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general symmetry and through Noether’s theorem leads to a con-
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I. INTRODUCTION

Finding symmetries and the corresponding conservation laws of a physical system
is fundamental to the understanding of the system. Conservation laws can often be
used to gain information about the stability of particular solutions of the equations
of motion, as demonstrates the energy principle’ known for static equilibria in the
framework of dissipationless magnetohydrodynamic theory.

This work considers stationary equilibria in the framework of a dissipationless
multi-fluid theory. All nonlinear perturbations that could be created from an equilib-
rium without breaking local entropy conservation are taken into account. The focus
of attention is a new conservation law that plays a role for equilibria with flow and is
strongly related to the energy conservation law.

As a first approach the conservation law is derived in section II from the mo-
mentum transport equation within the framework of a dissipationsless hydrodynamic
theory. As only a certain structure of the momentum transport equation is crucial for
this derivation, the conservation law can easily be transfereci to more general models.

The second approach gives insigﬁt to the meaning of the new conservation law.
It starts in section III by introducing a dissipationless multi-fluid theory capable of
describing a plasma. The dynamics of the perturbations (which could be created
from an equilibrium without breaking local entropy conservation) is defined by a
Lagrangian.

This Lagrangian description of the (nonlinear) perturbation dynamics is used




in section IV to reveal the symmetry responsible for the conservation law. Thereby,
it is of great help to describe the perturbations by Eulerian displacement vectors,

especially as they provide a simple picture of the symmetry (see figure 1).

Section V shows the relation of the new conservation law to the law of energy

conservation.

Section VI discusses how the Lagrangian could be modified to describe approxi-

mations of the dynamics which are commonly used for the description of plasmas.
The new conservation law could be used to formulate an energy principle for

stationary equilibria in the framework of a multi-fluid theory.*

II. CONSERVATION LAW

In this section a conservation law is derived within a dissipationless hydrody-
namic theory. As will be discussed at the end of the section, the result can easily be
transfered to more general fluid models capable of describing a plasma.

Let ¥ define the state of the hydrodynamic system:

\I'[a:,t]= (n,v,p) [:B,t]. (1)

n is the density, v the velocity and p the pressure of the fluid. = denotes a point in

**The main idea of such an energy principle would be to consider only such perturbations that
can be created from the equilibrium without breaking particle conservation, entropy conservation,
the circulation theorems (see section III.C.) and the new conservation law. The restriction to these
dynamically accessible perturbations would allow us to write the second order energy expression

within a perturbation theory as a function of first order perturbations.



space and t denotes a time. Let us assume that the local thermodynamic properties

of the system are completely described by the two equations of state

p =nT, s = Inpn™" (2)

v-—1
with the temperature T (in energy units), the entropy per particle s and a constant
quotient of the specific heats y (ideal gas: v = 5/3). The internal energy u per
particle and the enthalpy per particle h can be derived using the thermodynamic

equations of state (2):
1
du:Tds—pd;z———-— u=—" (3)
p i
h= —=——T. 4
b S (4)

The dynamics of the system shall be defined by three transport equations

0
5;11+V-1m=0, (5)
0
n(-a—t+v-V) mv = —Vp, (6)
i}
(55-{-'0-‘7)3—0 (7

and suitable boundary conditions.

By using
—-%Vp =TVs— Vh, (8)
2

v-Vv=V'—’2——v><(va) (9

and introducing the momentum per particle p and the Bernoulli function U as ab-

breviations

p = mv, (10)




U= %"-wluh, (11)

we can write the momentum transport equation (6) divided by a nonzero density

(n £ 0) in the following form:

% —vx(Vxp)=TVs—-VU. (12)

For the following discussion two special states ¥ = (n, v, p) and ¥ = (7,9, p) will
be important: a stationary equilibrium ¥ defined by 2 %[z, ¢] = 0 and a state T that
could be created from the equilibrium ¥ without breaking the entropy conservation

law (7) during the creation process.

