MAX-PLANCK-INSTITUT FORPLASMAPHYSIK

GARCHING BEI MUNCHEN

Three-Dimensional Computation of
Drift- Alfvén Turbulence

Bruce Scott

IPP 5/74 April 1997

Die nachstehende Arbeit wurde im Rahmen des Vertrages zwischen dem
Maz-Planck-Institut fiir Plasmaphysik und der Europdischen Atomgemeinschaft iber
die Zusammenarbeit auf dem Gebiete der Plasmaphysik durchgefihrt.




Three-Dimensional Computation of Drift Alfvén Turbulence

B. Scott

Max Planck Institut fiir Plasmaphysik
Euratom Association
D-85748 Garching, Germany

February 1997

Abstract

A transcollisional, electromagnetic fluid model, incorporating the parallel heat flux as
a dependent variable, is constructed to treat electron drift turbulence in the regime of
tokamak edge plasmas at the L-H transition. The resulting turbulence is very sensitive
to the plasma beta throughout this regime, with the scaling with rising beta produced
by the effect of magnetic induction to slow the Alfvénic parallel electron dynamics and
thereby leave the turbulence in a more robust, nonadiabatic state. Magnetic flutter
and curvature have a minor qualitative effect on the turbulence mode structure and on
the beta scaling, even when their quantitative effect is strong. Transport by magnetic
flutter is small compared to that by the ExB flow eddies. Fluctuation statistics
show that while the turbulence shows no coherent structure, it is strongly enough
coupled that neither density nor temperature fluctuations behave as passive scalars.
Both profile gradients drive the turbulence, with the total thermal energy transport
varying only weakly with the gradient ratio, d log T/d log n. Scaling with magnetic
shear is pronounced, with stronger shear leading to lower drive levels. Scaling with
either collision frequency or magnetic curvature is weak, consistent with their weak
qualitative effect. The result is that electron drift turbulence at L-H transition edge
parameters is drift Alfvén turbulence, with both ballooning and resistivity in a clear
secondary role. The contents of the drift Alfvén model will form a significant part of
any useful first-principles computation of tokamak edge turbulence.

PACS numbers:

52.35R—Plasma turbulence, 52.25F—Plasma transport properties, 52.65—Plasma
simulation.




1. Introduction — Tokamak Edge Parameters

It has been often suspected that collisional electrostatic turbulence should play a
central role in the process of anomalous transport in the tokamak edge, including in such
phenomena as the L-H transition. The edge conditions are thought to be cold enough that
the collision frequency is faster than the turbulence, and of low enough pressure that the
magnetic activity associated with fluctuations in the plasma current — a natural feature of
drift wave turbulence — is negligible, and the experiments appear to bear this out [1,2,3,4].

Vears of intensive investigation via Langmuir probes into the dynamics of density (n),
electron temperature (Te, in units of energy), and electrostatic potential (¢) fluctuations
in cold edge (T. < 50eV) regions of tokamaks and stellarators have shown a picture
consistent with the interpretation that the fluctuations are of the drift wave type, with
scales somewhat larger than the dispersion scale, ps = c/M;T./eB, a frequency range
corresponding to the observed wavenumbers perpendicular to the mean magnetic field,
k) ps, responding near their diamagnetic frequency, walki) = k 1pscs/Ly, where ¢ =
\/Te/M; is the sound speed and L is the mean profile scale length across the magnetic
fAux surfaces of the mean field (all parameters are local to a given flux surface, where a given
data point is taken, and subscripts e’ and "’ refer to electrons and ions, respectively) [5-12].
These scales are in the range 0.1 to 1 cm and 100kHz to 1 MHz, with experimental spectrum
peaks at the low end of these ranges. Typical values of the reference scales are p, ~ 0.5mm,
L, ~2cm, and ¢s/Ly ~2MHz. In a few instances, magnetic fluctuations measured in
the same scale ranges, assumed to be attendant to the other fluctuations, have been found
to be too small to cause appreciable transport on their own [12,13], and the measured level
of transport through the ExB velocity, ve = (c/B?)ExB = (c/B*)BxV .4, is sufficient
to account for the level of transport inferred from power balance studies [5].

There is a bit of a paradox here, however. On the theoretical level, collisional drift
wave disturbances with ky ps ~ 1 [14,15,16] can be taken to be electrostatic if the plasma
beta, for drift dynamical studies given by § = 4nnT,/B?, satisfies § < m./M; [17], and in
more collisional cases, f < (L1/Ly)?, where L) is a typical parallel scale length controlled
by the geometry [18]. In more heuristic terms, the electron dynamics is electrostatic if
either electron inertia or resistivity are stronger than magnetic induction in the parallel
response, and additionally the parallel Alfvén transit frequency must be much faster than
any drift wave freqeuency. These conditions are indeed satisfied in the extreme edge
regions investigated with probes. This leads to a electrostatic fluid dynamics paradigm,
which for the electrons means drift waves and their associated turbulence [19,20]. However,
this judgment depends on the scale of motion, since the electron dynamics is excited
through the parallel current but the magnetic field responds through the parallel magnetic
potential, which are related by J) = —(c/4w)V?% A). Since the observed scale of motion

is rather larger than p,, the transition to an electromagnetic response can occur at a J¢}
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significantly below m./M;, but how important that turns out to be will clearly depend on
the spectrum: not only of the fluctuations themselves but of the source and sink processes
(e. g., the rate of fluctuation free energy tapping from the background gradients, or the
rate of collisional dissipation). This is important since the dominant energy source region
is often at a somewhat smaller scale than the spectrum ﬁea.k [21,22]. Furthermore, as
plasma parameters leave the cold edge regime behind and approach and cross the regime
where the L-H transition phenomenon occurs, 3 is found to be quite close to m./M; and in
the H-mode regime it is larger [23]. This means that in those regimes the parallel response
will be principally electromagnetic at all important scales of motion.

On the other hand, the question of whether the parallel electron response is electro-
magnetic is different from the question whether the transport is electrostatic or electro-
magnetic. The first involves whether magnetic induction, resistivity, or electron inertia
controls how fast Jj responds to parallel gradients in the three main state variables ¢,
n, and T,. This is principally a linear question: how important is A /9t? The second
question involves purely nonlinear phenomena: is the ExB transport by vg fluctuations,
appearing through the vg - V advective derivative, or the magnetic transport by B fluc-
tuations, appearing through the perturbed parallel gradient, 6’|| = B~1B .V, also called
“magnetic flutter” [24], the more important? One of the results of this work is that “the
turbulence is electromagnetic but the transport is electrostatic”, 1. e., magnetic induction
is usually most important to the parallel response but the ExB velocity is more important
to the actual transport. Transport by magnetic flutter is usually a small fraction of the
ExB transport, even if it becomes significantly different from zero as the edge beta limit
(ideal ballooning) is approached.

A separate question is the importance of electron collisions, controlled by the collision
frequency, v.. The collisional drift wave model depends on resistivity being larger than
inertia, even if the response is electromagnetic. Note that this impacts both the current
and the parallel heat flux, g, both of which have constitutive relations to ¢, n, and
T. in the collisional drift wave limit [15,21]. Even in electromagnetic extensions, most
fluid dynamical models leave parallel conductivity as if it were collisional, sometimes flux
limiting the conductivity such that g is never larger than the “thermal maximum”, which
is of order nT,V,, where V, = \/m is the electron thermal velocity [22,25,26]. As the
L-H transition regime is approached the collisionality becomes rather weak at important
scales of motion, not only in the sense of a long mean free path, which can be treated by
flux limiting, but even compared to d/8¢, which cannot. Even in the probe experiments,
the only reason that the collisionality isn’t judged to be small is that while v, Sesfli;
the scale of motion is large enough to keep w, < ¢;/L,, and hence w, < v.. By contrast,
the L-H transition regime is characterised by 8 ~ m./M; and v, ~ @/0t, so not only is it
marginally electromagnetic, it is also marginally collisional.
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It is worth noting that the reason the tokamak edge at the L-H transition is actually
in this exotic double marginal regime is that the profile gradients are so steep. Most work
on tokamak turbulence assumes that in collisionless regimes the passing (non-trapped)
electrons are adiabatic since V,/qR < w, where w is the wave frequency of a linear insta-
bility, R is the tokamak major radius, and q gives the average pitch of a field line such
that the length along B for one turn around the poloidal cross section is 2wgR [19]. The
inequality implies that the transit frequency, V. /qR, is fast enough to average any electron
thermodynamic quantity along the magnetic field before the wave can respond, leading
to the bounce averaged models for trapped electrons [27]. But that is not true at edge
parameters at the I-H transition with L} ~ 2cm and gR ~ 500cm [23], such that the
ratio (cs/L1)(qR/V.) is of order 3. This means that there exist drift modes with k; p, < 1
for which V. /qR ~ w,. This in turn means that turbulence at diamagnetic frequencies can
effectively compete with parallel electron dynamics, allowing the nonlinear instability in
drift wave turbulence [28] to robustly function. With regard to collisions, the parameter
VeL1 /¢y is of order 0.5 and smaller (the significant exception is Alcator C-Mod [29]), which
means that there exist drift modes with k; p, < 1 for which v, ~ w,. This means that
electron inertia effects — time delays in the response of q as well as J — are important,
and that Landau damping has to be modelled. Lastly, the ratio (c,/L1)(qR/v4), where
va = B/+/4mnM; is the Alfvén velocity, is also of order 3, which means that there will
be significant coupling between ExB turbulence and Alfvén waves. In this regime, drift
modes are better called “drift Alfvén waves” rather than drift waves [17]. Note that since
V. is not dissimilar to v4 and k; p, ~ 1 is within the smaller scale part of the spectrum,
the Alfvén waves are kinetic [30], with a significant thermal component.

