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ABSTRACT

The code TORIC solves the finite Larmor radius wave equations in the ion cyclotron
frequency range in arbitrary axisymmetric toroidal geometry. The model used describes
the compressional and torsional Alfvén waves (or, depending on the parallel phase ve-
locity, the kinetic counterpart of the latter), and ion Bernstein waves excited by mode
conversion near the first ion cyclotron harmonic. In the ion response the broadening of
the absorption regions due to the finite width of the cyclotron resonance of individual
ions in toroidal geometry is taken into account. The parallel component of the wave
electric field is evaluated on the same footing as the transverse ones; the response of the
electrons includes Landau damping, Transit Time damping and the mixed term.

The numerical approach uses a spectral representation of the solution in the poloidal
angle 1, and cubic finite elements in the radial variable 1. Great flexibility is provided
in the way ion Bernstein waves excited by mode conversion are damped when their
wavelength becomes comparable with the ion Larmor radius, in the regularization of
Alfvén resonances, and in the treatment of the outer plasma layers. As an option, we
have also implemented the Order Reduction Algorithm, which provides a particularly
fast, yet accurate evaluation of the power deposition profiles in toroidal geometry. The
present report describes the model and its numerical implementation, and provides the
information needed to use the code. A few examples illustrating applications of TORIC
are also included.




1 — Introduction.

Considerable effort has been devoted to the theoretical and numerical modelling
of ion cyclotron (IC) heating of tokamak plasmas. Among the most ambitious goals
is the solution of Maxwell equations in a hot plasma in toroidal geometry. Several
codes have been developed for this purpose [1]-[6] (for a review and further references,
cfr. [7]). They find application in understanding present experiments, e.g. in JET,
ASDEX Upgrade, ALCATOR C-mod, and in planning h.f. heating and current drive in
future ones, in particular ITER.

In this Report we document a new version of the toroidal ion cyclotron full wave
code first described in [4], which has been completely rewritten and renamed TORIC.
This code solves the finite Larmor radius (FLR) wave equations in arbitrary axisym-
metric toroidal geometry in the so—called Swanson—Colestock-Kashuba (SCK) approxi-
mation [8]-[9] augmented by the appropriate FLR terms for the electrons [10]. The nu-
merical approach is based on the spectral representation of the solution in the poloidal
angle ¥, and on cubic finite elements [11] in the radial variable 1. The new version is
considerably faster than the original one, contains more physics, and has a number of
additional options.

With respect to [4] the most important innovations of TORIC are:

a) Toroidal effects on parallel dispersion are treated more accurately. In toroidal
geometry the existence of a gradient of the magnetic field strength along magnetic field
lines results in a broadening of the thermal Doppler width of the cyclotron absorption
region. A quantitatively accurate approximation for this important effect has been
found which can be implemented without appreciably slowing execution.

b) The finite Larmor terms in the plasma h.f. current has been carefully written in
toroidal geometry by putting it explicitly in vector form. This turns out to be important,
in particular, for the ion contribution resonant near the first ion cyclotron harmonic,
w = 2Q,.

c¢) The parallel component of the electric field is evaluated on the same footing as
the perpendicular components, rather than iteratively. This improves the accuracy of
the evaluation of power absorption by the electrons, and makes possible a more reliable
evaluation of the efficiency of current drive by h.f. waves in the IC frequency range.

d) As an option, we have implemented the Order Reduction Algorithm (ORA) [12],
which replaces the excitation of ion Bernstein waves by an equivalent power sink. Al-
though based on an euristic approach, the power deposition profiles obtained in this
way are quite accurate; the suppression of short wavelength features in the solution,
on the other hand, allows relatively coarse meshes both in the poloidal and the radial
directions. The resulting reduction in execution time and memory requirements make
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the ORA option of TORIC a useful tool for routine analysis of IC heating, possibly also
in conjunction with other codes, such as those describing radial transport in tokamaks.