According to equations (5), (12) and (7) the equilibrium equations are:

Veno =0, (13)
—v x (Vxp)=TVs—VU, (14)
v-Vs=0. (15)

We can describe the relation between ¥ and ¥ by relating fluid points x of the

equilibrium to fluid points & of the state b7 through Eulerian displacement vectors &:

+ €[, 1), (16)

= v[z] + v[z] - VE[z, t] + €[z, 1], (17)
5[£,t] =s[z]. (18)
Notation: f [z, ] defines the value the physical quantity f has at point x at time

t and g[%,t] is the value the physical quantity g has at point & at time z. This is
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a useful convention as one might become confused by the fact that g[Z,#] could be

seen as a function of x, ¢ because of equation (16).

The derivation of the conservation law starts with the momentum transport

equation (12) for the state W at a point & and a time t:

0 0 . 0 ;.
—| p-dx|=—=xp| =T—5-=U, 1
at| P~ " (a;e ”) 9z° 0% (2)
where (.%'i denotes the partial time derivative at constant &. The scalar product of

equation (19) is then taken from the left with V&:

)_(3‘ +f,.ﬁ.)ﬁ_(Vﬁ)-ﬁ=TV§—Vﬁ. (20)

V&) | 5 ER

According to equations (16) and (17), there are the following equivalent representa-
tions of the ‘total time derivative’ of the momentum p:

2 +v-V)ﬁ[:£'[m,t],t]. (21)

2 _|_13._?_ "[“ t]=| =
at|, " " 8z )P T \ 6t

Using equations (17) and (21), equation (20) can be transformed to

(V&) -p) + (V&) - (v- VP) — (V) - (v- V&)

Tvs- v (0-£-p) (22)

and with
(V&) (v-Vp)—(VP) - (v-VE)
=v-V((V&)-p) - (V(VZ)-P) v

=—v x (V x (V&) - p)) (23)




to

a SOt ke
21 (V&) 5~ v x (V x (V) - 5)
= Tvi-v(0-¢-5). (24)
Using the crucial assumption (18), we arrive at the equation
a o
51| (V8)9
= wx(Vx((V&) p)+TVs—V(T-£ p). (25)

On its right hand side —V ((7 - 5 . f)) is the only force, contributing in the direction
of a field line C of the equilibrium velocity v.
Before looking at the general case we will investigate the case where C is a

closed field line. Integrating equation (25) along a total closed field line leads to a

conservation law:
d SN d o
= (féd:-p[m,t]) == (fcdz-(vm) p[m,t])
=—fcd£-V(U—§-p)

=0. (26)

Now we investigate the general case where the field lines C' need not be closed.

Let f[z] be some equilibrium quantity that is constant along the equilibrium path of

a fluid point:
v-Vf=0. (27)

The scalar product of equation (25) with fnv becomes a local conservation law by
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]

making use of equations (13), (15) and (27):
%(fm:-(v&)-ﬁ)-}—v-(fm)(l}—é-ﬁ))=D. (28)

Taking the integral of equation (28) over a volume V, on the surface of which
the vector fnv has nowhere a normal component, leads to the following conservation

law:
d 3 e e
T (-/;/d z flz]n[z]v[z] - (VE) - p[E, t]) =10, (29)
Which assumptions leading to this conservation law are crucial? The first crucial
assumption is the restriction (18) to such a perturbation of the equilibrium that
can be created without breaking the entropy conservation law. The second crucial
assumption is the form of the equation (19). As no use is made of the expression

for the momentum p, the discussion can easily be transfered to a more general fluid

theory that is capable of describing a plasma.