What is done in this paper is to construct a transcollisional model for electrons (31,32],
which can address all of these regimes: electrostatic or electromagnetic, collisional or col-
lisionless. This is important since different parts of the fluctuation spectrum can be in
different regimes since the entire dynamics is marginal with respect to both boundaries.
The drift approximation with E; = -V ¢ is still used for the perpendicular dynamics,
since at these scales (ky Ly > 1) the turbulence is low frequency with respect to com-
pressional Alfvén/lower hybrid waves as well as the gyrofrequencies. The shear Alfvén
magnetic fluctuations are retained through Ay, with B = —c™1904,/0t — V¢ and A
retained in V). Electron inertia is kept in the equations for both J) and g, with a simple
dissipation model for Landau damping on g which is consistent with the principal effect of
previous effort [33] while avoiding the use of the parallel wavenumber k) in formulae since
V) is nonlinear. The cold ion restriction is still used; incorporation of a finite difference gy-
rofluid model is the next step after this one (and the gyrofluid effort has yet to incorporate
passing electron dynamics [34]). This is the first drift turbulence computation to incorpo-
rate both transcollisional and electromagnetic effects, treating T, and g at the same level
of sophistication as n and J||; in three dimensions with adequate resolution. The model
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builds on the drift Alfvén transport model of Callen [24] and the finite beta universal mode
transport model of Molvig et al [35], except that the transport is not assumed and not
found to be electromagnetic. Some insight into the emergence of electromagnetic effects
with rising beta is available from two dimensional studies [36] and early three dimensional
ones [37]. The two dimensional studies show that the principal effect of magnetic induction
in turbulence is to make the electrons nonadiabatic in the same was as collisions do, by
delaying the parallel response to forces and so allowing robust electron driven turbulence.
The early three dimensional studies found the magnetic flutter transport to be small in
simple geometry. These were limited by available computational resources, however, and
therefore were unable to detect the drift Alfvén physics, including the nonlinear instability,
to the extent that is possible today.

The principal result of this paper is that the turbulence resulting from this gener-
alised electron fluid dynamics is of the drift Alfvén type. The main mechanism is what
can be called the drift Alfvén nonlinear instability — it is the electromagnetic version of
the drift wave nonlinear instability [28], and in this electromagnetic regime it is stronger
due principally to the fact that magnetic induction emerges with rising beta to slow the
electron parallel dynamics through a slower Alfvén velocity. Although there is quantitative
sensitivity to magnetic curvature and collisionality, the turbulence and its character does
not depend on these additional ingredients: the same qualitative behaviour and the same
scaling vis-a-vis the plasma beta is observed when curvature and collisional dissipation
terms are removed.

Concerning the transport, although the internal dynamics of the turbulence is strongly
electromagnetic, both particle and thermal energy transport are dominantly due to turbu-
lent advection the ExB velocity. One can say that the transport is ExB transport, but the
level of the ExB velocity disturbances causing that transport is determined by the elec-
tromagnetic internal dynamics — the turbulence is electromagnetic but the transport is
electrostatic. The point at which the electromagnetic effects become important is roughly
B = B(qR/L1)? 21, roughly similar to the result found by two dimensionsional compu-
tations [36], and to the conclusions in linear drift wave analysis [18]. In three dimensions
with moderate magnetic shear, however, the turbulence and transport levels sharply in-
crease with 3, reflecting the greater strength of the electromagnetic drift Alfvén nonlinear
instability. Aside from B, the parameter to which the turbulence was seen to be most
sensitive is the magnetic shear, S = dlog q/dlog z, where z is the distance in the direction
down the profile gradient. At low values of S the sensitivity is minimal since the parallel
limitation length is the connection length, 2rqR. At S & 0.5 the shear limits the parallel
length to values below 2mgR and the turbulence drive levels decrease as S rises further.
This leads to more adiabatic electron dynamics and hence to lower gradient drive rates.

It is important to understand that although there is some sensitivity to the magnetic
curvature parameter, wg = 2L, /R, the turbulence at typical L-H transition parameters
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of 3 about 10, B about m./M;, and wp about 0.03 is in no way of the ballooning mode
type. This is made clear by the very weak effect of setting wp to zero, especially well into
the drift Alfvén regime. Magnetic curvature, like collisional dissipation in this case, should
be thought of as an additional perturbation which is applied to an already existing drift
Alfvén turbulence and having to compete with it for dominance. The effect of magnetic
curvature is simply to cause a small charge buildup on the trailing edge of a pressure
disturbance with p > 0, and on the leading edge of a disturbance with < 0, in the
electron drift direction. The effect is to add to the set of effects causing the average phase
of p to be ahead of a, for each wave in the overall collection. But the addition is in this case
merely a somewhat small enhancement (see also [22]). Magnetic curvature has a strong
effect on poloidal asymmetry of the turbulence, but not on the spectrum, energetics, or at
B ~ 10 even on the transport level. When the product Swg (which is synonymous with
the MHD ballooning parameter) is further increased, however, sensitivity to wp is greater
and the ballooning regime is gradually entered, still well below the ideal MHD ballooning
threshold. The reason is likely to be the partial cancellation between Vp and neV )¢
in the electron force balance, reducing the strength of the stabilising effect of field line
bending, as pointed out by Callen and Hegna [38].

Preliminary versions of both this work [39], and a parallel one by Rogers et al [40]
neglecting temperature and finite m. effects, have been presented elsewhere. The sec-
ond one more decisively found the turbulence strength to increase with 3, but the focus
was entirely on ballooning — the concepts of drift Alfvén turbulence or electromagnetic
nonlinear instability are nowhere mentioned. The first one did note that instability, but
the turbulence was found to have a maximum at 3 close to me/M;. This work did not
confirm that, and the maximum may be the result of unrealistic profile evolution in the
preliminary treatment. These issues are both clarified here, individually and with respect
to each other, for the first time.

Following sections describe the emergence of magnetic induction with rising 3, con-
struction of the model equations and their free energy theorem, linear wave properties,
the presentation of the results, and the relevance to the parameter domain of the L-H
transition in tokamaks. The conclusions are discussed in more detail in their own section.



2. Electromagnetic Fluctuations — the Role of Magnetic Induction

This section is a discussion of how electron inertia replaces the role of collisional dis-
sipation to provide a generalised resistivity for wavelike disturbances, as has been pointed
out in collisionless reconnection studies [41], and how Landau damping similarly replaces
thermal conduction, when the electron collision damping frequency, v, is no longer large
enough to dominate the parallel response to forces. What must be done in a fluid model,
then, is to treat both the temperature and parallel heat flux as dynamical variables with
the same level of sophistication reserved for the density and parallel current. Hereafter,
we restrict to quasineutral plasma and cold ions,such that n; =n. =nand T; « T. = T.
Since V|| € V _ at drift scales, only the parallel component of the magnetic potential is
treated [42,43], and ¢ is written for A).

In the electrostatic, collisional model of drift waves [14,15,16] and their turbulence

[20,21,44], the Ohm’s law is a balance between pressure and electric forces on the one hand
and resistive friction on the other:

1
meveg.]“ —anV T =Vp—neV|4, (1)

where « is the thermal force coefficient (0.71 for pure hydrogen [45]), and the term it
multiplies is set on the left side because it is itself part of the frictional dissipation — it
exists because the collision frequency depends on particle velocity and hence vanishes if

there are no collisions [45,46]. Expressing it in terms of the heat flux is actually more
appropriate. The latter is given by

1
q) + QT;J" = —KnNn VHT (2)

Mele

(where & is the thermal conductivity coefficient, equal to 1.6 for pure hydrogen [45]), which
suggests that Eq. (1) be rewritten as

1 a1 1
Mele |:-E—,J]I + ; (-fq" + Q;J")] = V"p - neV"gb, (3)
and Eq. (2) as
1 1 1
";meye —i;q“ + QEJ" = —nV)T. (4)

This representation of the two equations has the advantage of showing the essential syin-
metry between the parallel current and heat flux, both expressed as fluxes in response to
forces, and the mixing between them represented by a nonzero a shows, in a less mysteri-

ous way than usual, the symmetry (Onsager symmetry) inherent in the thermal force (see
also [47].
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This preliminary discussion sets the stage for the introduction of both electromagnetic
(finite B) and inertial (finite m,, or collisionless) effects. What will become apparent is
simply that the frictional component in both these balances (Eqgs. 3,4) is replaced by either
or both electromagnetic and inertial effects. A finite 3 brings in the magnetic fluctuations
in two ways. First, magnetic induction adds to the parallel electric field,

199
Ey==c3 V¢, (5)

where 9 is the parallel component of the magnetic potential, and the perturbed magnetic
field is

B = Vxyb = —bx V3. (6)

Second, the parallel gradient picks up a nonlinear component due to the perturbation of
B, called “magnetic flutter,” [24]

1

Vii=3

~ 1

Magnetic induction is separately important because it affects the linear response of the
current to forces, and hence the speed of waves and their dissipation. As is well known, it
replaces the resistive friction as the controller of the response,

ne Oy 1 a (1 1
o T e [;J" e (fq" + “zJ")] = Vip=nevid, ®

in the left side of which the induction term dominates if 3 is high enough. Specifically, since
J) and % are related through the Ampere’s law, (47 /c)Jy = —V?4, induction overshadows
resistive friction if the perpendicular scale is larger than the collisional skin depth, or if
B > (ve/w)(kips)?(me/M;)[48,49], where B = 47nT/B? and w is a typical frequency of
the dynamics.