Other improvements include: more flexibility in the way ion Bernstein waves are
damped when their wavelength becomes comparable with the ion Larmor radius; col-
lisional damping by the electrons; the possibility of artificially broadening Alfvén res-
onances occurring at the plasma periphery; and several optionals models for the outer
plasma layers. Greater execution speed has been obtained by careful vectorization, and
a new, simpler solver has been written.

The present documentation has been written with three goals in view. The first
is to acquaint users with the possibilities and limitations of TORIC. To get reliable
results with a full-wave code requires & good preliminary knowledge of the physics of
IC heating in general and of the SCK model in particular, and also some familiarity
with the numerical problems arising from the limited resolution achievable in practice
by the poloidal and radial meshes. In the second place, we have tried to facilitate
the comparison with other codes which solve the same problem. It is often difficult to
trace the origin of discrepancies between results obtained with different codes, because
too many details of each implementation are not available; here we give a reasonably
complete information covering both the physical model and the numerical realization.
The last goal is to facilitate future extensions of the code. A few domains in which such
extensions are desirable and might soon become feasible are mentioned below.

This report is organized as follows. In section 2 we describe the plasma configuration
used, and in section 3 we introduce the wave equations of the SCK model and the
associated boundary conditions. In section 4 the wave equations are put into the weak
variational form which is the basis of the finite elements (FEM) discretization used in
TORIC. In section 5 the spectral representation of the solution is introduced and the
contributions of the various terms to the stiffness matrix are listed. Section 6 is devoted
to the regularity conditions at the magnetic axis and to the boundary conditions at the
antenna and Faraday shield. In section 7 we discuss our treatment of the integrals along
magnetic field lines which arise from the integration of the linearized Vlasov equation
(which describe the effects of toroidicity on parallel dispersion), and the related problem
of the power balance. Ad-hoc damping of ion Bernstein waves and collisional broadening
of Alfvén resonances occurring near the plasma edge are also discussed in this section.
The Order Reduction Algorithm is introduced in section 8. Section 9 summarizes the
numerical implementation of the spectral Ansatz and of the radial discretization, and
sketches the structure of the solver. In section 10 we lists the available options and
offer some advice on the use of the code, stressing in particular the limitations of the
model and those of the numerical realization. Finally, a few examples are presented in
section 11. The parameters and input variables which must be defined by the user are
given in the Appendix.




Before proceeding to the description of the code, it is worth identifying a few areas in
which further work would be desirable. One is the inclusion of quasilinear effects. The
present version assumes that all species have Maxwellian distribution functions; the only
way to take into account suprathermal ions is to treat them as a separate population with
a different temperature. The main obstacle against allowing for general non-Maxwellian
distribution functions is the enormous slowing down of execution speed which this would
imply. Adequate approximations for the quasilinear distribution function of IC heated
ions which would still permit a reasonably fast evaluation of the coefficients of the wave
equations are available, however [13] (we insist on the fact that these approximations
are much less sophisticated than those required for the complete specification of the ion
distribution function [14]), and it might soon be possible to use them in TORIC.

Another domain in which new developments would be useful is in modelling the
antennas. In TORIC the numerical integration extends all the way to the vessel, with
appropriate jump conditions imposed at the Faraday shield and at the antenna conduc-
tors. This has the advantage of simplicity, and helps to avoid solutions dominated by
surface modes, which sometimes develop when boundary conditions are imposed along

an artificial discontinuity between plasma and vacuum. On the other hand it greatly

restricts the flexibility of the antenna’ modelling, since the antenna is situated in the
region where achieving a good numerical resolution with a reasonable mesh is most
difficult. Although several choices are offered for the treatment of the region behind
the Faraday screen, ranging from a vacuum layer to the continuation of the scrape—off
plasma (cfr. section 8.2 d), an optional analytic model for this region would also be
desirable. The modularity of TORIC should allow to easily implement such a model
without altering the basic structure of the code.