ITII. DISSIPATIONLESS MULTI-FLUID THEORY

FOR PLASMAS

A. Dynamics

Let
R4 [ma t] - (Es B,n,,v,, pu) [iB,t] (30)
describe the state of a system. FE is the electric field and B the magnetic field. n, is

the density, v, the velocity, and p, the pressure of a fluid species v. The regions with
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n, # 0 are denoted as Vp,. All regions Vp, contribute to the plasma, which possibly
has surface currents and surface charges. The regions where n, = 0 for all species v
form the vacuum.

The evolution of the state ¥ shall be defined by the following transport equations

for each fluid species v inside the volume Vp,

a
‘a—tny + V * vyny — 03 (31)
0
mymn, (Et- + v, v) v, = _vpu + eunuE +e,nv, X B’ (32)
9 +v,-V]s,=0 (33)
ot v v =

with the entropy per particle s, = 771_—1 In (p,n;™) and the Maxwell equations:

V.-B =0, (34)
VxE+EB—0 (35)
ot !
V-gE =) emn, (36)
leB—Zenv +20E ' (37)
Lo % ~ vityUy ot 0.

The electric and magnetic fields E and B shall be described by means of single-

valued electromagnetic potentials ® and A (This property will play a role in equations

(64) and (84)):

B=VxA, E:—VCIJ—-%A. (38)

Similar to the transformation from equation (6) to equation (12), we transform equa-
tion (32):

g—tp,, —v,x(Vxp,)=T,Vs, —VU,, (39)



P, = M, + €A, (40)

T, =2, (41)
1 5

U, = Smi jo P 4 —15T; 168 (42)
2 MW -1

where p, is the canonical momentum per particle, 7, the temperature, and U, the

Bernoulli function.

B. Total energy

The total energy of the system is

Bel=3 [ ea(n Sl + 2 )

v Vp. ’YU o 1
3 EQ 2 lB[ﬂ:, t]|2
+Lﬁxd “ ( 3 |Blo, )l + =2 ). (43)

Vix denotes a fixed volume that encloses the plasma (for all times) and possibly
vacuum regions.

The total energy F is a conserved quantity if the boundary conditions do not
allow energy to flow across the surface Vs, of the volume Viy. This is the case, if in
addition to the assumption that no plasma leaves or enters volume Vjy, the Poynting
vector TzlEE x B has no normal component on the surface dV4,, which holds for an
infinitely conducting wall.

It is remarkable that the total energy E is still a conserved quantity in the
framework of Braginskii’s equations? with all dissipation processes taken into account

(provided that no heat current is flowing across V).
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C. Circulation theorems

Taking the curl of equation (39), leads to the following equation:

29, ~V x (v, x Q) = (VL) x (Vs,) (44)

with the gauge invariant quantity
Q,=Vxp,=mV xv,+e,B. (45)

From equation (44) one can derive generalizations®* of the well known hydrodynamic
circulation theorems of Helmholtz® and Ertel.® The generalization to hydrodynamics
lies in the fact that the kinetical momentum m,v, is replaced by the canonical mo-
mentum p,. Taking the conservation laws (31) and (33) into account, one can easily

derive the generalized Ertel theorem from equation (44):

0 Q,-Vs,
(E-l-’uy'V)T—O. (46)

If (VT,) x (Vs,) = 0 for a species v (for example: T, or s, being a constant or
T, being a function of s,), the more powerful generalized Helmholtz theorem results
from equation (44):
0

2 =V % (0, x Q) =0, (47)

Since V - 2, = 0, the equation (47) states that the flux of €2, through any surface
moving with the fluid of species v is conserved.” It is remarkable that equation (47)
is reduced to the flux theorem of magnetohydrodynamics if one neglects the inertia

of fluid species v by setting m, = 0.

11
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D. Equilibrium and its perturbations

From now on let ¥ = (E,B,n,,v,,p,) be an equilibrium state, defined by
?38‘:‘1' [z,t] =0. Let T = (E, B,ﬁy,ﬁu,ﬁ,) define a state that could be created from
¥ without breaking local entropy conservation. This property can be described® by

means of Eulerian displacement vectors £,

&, =x+¢&, [z, J [zt =det (%a;,) , (48)
i 0 .