Magnetic induction does not, however, affect the heat flux, except indirectly through
its effect on the current. Whether the collisional friction term is dominant or not in
controlling the response of g to the thermal gradient is independent of 8. What this
does depend on is the electron mass — if the collision frequency is low enough compared
to dynamical time scales then the inertia will replace friction. Unfortunately, the fluid
equations lose their validity at the same point. It is possible to construct a model in which
the important physical phenomena are captured while still preserving a low order moment,
or fluidlike, approach [33,34]. In this work, such a model is constructed by a simple
fluid closure scheme in which the fourth velocity moment is that given by a perturbed
Maxwellian distribution function up to a correction which models Landau damping. The
Landau damping term is chosen to take into account the fact that k) cannot be used as
a parameter when V) is a nonlinear operator. The simplest way to do this is a direct
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damping coefficient for g which gives the correct damping rate for the longest parallel
wavelengths (we are implicitly assuming that the longest wavelengths are dominant in gy).
A factor of 5/2 arises in front of the VT term in the construction of the fourth moment;
taking this into account with the collisional limit in Eq. (4), we have

me [ O

5

where a;, = V,/qR, L; = 2ngR is the parallel system size, and V. = (T/m.)'/? is the
electron thermal velocity. The frictional dissipation term has been moved to the right side.
Note that az, as a time independent damping is equivalent to what is often called a Knudsen
correction [25]. In a local model under drift ordering, nonlinear effects in this equation are
limited to 8/0t becoming an ExB advective derivative and the contribution of magnetic
fluctuations to V| [21,49]. In a completely nonlinear model conservation considerations

cause several parallel advection terms like m.e™'J; V|| and uy V| to arise, but under drift
ordering they are small [21,50].

In the Ohm’s law the inertia appears normally,

ne 1/0 1 a1 1
?Et_ 'me; (55 + Vg - V) J" = V”p—neV”cﬁ—meue [;J“ + ; (fq" + a;J”):l 5 (10)

Me 5/2

/ 1 i
T oLa — ——meve (matacdy ), (9)

K

and introduces the collisionless skin depth as the perpendicular scale above which the in-
duction becomes dominant in the weakly collisional and collisionless regimes: this happens
if B> (k1ps)®(me/M;) [17). It is important to note the absence of ExB advection acting
directly upon . This leads to the absence of ExB transport of current or the magnetic
field at large scale where the electron inertia is negligible, and is the reason why there is
no appreciable anomalous resistivity in magnetically confined plasmas in equilibrium [51].
Since a non-collisional resistivity is likewise to be avoided, the Landau damping term is
applied only to ¢ and not also to Jj. Energetic considerations also suggest against a direct
or viscous like damping on Jj [33]. 7

Introducing the collisionless and electromagnetic effects in the above order makes clear
the essential relationship between drift waves and drift Alfvén waves [17]. Drift waves result
if the response is parallel electron response to forces is electrostatic. The limit of validity
for this in turbulence is much more severe than has been appreciated. The limit is often
stated as § < m./M; [17], but we can see that this depends on the implicit assumption
that k ps ~ 1 for drift waves (see also [18] on this). Years of study of drift wave turbulence
have shown the importance of much longer wavelengths (e. g., [20,21,22]). Experimental
observations of tokamak edge turbulence also show that the dominant scales are much
larger than p, [5-12]. It follows that the dynamics is electromagnetic in character even
down towards the very low values of 3 found in typical T. < 50€V scrape off layers in which
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the majority of the probe experiments have been done: a typical k; p, ~ 0.03 leads to the
conclusion that the dominant scales are electromagnetic even for 8 ~ 1076, This does not
mean that the transport should be electromagnetic or even that what has been learned
from study of drift waves need be discarded. All that matters is that magnetic induction
enters to control the response of nonadiabatic transients to parallel forces: a disturbance
cannot propagate along the magnetic field, whether wavelike or diffusively, faster than the
Alfvén velocity, va = B(4nnM;)~!/2, or at arbitrarily small scale faster than V,. This is
principally a quantitative effect to each scale of motion, since the turbulence is still well
described as an interaction between nearly two dimensional ExB turbulence perpendicular
to the magnetic field and parallel, nonadiabatic electron transients parallel to the magnetic
field. The dynamics is still electrostatic in the perpendicular plane, since kjv4 and the
lower hybrid frequency are both very large compared to w, and hence the perpendicular
velocities and fluxes are described by their drifts, both ExB and diamagnetic.

It is of the greatest importance to keep in mind that although some of the above results
may remind one of the transition to ideal MHD with increasing scale, at no time will it
become valid for gradient driven microturbulence that the pressure should drop out of the
Ohm’slaw. To state it specifically, the simple resistive MHD Ohm’slaw, E+c~'vxB = nJ,
is never valid if the typical frequencies are not greater than diamagnetic, even for arbitrarily
large spatial scale. Only when the ideal ballooning limit is crossed will the dynamical
time scale be so short. By contrast, gradient driven drift turbulence models must always
additionally keep the pressure, such that one has at minimum E + Vp, + ¢~ 'vxB = nJ.
This is the principal shortcoming of resistive ¢ [52] and current diffusion [53] models.
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3. Electromagnetic Drift Wave Equations and Energetics — Isotropic Temperature

For now the temperature is assumed to be isotropic: there are three degrees of freedom,
and there is only one each of temperature and parallel heat flux. Drift ordering is assumed,
according to which ExB advection and the perturbed V| are the only nonlinearities.

Normalisation is in terms of drift scales: V) appears as psV 1, V| as ¢RV)|, and 9/0t
as (L1 /cs)(0/0t). The eight dependent variables are normalised as ¢ to T /e, nand T
to ne and T, uy to csqR/Ly1, Jy to n.ecyqR/Ly, g to nelecsqR/Ly, ¥ to BpsSqR/L,
and Q to p;2T./e. The dependent variables are further scaled by a factor of the drift
parameter, § = py/L1, €. g., ¢ < 6 ted/Te. In these expressions L is the profile scale,
Cs = (T.,/A/I,-)I/Z, and pgé;= el /eB.

The full system of equations is given by

(gt otk V)Q Viidy = K(T +n), (11)
-~ 0 [0 . o
ﬁa%b"l‘,u (E +vg- ‘7) W=V(T+n—-4¢)—jpv [JII + = (a +°‘JH)] v (12)
( +vE- V) =—wn—+\7“ (=) —K(T+n—-¢), (13)
0¢
‘ay

%(—B—'-I—VE-V)T:—E

s - . 5/2
i (315 +VE- V) A9 = "'z_vllTe —paLq| — ﬂy—é" (qu 7 OtJ") ; (15)

+Vy (Jy—uy—gqp) —KB.5T +n—¢), (14)

., [0
€s (E +VE'V) up = =V (n+T) = Vijup, (16)
and the two auxiliary relations for the vorticity and current,
= Vi, Ji = -Vi¢, (17)

with v - V representing advection by the ExB velocity and the nonlinear parallel gradient
V|| including the contributions from 4.

The geometry is a three dimensional sheared flux tube model, with the simple balloon-
ing approximation for the toroidal magnetic curvature effects [54,55]. Leaving the more
proper tokamak geometry [22,56,57) to subsequent papers as mentioned below allows a
better understanding of the differences between intrinsic physics and that dependent on
the details of the geometry (see [22], where these were combined in the context of a non-
local model). Given the cylindrical coordinates (r,,¢), the slab like coordinates (z,y,s)
are defined to follow the unperturbed field lines:

T =r-—a, y=$~(q9—(), & = R0,
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where a is the reference minor radius, R is the major radius, and ¢, is a normalising
constant allowing y and s to be defined as simple distances. The factor of ¢ in y is variable,
allowing for shear through the parameter S = dloggq/dlogz. In normalised units, the
computational domain and boundary conditions are z bounded on [—zp,z1], y periodic
on [0,27/K], and s quasiperiodic on [—m,n]. Dependent variables vanish for z = *zy,
and quasiperoidicity in s means the variables take identical values at (y + 2wSz,s + 27)
and (y,s). This is the parallel boundary condition, also called the periodicity constraint
(dependent variables are periodic in both 8 and (), whose importance is discussed elsewhere
[22]. In all cases, the grid was 64 x 256 X 16 nodes in (z,y, s), with 7, = 32 and K = 0.025.
This makes the domain in the perpendicular plane 64 x 256p,, corresponding to about
2.5 x 10 cm for typical tokamak edge parameters at the L-H transition [1,23].

In this model the differential operators are

d AN AN
R il il il 18
v (3x+533y) +(8y) ; (18)
for the perpendicular Laplacian, and

vg -V =VsxV¢-V, V)= %—Bvsxw-v,

for ExB advection and the parallel gradient. Magnetic curvature is modelled with

K=w oss——q——i-'ns-—a—
B e = L

which is the lowest order contraction of Vlog B with VsxV.

In addition to a and k, the main parameters controlling the kinetic Alfvén wave
speeds,

5 4mnT. (gﬁ)z_(c,,/ll_q_ : . _me (ﬂ 2_(c,/Ll)2
=732 \I.) T \waJeR) "’ b= \1L) ~\V.jer)

secondary parameters,

Ve Lj_ L_;_ L_L
wB=2?, Wp = — W = —

- Cs/LL,

and auxiliaries &,, ar, and S (magnetic shear), are all constants. The nominal value of
€s is (gR/L1)?, but it can be set smaller than this in order to speed up the parallel ion
dynamics. The Landau damping parameter is usually set to a; = (VeL1/csqR).
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The fluctuation free energy theorem for this model is constructed in the same way as
for the collisional drift wave model [21]. The energy is defined as

1 3 N T
E= §/d3V [IVJ.‘.‘b'z #n? 4 ST (B + ady) Jy + giaf + fs“ﬁ] ,  (19)

with the domain integral [ d®V normalised such that [d*V/(1) = 1. The energy evolves
following Egs. (11-17) according to

1 OE
'ﬁ'a_t=Fn+rt+r‘jm+rqm"'Pc_rk_'rl—rs- (20)
The first four contributions in Eq. (20) are the sources, also called drive terms. These are
split into the two groups of gradient drive due to ExB advection, I';, and Ty, and gradient
drive due to magnetic flutter, I'jm and I'ym, which are given by

L [ pyand® =t [ 70

= ]d anna , By = 2E d Vﬁ(wn + wy) (u" J") oy’ (1)
__ 1 3 o¢ _ 31/ 3 9% i

Pt = 2E da’Vv tha ) qu - -Z_E /d Vﬁw‘q“ ay )

in which —9¢/dy is the down gradient component of vg and 0 /0y is the down gradient
component of B.