We would like to recall that although the code has been largely rewritten, its basic
structure is still the same as that of the first version, developed in collaboration with
Dr. T. Kriicken. Useful comments and suggestions from Drs. P. Bonoli, D. Batchelor,
C.S. Chiu and E. F. Jaeger are also gratefully aknowledged.




2 — The model.

2.1 — The MHD configuration. We use a representation of the axisymmetric MHD
equilibrium of the form:

X = X(3,9) 7= Z(y,9) (2.1)

where X, Z are horizontal and vertical Cartesian coordinates in the poloidal cross—
section, with origin at a distance R, from the vertical axis (the centre of the vacuum

vessel); a is the plasma radius. Thus R = R, + X, ¢, Z constitute a cylindrical coordi-

nate system. The dimensionless variable 1 (0 < 9 < 1) which labels magnetic surfaces,
the poloidal angle ¥ (0 < 4 < 27), and the toroidal angle ¢ = —¢ (the change in sign is
needed to make both systems right-handed) will be called 'magnetic coordinates’. Note
that 1) is assumed proportional to the radius rather than the area (or the magnetic flux)
of the magnetic surface.

The Jacobian of Egs. (2.1),

~EE-GE e

vanishes only on the magnetic axis R, = R, + A(0). The covariant metric of the mag-
netic coordinates can be written

N G0
0 0 R?
with determinant
g = (det(gi;))/* = RJ (2.4)
and elements
ax\* [0z\?
N=|=] +| =
T od o
oxX 1504 07z 0z
—[Z2 ) (94 =\ == : 2.5
o= (3) (35) + (55) (%) (2:5)

2 2
YA
0~ ()
M M
satisfying the identity NJN2 = J? + G®. In general ¢ and ¢ are not orthogonal,

i.e. G # 0. Orthogonal unit vectors iy, i, in the poloidal cross—section can nevertheless
defined at each point through

o 1 (67 oX
v=w 0™ " B v
oL (g, 22,) 0
UEN o™X T a0
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where @x and @z are unit vectors of the cartesian coordinates. The elements of 9ij
and J have all the dimensions of a length squared, and tend to zero when 9 — 0. For
circular cross—sections N, = r, the minor radius.

Explicitly, we use

X (4,9) = A($) + asp cos (I — 5(t) sin )

(2.7)
Z(h,9) = an(¢p) sin g

The static magnetic field has the covariant and physical representations

B =BoRo{af(¢>W x W+g<¢)w}

= %Bo (sin© &, + cos O €,)

(2.8)

respectively, with

tan© = Br = o N f(¥) (2.9)

B, J g(¥)
The functions A(9) (Shafranov shift), (1) (ellipticity) and 6(¢) (triangularity), as well
as f(¢) and g(v) should in principle be specified consistently with the MHD equilib-
rium conditions. The stand-alone TORIC code, however, is not coupled to a solver
of the Grad-Shafranov equation, although such coupling woud require a very simple
interfacing. As a default, simple analytic representations are used, namely:

A(g) = Ao(1 - 9?)

6() = 8,9 | (2.10)

n(¥) = [eo + (e1 — eo)y]

Here A, is the Shafranov shift of the magnetic axis, and e,, e; the ellipticity at the
magnetic axis and at the plasma edge, respectively. The dependence of R B,, on 1, which
is a finite—f effect, is neglected, i.e. g(4) = 1. On the other hand f(7) is determined
from Faraday law:

_ A4r I(¢)
F) =~ RoaBa [ (N./R]) 49 (2.11)
where
1= [ Jw)-ds, (2.12)
P<p

is the total toroidal current inside the magnetic surface 1. This ensures that the equi-
librium conditions are satisfied at least on average on each magnetic surface.




