i
_('fo__—)-g!—dcf - .ESO) gt +n§1pe,m for dcT < bl T

13
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In the Fourier analysis, an integral of the following form will appear where cosine or sine
are represented by the function f:

det T
- f g0 (Lot} af + f wg,_dcrmm)dt
0
0 det

r E(t) <= E[t+ (m —d.)7) E(t +m7)
+ / {—E—Ogt + Y B Bt+(m—p)r ~ g Btimr f(lot) dt

m=1
d.T (1—d.)r
E(t
= go ]f (lwt) dt + f Ef‘ )gf fllw(t + d.7)]) dt
0 0 °
tman ‘n’lﬁx E
t) t
/ éo g f(lwt) dt + f E(‘D) ge fllw(t + de7)]) dt
(1—d.)r
der man(t)
=go [ f(lwt)dt + 7. 8 (f(kot + 271d.) — f(lwt)] dt . (AITI-14)
0 0 °
Using this integral, the Fourier coefficients for the electron heating power become
ag = d,_- Eo (AHI-IE))
fmax
0 = gﬂ in 92 g E(t) w 2 — )
A= — sin 27ld, + - f £, g [cos(lwt + 27ld,) — cos lwt] dt
0
2sin 7ld T (1
= 250 T % o0 |cosnld, — kw / () Bt oo (ot + xld.)dt (AIII-16)
ml Eo go
T By
= g_O — 2 ) — 9 — Q1
b = (1 — cos2rld.) + - / £, & [sin(lwt + 271d,) — sinlwt] dt
0
‘) mﬂ‘
- L;’ld 2o |:sm ld, + lw / §E~§i cos(lwt + ﬁldc)dt} . (AIIL-17)
s
0
Setting
tmﬂx
siny = 2L sinlwt Alll-18
1= maxG f EO go ( )
1 !max E
t
cosy = e / fgo)i cos lwt (AIII-19)
0
with

14




iriax 2 Lo 2
G= : f EE-)- &t coslwtdt | + / E—(t)- & sin lwt dt
tmax Eo go J Eo go

0
gives
imﬂx
[ E(t) gisinlwtdt
I8y ¥ t:u
[ E(t)gicoskotdt
0
and
tad = 1 — lwityaxGsiny
80 T ltmaxGeosy
The Fourier coefficients become
plag
ay = ﬂ—;% go [cos mld. — lwtmaxGsin(nldc + )]
s
2sin wld, .
by = ﬂg_‘ go [sin 7ld, + lwtmax G cos(wldc + 7))
2 |sin wld,
A] = 'L'_'rl—lg(]f\smoolh
A2 h = 1-2lwtn.Gsiny + (litusG)®
o =6 —wld, .

= The dependence of the amplitude (AIII-25) on the duty
cycle d. is the same as (AIIl-8) which was derived for a
square wave power modulation. The smoothing of the power
reduces the amplitude of the Fourier components by a fac-
tor of Asmooth, indepently of the duty cycle d.. The phase
(AIII-27) is shifted against the phase (AIII-9) by 6 — /2.
This shift is also independent of the duty cycle d..

(AIIL-20)

(AIII-21)

(AIIL-22)

(AIII-23)
(AIII-24)

(AIII-25)

(AIII-26)
(AIIL-27)

Using the fit for the function g;, the equations in (AIII-18) or (AIII-19) lead to integrals
of the following kind which can be solved analytically:
tmnx
1 ) 1 2(1 — coslwtmax)
I = == max 2 t= T
1= 7 / (1 — t/tmax)” sinlwtd = [ Gt ]
0
trnax
1 . 1 12 24(1 — coslwtmax)
I, = — ) = -
: tmax ./(1 t/tm X) Sinonce lwtmax [ (1tha.x)2 = (1‘-‘-’tmax)4 }
0
1 tmax 5 1
t
I. = | =il 2 L, | S _ S YJfmax
: tmax /( t/ ) coslwt dt (Ithax)z ( Ithax
0

15




tmnx

1 4 4 6 sin lwitpmay
4 = = ) - lwtdt = ——— |1 = ——— -— .
14 I f(l tftmax] cosle (ot [l ot )? (1 DLl )]

0

With the fit (4-7) for [E(t)/Eo] g¢, the egs. (AIII-18) - (AIII-21) become

G = /[Ii + ha(I2 = 1)]2 + [Is + hy(Iy — I3)]? (AIII-28)
Gsiny =1; + hy(Il - I)) (AIII-29)
Geosy =13 + hy(Iy - I3) (AIII-30)

e Il +h4(12 — I])
I3 + hy(ly — I3)
The amplitude (AIII-26) becomes

Almooth = {1 = lotmax([li + hy(Iz = 1)]}* + {lwtmax[ls + hy(ls — I3)]}? . (AIIL-32)

(AIIL-31)

For frequencies 1f > 0.5¢ax, the Fourier amplitude oscillates around

1+ ]1.1 1
m lf tmax

Ajim = (AIII-33)

as shown in Fig. 4a.

The integrals I, ... 1 are very simple expressions for integer multiples of 21ft,,.« = n, and
the deviations of Agmootn from Ay, are as follows:

3h %
2 B S .. W v
Asmooth AI:m (Wlftmax)4 { h"' [1 + ('ﬂ'lffmax )2} }
for n=2.4.86, ... (AIII-34)

1 3
T (71 ftmax)? {1 e [1 v (nlftmx)z] *

3
. [2+h.: ("-(“ﬂft—)2>]}

for m=1 8.8, 2 (AIII-35)
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Figure captions
Fig. 1  Energy distribution of the injected ions (equ. (4-2)).

Fig. 2  Time dependence of the electron heating power P./Fy. The beam is switched on
at t = 0 and switched off at t = t;;ax. (Egs. (4-5) and (4-6) combined with (3-3).
The dotted line is the fit using eq. (4-7).

Fig. 3  Relative Fourier amplitudes of the heating power in case of square wave heating
pulses as a function of the duty cycle.

Fig. 4 Decrease of the modulation amplitude of the electron heating power with rising
frequency due to the finite slowing-down time of the ions. The abscissa is the
product of the Fourier frequency 1/7 with the slowing-down time ¢,2x (eq. AIII-
26), | = harmonic number, 7 = modulation period of the beam.

Fig. 4a Same as Fig. 3, but ordinate logarithmic. Also shown is the approximation (5-5).

Fig. 5 Change of the phase shift of the electron heating power with rising frequency.
Difference of phase shifts (AIII-27) and (AIIL-9).
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