The next four contributions in Eq. (20) are the sinks. These are the two collisional
dissipation sinks — resistivity, I'c, and thermal conductivity, I’y — and Landau damping,
I';, and ion sound dissipation, Iy, all given by

1 By 4 1

I\c = -Q—'-E[d V.UUJ]?, Pl 2E d V p,a[,q”, (‘)2)
1 v 2 B

Ty = ﬁ/dw? (qq+ady)”, L, = 2E &V py Vi

In the deeply collisional regime (vjz 3> ky?), I't is small, and T'; and Ty revert to their
collisional forms, given in [21]. It is important to note that no effects associated with
compressibility enter Eqs (20-22). Parallel compressions go through V| and perpendicular
ones go through the curvature, X. Curvature is a transfer phenomenon just like the
compressional effects in sound waves, i. e., it should not be thought of as potential energy,
as in many older treatments. It destabilises disturbances in both drift wave and drift
Alfvén limits, through compression of the diamagnetic current which tends to cause a
wave in ¢ to lag behind one in (n + T) in the y direction if the local curvature vector is
aligned with the pressure gradient. As in the electrostatic regime [22], this results in a

positive (or more positive) phase shift of n ahead of ¢, hence strengthening the combined
gradient ExB drive (T, + I'y).
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Sources of fluctuation free energy are limited to the background density and tempera-
ture gradients, acting through both ExB advection and magnetic flutter. These are related
to ExB and magnetic flutter transport in the obvious way. If w, and w; are set to zero, E
must decrease monotonically, and cannot be driven by such subsidiary effects as curvature.

Several effects present in the generally nonlinear case are not carried in these equations:
finite T}, full flux surface geometry, parallel advection (terms like m.e™!J; V| and v Vy),
and Pfirsch-Schliiter effects (further variation of wp with s leading to a nonzero flux surface
average of ). It is important to establish the intrinsic dynamics before moving on, so that
the physics of drift Alfvén turbulence is not confused with other effects. Sorting out the
various roles of magnetic induction and flutter, and ballooning, is enough for the moment.
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4. Linear Properties

The linear properties of the model described by Eqs. (11-17) are best understood by
first considering their parallel and perpendicular effects separately, and then looking at
the combination which results from their interaction. The following discussion is intended
only to provide insight into the linear properties in general; there is no need to introduce
complicated geometry or tokamak effects, or even magnetic shear.

If both v and aj are neglected, the parallel dynamics is purely hyperbolic, so that
the linear properties can be studied through the resulting wave speeds. Neglecting the
background gradients, the ion motion, and the temperature, all limits of the Alfvén wave
become clear in the following dispersion relation:

(23)

assuming a mode dependence of exp[i(ky - X1 kjjs — wt)]. This is the cold ion limit of the
kinetic Alfvén wave [30]. At large perpendicular scale (low k,), the ideal MHD Alfvén
wave is recovered. As & increases, the parallel electron response causes departure from
the ideal E; = 0. This reflects the importance of the perturbed pressure in the Ohm’s
law, Eq. (12), and hence one of the validity limits of one fluid MHD: that k; should be
small. When the perpendicular scale becomes smaller than the collisionless skin depth, or
equivalently when 3 < f1k?% , the electron response becomes electrostatic and the wave speed
is the electron thermal speed, V., rather than the Alfvén speed, v4. This is specifically
the finite mass effect, distinct from the dependence of the kinetic Alfvén wave speed on
k1. (Note here and below that the normalisation factor of [gR/L.]? is common to 3, ji,
and é€;.)

If u)| is not neglected, we recover the four waves associated with ¢, ¢, n, and u): two
kinetic Alfvén waves and two sound waves, coupled through the dispersion relation,

ot (B k1) o = (LR B =k [(B+ k1) ~R?] =0, 21)

well separated if both fi’ and f are smaller than &, or equivalently, if both 8 and m, /M;
are small.

If we neglect u)| again but keep T and ¢, we find the thermal modifications to the
kinetic Alfvén wave:

o ()~ (v ] - 3 ()~ 5] -0

which for £ > fik? splits into two kinetic Alfvén waves given approximately by Eq. (30)
and two heat waves given by

. 5
fo? = §k||2, (26)

15



propagating at a speed close to V.. The opposite extreme is short wavelength and low
beta, B < fi and k% >> 1, at which the two types of waves merge:

(ﬁwz)z + %ﬂw2k“2 - gknd — 0, (27)
describing kinetic waves propagating at a speed close to V.. Adding u| back to this gives
the sound waves in addition, again well separated from the Alfvén waves and heat waves
if both § and m./M; are small.

Now we turn to the modes that are present when there is a background gradient. For
clarity we neglect u) and the T, g pair, but now retain the density gradient, w;,, and the
resistivity, fiv. This recovers the drift Alfvén wave, which is the electromagnetic analog of
the drift wave [17]:

w? [B(w —w,) + k% (w + iu)] —(1+KY)K? ( - _i?) = D, (28)
14 k7
where w, = wyky, and in which the resistively damped kinetic Alfvén wave and the drift
wave are well separated if the kinetic Alfvén speed implied by Eq. (23) is sufficiently large.
Eq. (28) describes three modes: the drift Alfvén wave itself, and the two shear Alfvén
transients to which it is coupled [58] (see also [36]).
This is worth examining further: in the limit that both B and ji are small, meaning
that the kinetic Alfvén transit time is short compared to drift wave time scales, the low
frequency solution of Eq. (28) is

2
UL ~ _ ~79 .
wr, + T = [B(wa wy) + ki (wr + W)] ;

with the mode frequency given by

Wy

wL:—l_i.k?L’

and the slight growth rate proportional to v. Because the electron inertia, ik?wy, and
the magnetic induction, ﬁ(w[, —w,), lead only to a slight shift in the frequency away from
wr,, the growth rate is as given in the collisional, electrostatic case [14]. This suggests the
usual linear theory interpretation that electromagnetic effects enter the dynamics when

B ~1 [18]. If vk} > Pw and v > w, the transients are also electrostatic and collisional.
However, the resulting damping rate of transients is very fast:

va ~ (ky* [pw)(1 + K1) /KL, (29)
which for small /i violates the assumption that v > w.
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This is a good way to understand how the standard approach to linear waves breaks
down for turbulence: although the linear wave can be in the electrostatic regime for toka-
mak far edge parameters, the transients never are. For linear waves the eigenmodes evolve
separately, but in turbulence they are well coupled, so the electrostatic, collisional model
restriction is undesirable. What this means is that even though the linear drift mode may
be judged electrostatic, the dissipation of the turbulence going as it does through the tran-
sients will be partially wavelike, going through resistively damped kinetic Alfvén waves,
which are electromagnetic if 3 > k% The electron response to parallel forces depends on
inertia, 2k3w, induction, Bw, or resistivity, fivk%, whichever is slower. A generated dis-
turbance will propagate down the field lines a substantial distance before it is dissipated.
Moreover, in turbulence the magnetic field lines are displaced by the same wave dynam-
ics, leading to magnetic flutter, which in turbulence reduces coupling and cross coherence
among the state variables by comparison to the electrostatic model, as we shall see.

Electromagnetic effects enter the principal branch as well if the kinetic Alfvén transit
frequency is no longer arbitrarily fast: if 8 + k3 is no longer small, leading to the possibility
of a mode crossing. The subtlety of the additional linear gradient term in FVU’"n prevents
a mode crossing in the pure Alfvén wave, but if i > 1 there is in fact an electrostatic
mode crossing. The ideal fluid equations (v = 0) have an instability there, which in the
collisionless regime forces one to face Landau damping in order to have a reasonable model.
This specifically requires the retention of both T' and g as full fledged dynamical variables,
as the T' ++ g pair is the only route to Landau damping. Isothermal models are limited
to the strictly collisional regime because of the ideal fluid mode crossing. The effect of the
Landau damping term, ar, on the drift wave branch of the full linear dynamics is to allow
a consistent dissipation even when v vanishes, recovering the collisionless universal mode.

To summarise the above, fluid electron drift turbulence is always partially electro-
magnetic at tokamak edge parameters because the transients are electromagnetic. It is
strongly electromagnetic if in addition B>1orB2m. /M;. This is precisely the regime
the tokamak edge at the L-H transition is in.
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4a. Ballooning Modes

Here we briefly discuss the effects of magnetic curvature, enough to clarify its mech-
anism and to understand instabilities of the ballooning type which do not depend on
collisions but are nevertheless found below the ideal MHD threshold in 4. This is made
possible because of the perturbed pressure in the Ohm’s law, Eq. (12). As noted in recent
work by Callen and Hegna [38], a partial cancellation between (n + T') and ¢ reduces the
contribution of the field line bending term, V|Jj, to the mode’s stability, allowing the
instability to exist below the ideal threshold.