2.2 - Differential operators in Stix components. The wave equations in the plasma
are naturally written in the local ‘Stix’ frame, whose basis unit vectors are related to
those of the magnetic coordinates by

U = Uy
iy, = cos© i@, —sin© i, (2.13)
¢ =8in® 4, +cos© T,
Here iy = B/B is the unit vector tangent to the magnetic field line, while iy is or-
thogonal to it and lies in the magnetic surface. The code uses physical components E,,

E,, E; of the electric field in Stix frame; they are related to the physical component in
cylindrical coordinates by

Ex =— ! {ggE,p 6F{,{(E',,cos@—Egsin@)}

(2.14)
N, " o9

E, =—E,sin© + E;cos ©

Ez = i{ BXE¢+ 'g(E,,COSS—E’gsiné))}

We will also need a basis for circularly polarised components perpendicular to B. The
correct definitions in toroidal geometry turn out to be

L T o e I ,
=7 {e¥' (@y Fity)} By =7 e (By +iE,) (2.15)
where
. 1 [0z )¢ sin?© (0X\?
e:h = N (6’!9 36%) K,2 =1- e (_—6’19) (216)

The numerical approach based on the Galerkin weak—variational formulation requires
only first order differential operators. To write them in Stix components it is convenient
to introduce the notations

. N, [0 G 0
=0 9= (55~ )

- 1 g 1 0
= (1., » = —02C — — —si - . 217
Oy = (- V) = - c0s 055 — g sin €5 (2.17)
O¢ = (i Vd)=-——1 sine—a + —cos©

a) — The gradient. If ® is a scalar quantity, its gradient can be written:

V& = 8,8 ity + 0,8y + 0, B, (2.18)




b) — The divergence. The divergence of a vector field E is
V- E=08yEy +vyEy + 0,E, + vy By + 8. B¢ + v B,

=B 8 4 (35 (2))
v 9 N2&9) N, \ oy 89\N.

L _cos8 (la_R lg__l_aN,)_smeaﬁ (2.19)
"T N, \Ro9 ' JO9 N, 89 N, 89

s __ sin®© (l@+ly__l_8NT) cos © 90

‘"N, \Ro9 "T85 N, 89 N, 89

¢) — The curl. The Stix components of V x E are
V % E)y = (8nE¢ + ¢ Be) — (9 Eq +YynEn)

1 10R 00
o= 37 {900 g e =05 )

1 1R . 0O
W<=F{°°597555‘3m955}

V x E)y = (8¢Ey + Yy Boy) + YomEn — (OpE¢ + e Ee)

sin® [/108J _1_6N.,
=N \Tas TN, 619

N, O0R G O6R
'ym,—T cos@sm@ % N2
_ 1 (oN, GaN 8 g) +(aﬁ_£§g)}
a¢ T N2 o9 ) o9\ N2 59 N2 oY
5 8R G OR |
Tn¢ = 5| cos” O 5% N259 ((2.20)
26 1 ON, GON,\ 8 (G }
By N2 o9 ) 95 \NZ
V x E)¢ = (9yEn + ¢ n) — (OnEy + vy Ey) + ¢ B¢
cos© (1 oJ 1 BN.,)

=5 \T38 "N 89
N, OR G OR
'YCn=—J'{ 0 (a,p N2 619)
1 [/ON, G ON,
+“°Se[ (6'40 Nzaﬂ) %(Nz)”
N, 1 (ON, G ON, G
= w00 5 (57 - 15y ) 53 ()
OR G OR 1 /06 G 09
“(a«p N?a«?)]+ (a«p"ﬁf%)}
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3 — The wave equations.