Dy [By, 1) = (a + v, - V) z, [z,1], (49)

3%, 1) = s,[z] or p.A*[E,t] =p.n, " [x]. (50)

The perturbation of (®, A,n,) at a point z and time t is described by (¢, a, fiule
(8,4,1,) [z, = (&, A,n) [2] + (¢, @, 7)) [, 1] (51)

The size of the perturbation is not subject to restrictions.

E. Lagrangian

The dynamics of the dissipationless multi-fluid theory can be defined through
a Lagrangian.® Such a Lagrangian theory makes it straightforward to connect a
conservation law to a symmetry with the help of Noether’s theorem. Therefore, we

introduce the Lagrangian L [t] = [ d3zL [z, ] with the Lagrangian density

Llz,t] =

~ a My . s 2 ﬁu[i:U)t]
v|Z, T v 8y t)— |V nitll” — ———
5 e, ) o, 2 000 0 - 220
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—ei[@, 1] (B, 1) — 0[50, 1] - A0, 1])

7y [0,8] + a‘;u (Bt [:r:.,,t])) )

+A, [z, 1] (% K
' I

aA[m,t] + V[z, ]

€o

2

2 |vx Ale, 1|

- (52)

Particle conservation is incorporated into the Lagrangian by means of the Lagrange
multipliers \,. In combination with the equations (48)-(51) this Lagrangian defines

completely the equations of motion for the perturbation as proven in appendix A.

IV. SYMMETRY AND CONSERVATION LAW

The plasma model described in section III provides the set of equations {(39),
(48)~(50), V - n,v, = 0, v, - Vs, = 0}, corresponding to the set of equations {(12),
(16)-(18), (13), (15)} we used in section II. In addition we introduce an equilibrium
quantity f,[x] that can be chosen to be any function with the property v, -Vf, =0

corresponding to the property (27). Realizations of f, are:
1
f,, = 1, fy = 8§, Or f,, = ;L—ﬂ,, . VSV. (53)
v

As shown in section II a conservation law (29) holds. Yet we do not know what the

related symmetry is. The answer is provided in the following section.

13



A. Displacement of a single equilibrium path

Let X, [7] denote the path of a fluid point of species v following the equilibrium

motion, defined by some initial condition and

£X,[r) = v X, [r] (54

The displacement of the path X, [r] can be described by Eulerian displacement vec-

tors &, [, t]. Let X, [r,t] define the displaced path:
X, [rt)= X, [r]+€&,[X.[r].1]. (55)

The same displacement of the path could be described by different Eulerian displace-

ment vectors ¢, [x, t], defined by the following equation:
& (X, ) =X, [r+7, 4 - X, [7]. (56)

An infinitesimal transformation from £, to &7 is illustrated by figure 1.

z +&, [z, 1] z+v,07+&, [z +v,07,1]

TE = ¢, + (v, +v,-VE,)or

£, |z +v,d7,1)

_/ )

/

z T +v,0T

figure 1: The figure shows the equilibrium path X, [7] of a fluid point of species v and the displaced

path X, [7,t]. The displacement of the path can equally well be described by £, [z, t] and &7 [z, t].
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B. Symmetry

Since the entropy is constant along the displaced path X, [, 1], the transforma-
tion discussed in the previous section might be a symmetry transformation of the
physical system. We therefore define the following infinitesimal transformation (v

denotes one fluid species, p # v denotes all other species):
T - - 0
561} o Eu o Eu = (vu i Vm”) 57" 6£u - :9?66111 (57)

5 (¢, 0,7, iy, €,,€,) =0 (58)

The quantity d7 is generally a function of & and ¢ but proportional to a quantity

§7 independent of = and ¢

ot [z, t] = g, [z, 1) 6T (59)
with
n, [z]
v gt e v ~ P .

gl = fv[z] iy [&0,t] Lo [, 1] (69)

Through its definition (60) the quantity g,[z,] has the property
L8 +v,-V)glz,t]=0 61
5 +vv V) alz, =0 (61)

Appendix B establishes the invariance of the Lagrangian L under the transfor-
mation (57)-(60) if the integration in the Lagrangian is carried out over a volume V
belonging to Vp,, on the surface AV of which the normal component of the equilibrium

current f,m,v, is zero everywhere.