Magnetic curvature acts essentially as a catalyst, as seen by the fact that the X terms
in Eqgs. (11-17) act to transfer fluctuation free energy between the dependent variables but
do not appear in the sources and sinks, in Egs. (21,22) [22]. The easiest case to understand
is the isothermal, electrostatic resistive ballooning mode, in which fvJy = tkj(n — ¢) and
wki«;{) = kJ)| — wen, where we is —iK in Fourier space (note K is real and positive if the
curvature is maximally unfavorable). These two relations determine the response of ¢ to
whatever n is, enforcing a given phase relationship for the resulting linear wave:

k‘uz = zﬁuwki_
n—= —»—m

ky? +ifvwe (30)
The factor multiplied by v in the numerator is what produces the basic collisional drift wave
instability in a uniform magnetic field [14], by leading to a lag of ¢ behind n, so that T, in
Eqs. (21,22) is positive and the disturbance is driven by the background density gradient.
If the curvature is unfavorable, then the factor multiplied by we in the denominator also
tends to produce a destabilising phase shift, and it will be stronger in doing so if we > wk?.
Because w¢ is positive on the outside of the torus in a tokamak, and is maximum at the
outboard midplane, this curvature induced instability is called a ballooning mode. As long
as fivwg < k"z, however (as is always true on closed field lines in a tokamak, especially at
long perpendicular wavelength), the basic nature of the disturbance is that of a drift wave
whose phase shift happens to be controlled by the magnetic curvature.

Electromagnetic induction enters this mode in the same way as it does for a drift
wave. The ideal MHD limit is found by replacing jivJ) with —iwfy, and neglecting the
perturbed pressure in Eq. (12), and everything except the w, term in Eq. (13). Aside from
the w = 0 root associated with the neglected u), we obtain

ki wawe
w=— - =

g KL
which leads to the ideal threshold. In a tokamak, k) ~ 1 in these units, somewhat modified
by finite shear, or S, and wcw./k? is about w,wp = 2L,/ R, somewhat modified by flux
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surface geometry (the curvature is not everywhere maximally unfavorable). Replacing Vn
with Vp, or w, with (w, + w;), the ideal threshold is B(wn + wi)we 21, or B*RR L, up
to constants of order unity which depend on the magnetic geometry [59].

Note, however, that taking the ideal MHD limit breaks the conservation of fluctuation
free energy by curvature, which now appears in Eq. (20) as an energy source, as in older
treatments. Reinstating the drift effects — all terms in Eq. (13) except Vyu), and all
terms in Egs. (11,12) except those involving T' or v — this inconsistency is remedied and
we arrive at a much more interesting dispersion relation:

1+ k2 i~
H“’(J“L) {5 — Tl “”"C—(w kf)wc, (31)

(w—w)B+wiky K

which still in the absence of dissipation can be called “pseudo ideal MHD” — aside from
being a properly consistent formulation, it yields a nondissipative ballooning mode below
the ideal threshold [38]. This is due to the emergence of the perturbed pressure in the
Ohm’s law, through the parallel dynamics alone with finite k?% , and through the gradient
forcing at the diamagnetic frequency, also essentially at finite k.

It is important to note that the ballooning and drift Alfvén branches are separate.
The ballooning modes which are destabilised at the ideal threshold are actually the Alfvén
transients discussed above, not the drift Alfvén or drift wave mode. This shows the fun-
damental difference in their character: the ballooning mode/Alfvén wave branch has to
do with a restoring force due to field line bending, and the sign change provoked in that
force due to unfavourable curvature. The drift wave/drift Alfvén mode branch is the zero
frequency mode which results from taking the ideal MHD limit in Eq. (31); it is actually at
w=uw, as k; — 0. So in the case of drift Alfvén and ballooning modes, we are discussing
fundamentally different dynamics.

Moreover, at the threshold we are necessarily discussing low frequencies and B >
1, and this means that for finite /i we run into the ideal mode crossing instability for
fi > 1. In turn, this forces us to restore the T' ¢+ g pair and Landau damping. A
gradual merger takes place between the basic drift Alfvén instability and the pseudo ideal
MHD instability as B increases, and when 2 > 1, that merger takes place before even
pseudo ideal ballooning is reached, relegating ballooning to secondary importance until the
ideal threshold is approached. We will see this in the computational results regarding the
turbulence. We will not develop this analysis any further, since the results of the turbulence
computations presented in following Sections show very clearly that ballooning has no role
in determining the qualitative dynamical character, even when it is quantitatively very
important,. .

To summarise, the model described by Egs. (11-17) admits a number of important
modes, among them Alfvén waves and ideal MHD ballooning modes, drift waves, drift
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Alfvén waves, and collisionless universal modes. Which type of linear mode prevails de-
pends on geometry as well as parameters; the foregoing is intended only as a basic survey
to show how these different modes are related. As is known, however, what type of trans-
port results from the complete system of equations can only be determined by nonlinear
numerical simulation, as the properties of the model in turbulence are very often quite
different from what the linear waves would suggest.



5. Results — Basic Character of the Turbulence

This section presents the basic result of this computation series: sensitivity to mag-
netic fluctuations sets in at § ~ 1, and at larger values the turbulence becomes markedly
stronger. The mode structure is qualitatively not different from that found in electrostatic
drift wave studies; it is determined by spectral transfer to both longer and shorter wave-
lengths out of a region of net drive by the gradients. Fluctuation statistics show Gaussian
amplitude distributions and low cross coherence, but decidedly nonrandom relative phase
distributions showing strong coupling among the state variables (¢, n, and T'). As 8 in-
creases, the degree to which this coupling is maintained weakens. In the Section after this
one it is shown that most of this is simply due to the slowing of the Alfvén velocity in
relative terms with £, all consistent with the identification of the dynamics as drift Alfvén
turbulence.

The nominal case against which all others were compared was the one characterised
by 3 =4 =10, v = 0.5, wg = 0.03, and w, = w; = 1. The computational domain
was 64 x 256p, in = and y, with one grid node per p;, and 2w¢R in s with 16 grid
nodes: 64 X 256 x 16 nodes and a domain size of 64 x 256 x 27 in normalised units.
This corresponds to basic parameters of n, = 4.6 x 10* ecm™3, T, = 130eV, B = 20kG,
R =165cm, L) = 2.5cm, M;/m, = 4000, ¢ = 3 and a domain size of 2.5 x 10cm in the
drift plane and 31 m along the magnetic field, all corresponding to typical edge parameters
at the L-H transition in ASDEX Upgrade [23]. Note that this parameter regime (B - 9
f > 1, iw? ~ 1) as noted in the Introduction is the result of the large size of gR/L) = 200.

The temporal behaviour is shown in Fig. 1. This is the basis for the judgement that the
turbulence is well saturated: the free energy levels, source/sink rates, and transport levels
are statistically stationary after ¢ = 100. Measurements taken over any interval of At = 50
between ¢t = 100 and ¢ = 1000 are consistent with each other within one standard deviation
(see [21] for how these are defined and judged). For example, the average ExB thermal
energy flux, Qpy, was 9.47 between 200 < ¢t < 1000, and for the At = 50 intervals ending
at ¢ = 200, 400, 600, 800, and 1000 it was 9.08, 10.0, 10.6, 8.42, and 9.00, respectively.
This statistical variation is less than the difference between the levels at the different
parameters used in the scaling results. This is a very rapid saturation compared to the
two dimensional sheared slab model computations [21] but comparable to the electrostatic
three dimensional models [22], a result of the fact that the drift wave nonlinear instability
in general is much more robust in three dimensions than in two [44]. Other cases were
not carried all the way to ¢ = 1000; most needed only go to ¢ = 200 and the weaker ones
to t = 300. All cases were carried until at least the last At = 100 was saturated. Free
energy and transport levels and source/sink rates were averaged over the last At = 50 and

spectral and other mode structure information was averaged over the last At = 100.
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The basic mode structure is shown in Fig. 2. It is the same as that observed in
the electrostatic model [22], with the free energy peak at somewhat lower k, than the
kyps ~ 0.15 peak in the source/sink rates. The important source/sink rates are the drift
wave ones: ExB gradient drive and resistive, conductive, and Landau parallel electron
dissipation (', Iy, I'¢, Tk, I'1). All of the source/sink rates peak together, but the source
rate spectrum is narrower, indicating spectral transfer to both lower and higher k, out
of the net source region. Each state variable has its own cascade properties under ExB
turbulence, with ExB energy going to lower ky and n and T going to higher k,, and
each of these cascades operates indepently no matter what coupling regime the turbulence
is in [60]. This is classic nonlinear drift wave mode structure, first observed in the two
dimensional sheared slab model [28], discussed at length in [21], and shown to persist in
tokamak geometry [22]. The vorticity spectrum is clean all the way to the last available
mode, knaxps = 128 x 0.025 =~ 3, showing that the numerical scheme for ExB advection is
well behaved. The flux surfave averaged source/sink rates exhibit only smooth, statistical
variation with z, showing that there is no special effect of resonant surface layers, and
that there is no pathology introduced by truncation in the y direction with respect to the
parallel boundary condition.

The basic electromagnetic character of the turbulence is shown by its dependence on
B. All free energy and transport levels varied the same way, so it is sufficient to show only
the transport, in Fig. 3. This and other scalings are in terms of time and space averages,
over the full domain and over the last At = 50. The transport is almost entirely ExB
transport, with magnetic flutter accounting for as much as a few percent of Qy only for
B = 20. Particle magnetic flutter transport averaged over any substantial radial distance
is essentially zero, since the same dependent variable is responsible for both {?“ and J)
[37]. The thermal energy transport due to magnetic flutter is small because the shorter
and longer wavclengths tend to have different signs. At short wavelength, ¢ and  have
essentially no coherence, so that a simple random walk model is sufficient to explain the
positive average magnetic flutter transport (it would be zero if w; were zero). But at long
wavelength the Alfvén transit dynamics is faster than the turbulence, so it is nearly linear
and therefore somewhat stabilising [18]. The magnetic flutter transport tends therefore to
be negative at low ky, and the average over the spectrum is very small.