This invariance can be regarded as the definition of a symmetry.
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C. Conservation law

Through Noether’s theorem the symmetry leads to a conservation law:

0= 5L—_Z[ &z (— 55) T%I,,Vf, (62)
with
Lvg = [, @2 flalmlz] vle] - (V8,) - B,lz + &, (©3)

The conserved quantity (63) is invariant under a gauge transformation with

= A 4 Vy, in which x is a single-valued function:

IL’V»fv m I”’V:fu = /V_dsm eUanVvU 3 (v:‘i:.ll) ;i X[ﬁy, t]

d
0%,
- -/i./ d’z ey fury vy - VX[:O + £, t]
= /‘; d3$ A\ (e,,f,,ny’vux[m + Eu! t])
- ./ af - eufunv'vVX[w +&,, t]

av

= 0. (64)

V. RELATION TO THE ENERGY CONSERVATION LAW

The total energy E[ffl, defined by equation (43), can be expressed in the following

form, as show in appendix C:

E@) =5 j Bzofe+€,.1)- 3£

+ [ dz (a @—c—sgv ch) (65)
Vax aa
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The reader should focus his attention on the first term in the energy expression (65).
(He should not be distracted by the well known!? term V - &’E‘.)

In view of the energy principle we will restrict our investigation to such pertur-
bations that could be created from the equilibrium without breaking local entropy

and particle conservation.!! The latter property can be expressed by equation
n,[z] = 7, [&, t] I [z, 1], (66)

such that the perturbation can completely be described by the quantities ¢, a,§,.
Making use of the fact that the Lagrangian is only time dependent through the
perturbation, one would then rather be guided to the following energy expression

than to expression (65):

oc

— 3. ¢ .
El—;jvmdmsu o
oL

+ d3m(a.—,—£~eov-@E). (67)
Vi da

The energy difference between E and FE; is given by the conserved quantities

L vp,.5,=1, defined by equation (63):

E = E1 + E2, E‘Z - Z Iv,Vp,,,f.,:l- (68)

It is remarkable that the conserved quantity I, v,,. s, =1 can itself be a sum of conserved

quantities I,y s, =1, depending on the properties of the equilibrium.

17



VI. APPROXIMATIONS

There are many possibilities to simplify the plasma model treated in sections
II-V without breaking the symmetry discussed in section IV.

If one leaves out the electric energy density 522 ‘EF in the Lagrangian density
(52), one arrives at a quasineutral approximation (instead of equation (36): 3, e,n, =
0) without a displacement current (instead of equation (37): Vx B = 1 ¥, €,n,0,).
By further restricting the vector potential to be time-independent, one arrives at an
electrostatic approximation.

One could neglect the inertia of the plasma’s electrons by setting their mass m,
to zero: m, = 0. If for a general state ¥ the relation (Vs.) x (VT,) = 0 is true,
then the zero mass approximation will freeze the magnetic flux into the electron fluid
according to equation (47).

Handling a drift approximation is more complicated. Pfirsch and Correa-

Restrepo!?13

introduce a most promising approach to describe the drift-
approximation by a fluid Lagrangian similar to a particle Lagrangian in phase space.
The equation of motion for the ‘canonical momentum per particle’ corresponding to

this Lagrangian still has the form of equation (39) which is crucial for the conservation

law (62) and the generalized circulation theorems (46) and (47).
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VIII. APPENDICES

A. Hamilton’s principle

Following Hamilton’s principle we are doing a virtual variation of (¢, @, 71,, €,, A,)
in the time and space integral over the Lagrangian density (52). The virtual variation
of (¢, a) is straightforward and leads to the inhomogeneous Maxwell equations. This
appendix will treat the more involved variation of (7,,£,,A.).