Probabaility distributions for the amplitudes of ¢, n, T, and the quantities directly
measured by Langmuir probes [5-12], Lot = n + 3T and ¢3 = ¢ — 3T, are shown in
Fig. 4. The probability of a given variable having a given amplitude, A/c in terms of
standard deviations away from the mean, is shown as P(A), compared to a perfect Gaussian
distribution drawn with a dashed line. All of the P(A) are essentially Gaussian, with
negligible departures visible only at the level of several standard deviations. A similar
signature was seen in all the various cases with differing 3, as well as those in which either
magnetic curvature or magnetic flutter were removed from the equations. It would be
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very difficult to argue in favor of coherent structure behaviour on the basis of the wealk
departures from perfect Gaussian distributions seen in this figure. The result is entirely
consistent with conditional sampling experiments with Langmuir probes [10].

The cross coherence between n and ¢, and between T and ¢, is shown in Fig. 5, for
B = 0.3 (electrostatic, drift wave) and B = 10 (electromagnetic, drift Alfvén wave). In
such a measurement, each variable is sampled as for P(A) above, and recorded as A/o.
In each case, each sample, taken at all 256 independent positions in the y direction, for
various values of z in the vicinity of z = 0, and at s = 0. Each time point for each z
and y position is one sample, so that the cross coherence is computed as the probability
of finding both variables at a speficied ordered pair of amplitudes. The width of the
contour ellipses away from the line on which the amplitudes are equal may be judged as
the degree to which the two variables are incoherent with respect to one another. In the
drift wave regime the coherence with ¢ is visible, slightly less for T' than for n. Much
of this is washed out at higher B. By comparing the nominal case at B = 10 with the
one in which magnetic flutter was removed from the equations (linear V), we find that
both the increased strength of the turbulence at the higher B = 10 and the presence of
magnetic flutter are concurrently responsible for the weakening of cross coherence with B,
a trend that was found to be monotonic. The apparently ubiquitous measurement of very
weak cross correlation in Langmuir probe experiments [65] may be accounted for in part
by these drift Alfvén electromagnetic effects.

The probability distribution for the phase shifts, shown in Fig. 6, add insight. In each
case, the variable is sampled on a line of all 256 independent positions in the y direction,
for various values of z in the vicinity of z = 0, and at s = 0. Each time point for each
z position is one sample, for each wavenumber k, from 0.025 to 3.2, and the probability
of a variable to have a given phase shift, @ € [—m,«], in the y direction with respect to
¢ at that ky is shown as P(a). In the electrostatic regime, here represented by g = 0.3,
both n and T' are well ordered with respect to ¢, such that the Gaussian distributions
of their amplitudes seen in Fig. 4 are due to the same amplitude distribution of ¢. This
shows that the fact of a Gaussian distribution for a single state variable by itself is not
sufficient to conclude that the turbulence is of the random mixing (passive scalar) type.
With no coupling between n and ¢, the distribution P(«) would be nearly random, with a
general shift to positive values whose size depends on the relative strength of the gradient
drive to the turbulent mixing. In the electrostatic regime the coupling of ¢ back towards
p = n+ T is very strong, especially at longer wavelength, so that the quantities being
transported have a strong influence on how the ExB flow eddies are to subsequently evolve
— this is the opposite of passive scalar turbulence. In the electromagnetic regime, here
represented by 8 = 10, the P(a) are both much broader; the reader can see the clear
correspondence between the width of P(«) and the width of the cross coherence contour

ellipses in Fig. 5. That much of this is due to small scale magnetic flutter is seen from the
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differences between the nominal and linear V) cases for B = 10. Magnetic flutter is able
to randomise especially T with respect to ¢ at the smallest scales. However, in the energy
producing range centered upon k,ps = 0.15 the contrast to what a randomised state would
show is still quite visible. Together with the absence in Fig. 4 of the flattened tail in the
amplitude distributions which would be expected in passive scalar dynamics [66], this leads
to the conclusion that drift Alfvén turbulence is still reasonably well enough coupled that
it would be difficult to model with a simple random mixing approach.

These fluctuation statistics show that although the amplitude distributions are all
Gaussian, and although the magnetic flutter greatly reduces state variable cross coherence,
the phase shift distributions are narrow enough to show that the turbulence is not of the
random mixing or passive scalar type. On the other hand, there is no evidence of any
behaviour which can be called coherent structure, even in the sense discussed in [21]. This
is likely due to the fact that the turbulence is much stronger in three dimensions than in
two [44] — even in the two dimensional sheared slab model, the degree of coherence had an
inverse relationship to the turbulence strength (see the marginal amplitude threshold case
discussed in [21]). Any coherent activity which slips past these diagnostics can be judged
subtle enough not to have signicifant impact on the internal dynamics of the turbulence
or on the transport level.

Finally, visual support for the foregoing is provided by the spatial morpholgy of the
main state variables, shown in Fig. 7, along with the vorticity. Clear correlation among
¢, n, and T is visible at the main eddy scale, relaxing at smaller scales as the turbulence
is more effectively able to compete with the Alfvénic transients. Large radially streaming
flows noted elsewhere [67] are not observed here as they are essentially prevented by the
boundary conditions. No dipole vortices [68] are observed, either. While these features
may be interesting in particular cases, neither is a necessary condition for robust turbulence
and transport, or the nonlinear drift wave/drift Alfvén instability.
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6. Results — Drift Alfvén or Ballooning?

The question arises, whether drift Alfvén, ballooning, or magnetic flutter physics (a
tendency of V| Jj to go to zero under a nonlinear magnetic response [61]) is responsible
for the scaling with 3 and therefore the principal type of physics behind electromagnetic
fluid drift turbulence. The simplest way to decide this is to apply a falsifiability check: if
an agent is removed from the computation, its importance can be determined by the effect
on the qualitative physical character (e. g., rippling modes were found not to be important
to drift wave turbulence in typical tokamak edge regimes by removing the rippling drive
source and obscrving the total lack of an effect [50]). To this end, a scaling with 3 was
obtained for three other situations: removing the curvature terms by setting wp = 0
(“nocv”), removing the magnetic flutter by setting Vj = 9/9s (“nomag”), and removing
both, such that only drift wave physics plus magnetic induction was left (“ind”). These
were compared to the cases with all terms present (“main”). The § scalings are shown
in Fig. 8. One can see that magnetic curvature is destabilising and magnetic flutter is
stabilising, but that the scaling of Qy with 3 is close to the same in all these cases. The
slight differences in the shapes of these curves are explained by the varying strength of
each effect in competition with the others: Magnetic curvature competes more strongly
against weaker turbulence, so it has a strong quantitative effect on the transport level in
the electrostatic regime [55], even when it introduces no qualitative change in the dynamics
[22]. Additionally, as the ideal ballooning boundary is approached, K(p) begins to compete
more effectively with ﬁVﬁ(n + T — ¢) [38]. Magnetic flutter has an increasing effect with
larger £, so the “nomag” curve is steeper than the others at 3 = 10. Obviously, if magnetic
induction were additionally removed the curve would be horizontal, since 3 enters at all
only through magnetic induction and flutter. The result is that the dependence of the
turbulence on f is the result primarily of magnetic induction, and is therefore the result
of the slowing down of parallel electron dynamics through the slower Alfvén velocity —
the effect of electromagnetic character on this turbulence is the same as that observed in
[36]. Like collisionality, it makes the electrons more nonadiabatic through slower parallel
dynamics.

We learn more from this by looking for changes in the mode structure. Fig. 9 shows
the changes in the total source (I'y) and sink (I'-) spectra due to the removal of the
magnetic curvature and magnetic flutter terms. The removal of magnetic curvature shows
that its effect was to add to the relative phases between n or T and ¢; the result of
removing is to decrease the size of I'y but to leave the spectra unchanged. Magnetic
flutter is significantly more important, in stabilising both the long and short wavelength
sink regions as § increases; removing it causes a strong enough rise in 'y that the extra

strength of the turbulence can shift it to longer wavelength, through the ExB energy inverse
cascade.
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The changes in the cross coherence as a result of removing these effects are not as
dramatic. Fig. 10 shows the cross coherence between n and ¢ as a function of f3 for each
of the four series. Magnetic curvature has no effect, but magnetic flutter is part of the
cause of the weakening cross coherence with rising B. This is essentially how magnetic
flutter helps stabilise the turbulence, and it is interesting as a signature which is possibly
measurable by probe experiments. It is also interesting to note that magnetic flutter is the
stronger of these two auxiliary effects.

Even weaker was the dependence of the phase shift probability distributions for n
relative to ¢ due to these effects, shown in Fig. 11. In all cases, the role of the parallel
dynamics in keeping these distributions much narrower than 7/2 is dominant over all other
effects. This is very basic, because it is the principal signature of the self-consistency which
causes the turbulence to differ from the random mixing type.

This tells us something important: the basic physical character of the turbulence has
nothing to do with ballooning, ideal or otherwise. Magnetic curvature causes ballooning
by increasing the phase shift between p = n + T' and ¢ where it is unfavorable (cos 8 > 0)
and decreasing the phase shift where it is favorable (cos8 < 0), but this is an additional
perturbation on an already established drift Alfvén turbulence. In no case was curvature
observed to alter the qualitative mode structure or cross coherence, even when curvature
had a very strong quantitative effect. This has been noted before in drift wave physics,
in both the two dimensional sheared slab [62] and three dimensional tokamak geometry
[22] models. It is a very robust result. That magnetic flutter affects the qualitative mode
structure more than does curvature adds to the emphasis.