The virtual variation of A, [z, t] leads to the law of particle conservation in the

representation

i) g . Y.
0—(aév+aﬁu-vu)ny[mu,t]‘ (69)

After doing partial integrations in the time integral over the Lagrangian and making

use of
0 0 . 0
(‘a—t'—i"v,,-V) ...-—-(EE:E"-F‘UD'E@—U) (70)
we get an alternative representation:
d . ra
U= 5E+v-v,, By [Busl) L [2it] s (71)
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The virtual variation of 7, [&,, 1] leads to:

-
0= "5, [, 4 - A2l o)

e
v

—e,d [:n,,,t] + e, 0, [Z,,1] - Als,, 1
(aat +v, - )/\,,[:c,t]. (72)

To prepare for the virtual variation of £, we define

1 O%i OF vy OTim
v ) === i7kElm ] 73
Wt =5 ,.%,:m CikEmn G e Oz; Ok (73)
axum axun
T 16, 4] = Eiik€lmn—F 74
i, t] = ,Enﬂ” 5z, Ook (74)
and calculate the virtual variation §¥'*J,:
vir 0 vir »
g P ZTutif T (75)
— z Tuh :;r
33: d
= z Tuh < 4 :]r
lij Oz; 02,5 Lyj !
a Vlr
= IE J, 6!_1 a.\
j
a vir
Yoz, U

In the following we will do the virtual variation of £, inside the time and space

integral over the Lagrangian density (52) without localizing g

fdtfd%(J,, (5%, :"‘u)( |9, ° —p"” 1—7,-1

- - o
—E,,@ + euﬁy - A (at + 'Uu V) Ay)

=y, —1
o nlr

aﬁ:u W = 1

0 : .
+ﬁUJU (muﬁu . (3t +v,- ) 6:"- - 'pun;% :'“' .

20




vir 9 - A _8_ vir
—e, &) 3:&,,(1) +e A (6t + v, V) ks
+e,B, - [ €T i;i (76)
YO\ 83, '

In the next step we do partial integrations, make use of equation (71), localize £''" at

[z, t] and divide by (non zero) 7, J,:

a my 2 pyn—'yu
0= — “tls 2 _E  am-I
(9:f:,,(2|y| Y—-1"

a e a a
—e,®+e, 0, - A~ (E_E+v”'v) )\V)

9 ; 0 Ay
(gt V) s mnm 2 2
5 . 9 X e
_eua—&@ —~ip (B_t +v,- V) A+e, (B:EUA) Uy (77)

Using equations (70) and (72), we can transform equation (77) to

0= 6—@p,,n;""’ (ﬁ}"l)

+m 0 +d g D, + p,n7 gy + 4 )
= *ha n, " €y ~=
Y\ ot %, Y oz,) " Bty oz, v, —1 o,
0 5 u
+e, 5% A-e,d, x B. (78)
&,

Using the condition (50), we can write equation (78) as the momentum transport

equation:
(g + : D, + 9 5
Cvv\ee, T es,) T 88,
—e, 1, E — e,,d, x B. (79)

As the Lagrangian density (52) leads to the correct equations of motion it has been

chosen properly.
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B. Invariance of the Lagrangian

This appendix shows the invariance of the Lagrangian L = [, d*zL under the
transformation (57)-(61), with the Lagrangian density £ defined by equation (52).