The main result of this section is that the conclusion that three dimensional elctron
fluid turbulence at tokamak edge parameters is drift wave turbulence [22] is not changed
by the introduction of transcollisional or electromagnetic physics; it is merely generalised
to drift Alfvén turbulence. The principal electromagnetic effect is magnetic induction,
leaving the physical character of two dimensional ExB drift plane turbulence coupled by
parallel electron dynamics unchanged, with magnetic flutter the most important auxiliary
effect. The scaling of the turbulence and transport with /3 is the result of the slower Alfvén
parallel dynamics at larger B. The salient parameter is 8 because it gives the square of
the ratio of the basic drift frequency, ¢;/L ], to the Alfvén transit frequency, va/qR.




7. Results — Scaling with Parameters Other Than Beta

This section presents the rest of the parametric dependence of drift Alfvén turbulence
and transport. Except for magnetic shear, no scaling is as pronounced as the one with 8.
A scaling against the temperature gradient holding the pressure gradient fixed shows that
the turbulence is roughly equally well driven by either Vn or VT, with the total drive and
heat flux somewhat larger when Vp — nVT. Scaling against v is very weak for v < 0.5
and not nearly so strong as in collisional electrostatic models even for ¥ 2 1. The most
important parameter is therefore 3, consistent with the characterisation of the turbulence
as drift Alfvén turbulence.

The most important of the auxiliary parameters is the collisionality. For electrosta-
tic drift waves, the collisional parameter is Co = (veLi/cs)(me/Mi)(qgR/L1)* = fv; it
controls the relative speed of the parallel electron dynamics in damping force imbalances
and enforcing an adiabatic state. Previous work with both the two dimensional sheared
slab [21] and three dimensional models [22,55] models has shown a very strong dependence
of the turbulence and transport level with Cp, due to the fact that the strength of the
nonlinear instability [21,28] depends recursively on the amplitude of the turbulence. The
scaling of drift Alfv’en turbulence at B = i = 10, however, is much weaker, as can be
seen in Fig. 12. The speed parallel dynamics is controlled not by Cp but by 83, so that the
scaling of the turbulence and transport is much more sensitive to G than to v. For v = 0.5
the collisional damping of J| and g is comparable to the Landau damping of gy, as seen
in Fig. 2. For v < 0.5 the collisions are weaker and the principal dissipation mechanism is
Landau damping; the scaling in this regime with v is very weak. As v is increased above
0.5, collisional dissipation begins to take over, starting at the smaller wavelengths and
moving into the spectrum towards the energetics peak at k,p; = 0.15. The turbulence is
stronger with larger v for the same reasons as in the collisional, electrostatic drift wave
model: the parallel response is slowed down. But at least as far as v = 2 the scaling is
still weaker than that for 3. In experimental terms, however, an increase of the total heat
transport of a factor of two is very important, perhaps enough to affect the state of the
tokamak edge. More discussion of this appears in Section 8.

The other auxiliary parameter is the curvature, controlled by wp = 2Ly /R. This
determines the relative strength of interchange and ballooning dynamics; indeed, the MHD
ballooning parameter is proportional to Bwp [40,59]. Although we have already seen that
wp is too weak to change the qualitative character of the turbulence, it is still important
quantitatively. The scaling of the transport level with wp for B = it = 10 appears in Fig. 13.
For wp < 0.03, its nominal value, there is little variation of ¢y with wp, although again a
change of 30 percent can be important experimentally. As wp is increased above 0.05, the
curvature'’s quantitative effect becomes pronounced, especially as the ideal ballooning limit
(about 0.15) is approached. Although the computations could not be extended into the
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ballooning regime for numerical rcasons, it is to be expected that a fundamental change
occurs there due to the destabilisation of the entire spectrum, possibly at wavelengths even
longer than those kept in these computations (Amax = 256ps ~ 10cm, corresponding to
a poloidal mode number of about 60 in ASDEX Upgrade). Whether the boundary is a
hard one remains to be seen (especially if two fluid effects are kept in ballooning stability
calculations [38]), but the distribution of observed edge states in ASDEX Upgrade (Section
8) suggests it is. However, it is important to note that even for wp = 0.1 the qualitative
as opposed to quantitative effect was negligible.

Another important feature of thermal gradient driven turbulence is the extent to which
it is dependent on each of the gradients present (in this case, Vn and VT, —+ VT). Drift
waves especially are thought of as Vn driven modes, and when VT is thought to be ex-
perimentally important, people often begin a search for other types of mode [3]. However,
either of these two gradients can drive even electrostatic drift wave turbulence, and VT
drives it even more strongly than does Vn (see [21] or [22]; note, though, that a stronger
drive by VT does not always correspond to stronger turbulence, as more conductive dis-
sipation can be excited [63]). Fig. 14 shows the dependence of the transport level on the
Ap = dlogT/dlogp = wy/(wn +w;) of the profile, with the profile Vp = wn +w; — 2 held
constant. The ExB drives, I';, and I’y vary as one might expect, and at the nominal case
of Ap = 0.5 the excess of I'; over T';; is due mostly to the factor of 3/2 in Eq. (21). The
proportion of the drive due to Vn and VT is thus much more even than in the electro-
static case (see [22], in which I'; was about 4 times I'5 for w, = w;), due possibly to the
weaker cross correlation in the electromagnetic regime. The total transport, however, is
only weakly dependent on A, varying by at most 50 percent over the entire range. It is
therefore clear, that drift Alfvén turbulence is driven by the total thermal gradient, and is
important whether or not the density or temperature profile is flat. A similar result was
also obtained in the first electrostatic computations with all three of ¢, n, and T as state
variables [22].

Finally, the magnetic shear, S, the sensitivity of the transport to which is shown in
Fig. 15. There is a relatively strong dependence on shear for S 2 0.5, due to the effect
shear has on the structure of a disturbance of the flux tube type: as one moves down the
magnetic field lines, the distance between two points on different field lines increases in
the y direction, leading to the coordinate deformation implicit in Eq. (18) and therefore a
stronger tendency for flux tube like structures to break up in the parallel direction [64]. The
shorter parallel correlation length in turn leads to slightly more adiabatic electrons — for
S = 0.1 the set {T', Ty, T, Tk, Ty} was {4.10,6.51,1.19,2.38,1.29} x 1072, and for S = 1.0
it was {3.16,5.82,1.41,2.29,1.35} x 10~2. The largest change was actually in the drive.
For S > 2 0.5 the correlation length drops below 2wgR and is therefore approximately
inversely proportional to the shear, much as seen in much more simplified computations
[64] (this conclusion follows as well from two dimensional sheared slab analysis [21]). This
would explain the apparent break in the curves of transport level as functions of S.
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8. Applicability to the L-H Transition in Tokamaks

Under auxiliary heating, the tokamak edge region is observed to abruptly change its
state [1], from one characterised by a cooler edge and a thermal gradient smoothly varying
from near edge to edge, to one with a higher edge temperature and a steep gradient
region of some cm inside the last closed flux surface within which the temperature can
change by as much as a factor of four [69]. These are called the L-mode and H-mode
states, respectively, since they have relatively lower and higher confinement properties.
The parameters in this edge region are of interest because they indicate which types of
physics may be prominently active in the turbulence and transport occurring there. An
example from the ASDEX Upgrade tokamak is shown in Fig. 16 [23] (see also [70]). Several
observed states are plotted in terms of the temperature and density measured 2 cm inside
the last closed flux surface, within the steep gradient region. The L- and H-mode states
are judged according to the criteria which describe an H-mode. It is seen that there is a
transition boundary, which depends mostly on this near edge temperature (and also on
the magnetic field), and more weakly on the density — at higher densities the density
dependence disappears [29,71,72], leading to the suggestion that collisional physics may
be at play [73]. It is observed that no states occur within the two grey zones. The
upper one scales with 3 and is interpreted as the ideal ballooning regime. The lower
one is characterised by the presence of radiation instabilities. Also plotted on Fig. 16
are lines indicating the v = 0.5 boundary, above which the drift Alfvén turbulence is at
most marginally collisional, and the B = 1 boundary, above which the electron response is
electromagnetic — this is the separator between the drift Alfvén and drift wave regimes.
The B8 = m./M; line is also shown, noting its proximity to the actual line of the L-H
transition [39]. It is seen that almost all of the states lie within the transcollisional drift
Alfvén regime: > 1, v < 0.5, and stable to ideal ballooning. Although there is significant
quantitative effect due to ballooning physics throughout the drift Alfvén regime as shown
in Sections 5 and 6, the ideal ballooning regime is different because much longer wavelength
MHD modes are destabilised there. This is quite different from the ballooning found in
these drift Alfvén computations, in which no qualitative changes due to magnetic curvature
were found.

We are left with a dilemma: if drift Alfvén dynamics has this obvious a role in the
L-H transition, how is the fact that the transport rises so sharply with B to be reconciled
with the observations that local transport should improve when the H-mode is entered?
The answer certainly lies in the physics of the interaction between the profiles and the
turbulence, which has not been considered here. Preliminary computations with a nonlo-
cal electrostatic model have shown that nonlocal and local physics can be very different
quantitatively if the background conditions vary appreciably over a few typical ExB eddy
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widths [22], most especially near the last closed flux surface where there is strong interac-
tion with the scrape off layer, characterised by open field lines bounded by Debye sheaths
[11,22,74]. Especially ExB spin up physics [75,76] has not been considered here (intention-
ally, in fact, due to the small extent of the computational domain in the z direction). A
nonlocal computation (now under construction) will be needed to properly address this.