We first calculate the transformation of ((i), A n,, 13,,):

~

5 (8, A,%,) [#,,t] = 8¢, - o (8, 4,7,) [#,,1)

VA7) [T+ €,,1, (80)

ot

a - =
= (55 + v, - V) (v, - V&,) 9,67

55y [, 1] = (-‘3 e v) 5€,

_(d "
= gué'r (E + v, V) ('UV L Vﬂ:,,)

= §7g,v, Vi, [z +§,,1]. (81)

Next we calculate the transformation of J,:

0
§J, =Y Tuu ((Tazaful)

il

o a aiul
=0T % Touii (6:5., 9vVyj Bzr:j )

=47 (gVJVv vy + g0 VI, + (v ' V:Eu) e g ® vgu)

=0TV - (1.0005) ; (82)
Furthermore, we use the equation

9 o .\ (o
Ju(—a—tévny+-(-9—£:—u-v,,nu)_(-a—£

which follows from the equations (48), (49), (73) (for example by using the transfor-

+V -v) J,n,, (83)

ﬂ:

mation formula for a divergence in space-time). Using the fact that the equilibrium
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current is source free (V - n,v, = 0) and using the equations (80)-(82) we can es-
tablish the invariance of the Lagrangian L[@] under the transformation (57)-(60) if
the integration in the Lagrangian is carried out over a volume V belonging to Vp, on
which the normal component of the equilibrium current fun,v, is zero everywhere on

the surface 9V:

SLT) =5F [ @il 8,1
)3 [&a, (%
=63 [, Eeduindy (20,1
+5zfd3zA ( +V-v )J
- 5-‘,‘-2/ d3zV - (g,,n.,vufu E +€wt])
+Z/d3mA ( +V- U)J(Juﬁu)
- JfZ/ df - gl [z + €, 1)

0
oz,

. ﬁy) Ty £y, 1]

+
&y

+57—Z [ d*z), ( +V- vu) V- (vugy i)
= L/dsiﬁz\ ( +V- 'Uu) V. (nvvl’fl’)

Ii
=

(84)

with the abbreviation

T @ |,. |2 pu[m]nu[m] Mr.,—l

—1 W e,d +e,0,- A
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C. Energy contributions

The total energy (43) of a state ¥ is

Tl — 32 (» w2, Py
E[‘P]—Z v dmv(nvz |'Uul +'Y __1)

v Py
~ 12
: |B
+—1. (85)

By using the electromagnetic potentials introduced by equation (38) the energy ex-

=+ d*z (E—OE

pression (85) can be written in the following form:

E@ = % fv &,y 0, - D,
v Py

s s M Py
— d®z, | A, —= |6,> —
>/, ,,(.,2|V| .

+3 [ dien, (3, A1)

v JVP
—-Z v dal'euﬁv[m:t]‘i’[m?t]
v fix
- 2
ot 2 |V><A[w,t]|
43 & —Alz, t]+ VP e
* S z(z i B B s i

By using the inhomogenous Maxwell equation (36) the energy expression (86)
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can be transformed to

E[@ = Y A &’ 0, - B,
v Py
o0 - A
2 —A ®)-a
+ vﬁ,d IEQ(at [z, t] + V ) a

E . LSy, D
) ‘/‘;p, 4 ( g 2 | UI Yo — 1

D3 fv _ P, (& - 6, - Ale, 1))

e 1o . |V x Al
+ iy 3z ("EO BEA[:c,t]A-VcD +————————2”0 )
+[ &z (-V-(202E)). (87)

Vﬁx
By using the expression (52) for the Lagrangian density £ and

L _ i oL .
aéy - Junupw 3_6. = EDE

the energy expression (87) can be given the more compact form (65).
By using equation (49) in the form 9,(%,,t] = & [z, t] + v, - V&, [z, ] the energy

expression (65) can be split into expression (67) and

E@ =Y [ d&z@, V&) Lz iz, 15,2, 1.

v VPV
Making use of equation (66) we get Ey = I, v, 5,=1, where I, v, r 1 is defined by

equation (63).
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