The bottom line is that drift Alfvén dynamics are of certain relevance to the L-H
transition, but the interaction between turbulence and profiles, especially the prospect
that there may be no practical difference between the two, will have to be investigated
before anything can be claimed about an L-H transition computation.
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9. Conclusions

The dynamics of passing (non-trapped) electrons in turbulence is completely domi-
nated by nonlinear dynamics, as is already known from electrostatic work [21,22], and as
this paper has now shown for drift Alfvén turbulence. This makes the conclusions of linear
stability theory as irrelevant as they were in the case of the two dimensional sheared slab
model [21,50]. Drift Alfvén turbulence is strongly influenced by electromagnetic induction
for # > 1 and totally dominated by it by the time B > fi, or equivalently 8 > p. = m./M;.
The principal effect of magnetic induction is to slow down the parallel electron dynamics
through a slower Alfvén velocity; magnetic flutter (the perturbed V) has an auxiliary role
to diminish state variable cross coherence, and magnetic curvature has a role which is qual-
itatively even weaker: to increase the average phase shifts between n or T and ¢ already
established by the drift Alfvén turbulence. Although there are a lot of effects which can
effect the experimental situation, including magnetic flux surface geometry, ExB profile
dynamics, and interaction with neutrals, the nonlinear drift Alfvén turbulence is so robust
that these can be expected to have only quantitative effects — they will be needed for
detailed comparison to experiment, but they are not needed to understand the underlying
physics.

This goes particularly for ballooning effects. It is already known that even when
magnetic curvature can dominate the linear behaviour and greatly increase the strength
of turbulence, in both the two dimensional sheared slab [62] and three dimensional elec-
trostatic, collisional [22,55] models, its effect on turbulence is purely quantitative, without
important changes in the basic character [22,62]. That result is confirmed here in both the
electrostatic and drift Alfvén limits. The effect of curvature on the energy and source/sink
spectra and on cross coherence is found to be negligible, even when the quantitative effect
of curvature on the turbulence level is strong. The scaling with 8 is likewise unaffected.
This shows unequivocally that the underlying dynamics is drift Alfvén and not ballooning
mode dynamics. The only outstanding effect in the general electron drift dynamics to be
checked is magnetic trapping, but this will have to be studied with a kinetic model to yield
a definitive result. |

Although the parametric limit beyond which the turbulence becomes electromagnetic
(8 > 1) is much the same as in the previous two dimensional study [36], the effect in three
dimensions is to make the turbulence stronger, not weaker. This follows together with
the effect of collisionality: both 8 and v enter to slow down parallel electron dissipation
and thereby allow the turbulence to be stronger, because slower parallel electron dynamics
means weaker coupling between n or T and ¢. The nonlinear fluid drift instability in
three dimensions is similar to the two dimensional sheared slab version [22], but both are
completely different from the two dimensional homogeneous situation [21,44]. In this work
it is clear that both increased 3 and increased v lead to stronger turbulence and transport,
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although f has more influence. The basic nonlinear instability at work is the drift wave
version, and the principal effect of finite beta is for magnetic induction to slow down the
parallel electron dynamics and thereby make that nonlinear instability stronger.

No tendency to form coherent structure or structures of any sort, neither vortices [68]
nor the sort of preferential phase relations or non-Gaussian statistics which were observed
in the two dimensional sheared slab model [21] was observed for this three dimensional
turbulence . Amplitude distributions were found to be Gaussian within the numerical
statistical limits (i. e., to at least 2 to 3 standard deviations). The magnetic nonlinearity
has a weak randomising influence, but so also does magnetic induction by itself, through
the stronger ExB turbulence to which it leads. However, the phase shift probability dis-
tributions showed the turbulence still to be too well coupled to be describable by random
mixing pr passive scalar dynamics. The evolution of the ExB eddies is still self consistently
determined by parallel dynamics.

Two interesting results are that the strong scaling with v seen in drift wave compu-
tations [21,22,55] disappears in the drift Alfvén regime, and that the total thermal energy
transport is not very sensitive to which gradient (Vn or VT,) drives the turbulence. Both
of these are consistent with a detailed experimetal study whose aim it was to determine
the type of turbulence from a large database of Langmuir probe measurements [9]. This
improves the correspondence of the computational results to actual experimental findings.

In conclusion, then, the basic physics of fluid drift electron turbulence in a strongly

magnetised plasma is drift Alfvén turbulence, whose electrostatic (ﬁ < 1) limit is drift
wave turbulence.
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A. Numerical Methods

The scheme used to advance the equations is a collection of standard methods. ExB
advection uses the multidimensional second order characteristic method of Colella [77].
The parallel dynamics uses a second order Crank Nicholson predictor corrector scheme
[78]. The remaining effects are drive terms acting on slower time scales, and are evaluated
explicitly at the current time step. The magnetic nonlinearities, the contribution of
to V|, deserve comment. In the predictor step V| = 9/0s — Bbx Vi - V is evaluated
explicitly. In the corrector step the fluxes are set up conservatively, and here the evaluation
is at points along the perturbed field lines. Given the predicted flux field defined at sz4,/2
midway between s; and sg4; for each z; and yj, the field line passing through (zi,y;, sx)

is extended to sy41/2 at different (z,y) using B+. Then, the divergence is evaluated in the
usual way.
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Figures

Fig. 1. Temporal evolution of the ExB energy (E.), VT ExB drive (I';), and ExB thermal
energy flux (Qp), showing saturation beyond about ¢ = 100 for the nominal case.

Fig. 2. Typical drift wave and drift Alfvén mode structure. Energy spectra are shown for
the ExB (E), density (n), temperature (T), sound wave (u), magnetic plus current (B),
and parallel heat flux (q) contributions. Also shown is 10? times the vorticity spectrum
(W). Spectra and spatial profiles are shown for the five drift wave source (n and T) and
sink processes (¢, k, and L). Spatial profiles are shown for the fluctuation amplitudes of ¢,

n, T, uy, J||, and g). Noteworthy features are pointed out in the text.

Fig. 3. Scaling with 8 of the ExB and magnetic flutter contributions to the particle and
thermal energy transport. Transport is due to ExB eddies, and the drift Alfvén regime is
BZ1.

Fig. 4. Amplitude probability distribution functions in terms of standard deviations away
from the mean, for the state variables ($, n, and T') and the two derived quantities most
often measured by Langmuir probes (Jsa: and ¢q). Departures from a Gaussian distribution
(dashed lines) are small, and the distributions are closer to Gaussian than to a passive scalar
distribution (dotted lines).

-

Fig. 5. Cross coherence between n or T' and ¢ for the nominal case (3 = 10), compared to
the electrostatic case (3 = 0.3) and one without magnetic flutter (linear V). The tight
coherence in the drift wave regime is relaxed in the drift Alfvén regime, partly due to
magnetic flutter.

Fig. 6. Lest the previous two figures motivate a random mixing turbulence model, the
probability distributions of the phase shift of n or T' ahead of ¢ are shown for each ky, for
the three cases of Fig. 5. The drift wave case is the most strongly coupled, but even the
drift Alfvén case is too well ordered for a passive scalar model. Though magnetic flutter
tends to randomise the phases, ¢ is still sensitive to both n and T in the energy producing
range (0.1 < ky < 0.3).

Fig. 7. Spatial distribution of the main state variables and the vorticity, showing ExB eddies
in strong turbulence, well coupled to the quantities (n and T they are transporting. The
vorticity is clean down to the grid scale, as its spectrum (Fig. 2) indicates.

Fig. 8. Case series with the removal of magnetic curvature (no curv), magnetic flutter (no
mag), or both (ind), have the same basic scaling with B as the nominal series (main),

showing that magnetic induction is the principal electromagnetic effect.
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Fig. 9. Total source (') and sink (I'_) spectra for the four cases of Fig. 8, at B = 10. The
basic stabilising effect of magnetic flutter and destablising effect of magnetic curvature on
the source rates is visible, as is the lack of qualitative effect due to curvature alone.

Fig. 10. Cross coherence between n and ¢ for the four cases of Fig. 9, showing the moderate
decorrelation effect of magnetic flutter and the weak signature of magnetic curvature.

Fig. 11. Phase shift probability distributions for n relative to ¢ for the four cases of Fig. 9,
showing that the non-random nature of the turbulence is not appreciably altered by the
presence or absence of magnetic curvature or flutter. The dotted lines are drawn through
the k, ~ 0.15 energetic maximum of the nominal case, and a = 0.

Fig. 12. Scaling of the nominal case with collisionality, showing the weak dependence of the
ExB transport for v < 0.5 but the increasing importance of v above 0.5. Magnetic flutter

transport is insensitive to v and small. The vertical scale is linear, and the horizontal scale
if logarithmic except for the v = 0 case.

Fig. 13. Scaling of the nominal case with magnetic curvature, showing the weak dependence
at the nominal value wp = 2L, /R = 0.03, but a much stronger dependence as the ideal
ballooning limit (about 0.15) is approached.

Fig. 14. Scaling of the nominal case with dlog T'/dlog p of the profile, holding the total Vp
fixed, showing that both Vn and VT drive the turbulence in proportion to their relative
strength, with VT somewhat greater due to the factor of 3/2. Drift Alfvén transport
remains effective when either profile becomes flat, so that the total thermal gradient is the
overall source of free energy.

Fig. 15. Scaling of the nominal case with magnetic shear. The break at S ~ 0.5 occurs
when shear takes over from the finite connection length in determining the parallel scale.

Fig. 16. Diagram of near edge parameters for most of the L-H transition database in
ASDEX Upgrade. Temperature and density, both measured 2 cm inside the separatrix, are
plotted against each other. The # = 1 and v = 0.5 lines together with the ideal ballooning

boundary enclose the transcollisional drift Alfvén regime, which is seen to occupy most of
the operation space.
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