3.1 — The Swansion—Colestock-Kashuba approximation. Maxwell equations in the
plasma can be written

VX x B i{E+“”Q?+ﬁg} (3.1)

where J is the h.f. plasma current, and J% the antenna current. In the FLR approxi-
mation the plasma current can be split into

JF =704 J@ (3.2)

where suffixes 0, 2, denote the order in the Larmor radius expansion. The linear plasma
current has recently been derived in [15] directly in axisymmetric toroidal geometry. Our
procedure, however, has been to start from the results of [10], in which Vlasov equation
is solved in plane-stratified geometry, assuming that the vector form of JZ obtained
there holds also in toroidal geometry, except for the evaluation of the orbit integrals
along magnetic field lines. The two approaches should be essentially equivalent: in the
small Larmor radius approximation the role of toroidicity in J¥ is critical (i.e. it does
not reduce to a trivial change of coordinates) only in the integrals along the magnetic
field lines which describe to parallel dispersion. These integrals have been treated in a
formal way in [10], and completely ignored in [15]. We will discuss them in section 6.1.

a) — The zero Larmor radius plasma current. The zero Larmor radius blasma current,
combined for convenience with the vacuum displacement current, can be written

B+ 4’”J(‘” =LE.@,+RE_i_+ PE.i,
(3.3)
= (8 By—iDE,) @y + (iDEy + $ E,) @, + P B,

where we have introduced the integral operators
2 +co —y? t
A _ wpa € . 7 [3 ’ (UJ—Q, ) dr 7
LE+—E+(ﬂ—zcx:F£w duﬁ (—W[xdtef g E+)
. wl, [T ety gt i [F (w+) dr
RE_=E_(7 —Zﬁ /_ _ du ﬁ (—w /_ <>°dt'e‘f:' “r E’_) (3.4)
+oo e~
PE = E (,,-.) Z PC! / 2) (—W/ dtl iw(t—t' )El)

and

(B+1) ﬁ:%@-@ (3.5)




The t'-integrations are along magnetic field lines, with, for each species

B =5 (F— /t.'t(v”ﬂ}) df> (3.6)

and u = v)| /vsn, Where vy, = /2T/m is the thermal speed.

b) The ion FLR current. In the SCK approximation [8]~[9] only the terms resonant
at w = 2(); are retained in the the FLR ion current. They can be written in vector
form as [10]

4 1 = 2 = -
%J(Z) % {vl {a@) Vi (R-E)-i@V, (ag x R l)]
(3.7)
+(u¢x§_;_> [0'(2)‘-7_|_ (-'(Xé E>+z6(2)Vl (R E_L) }
where . .
. b2 + A a bg — A
Gy = 22 : 2 By = 32.2_2_ (3.8)
with
~ 1 w 'U2 +o0 e—uz t . Yo U
@@ — thi s 153 [ (w=29) dr 1
AYE, = 3 Qzé[_mdu\/?r(w/;wdtet ¢ E_,_)
(3.9)
52 B m Ughi E_
prEs s w+2ﬂc,

The matrix B = é‘l is the reflection matrix with respect to the plane containing B,
and V B,: .
E'E’J_=E‘J_—2QQX(E'_LX'&:9) (3.10)

where i is a unit vector in the directioﬁ of the perpendicular part of the gradient of the
static magnetic field. Neglecting terms of order 8(96/8vy) and ©(06/89), one finds

(R-E\)y=C3Ey+ S, E,

. (3.11)
(B-B\)y=8Ey—C,E,
where
Ch = b,/, - b2 Ss = 2by by, (3.12)
o by = —= 92 b, = 222902 (3.13)
Y~ kN, 69 7~ kN, 09 '
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K bemg defined in Eq. (2.16). Note that J® is not rotationally invariant (the direc-
tion V B, being singled out), but satisfies Onsager relations, which are necessary for
energy conservation in the absence of dissipative effects (ImA( = 0).

Omitting FLR terms resonant at the fundamental is justified by the fact that they
have to be compared with the zero-Larmor radius current which is also resonant at
w = (¢, while near the first harmonic only the FLR part of the ion current is resonant.
The superiority of the SCK model over the complete FLR model, however, is confirmed
also by the analysis of the local dispersion relation. According to both the exact hot
plasma dispersion relation and to the SCK model the root corresponding to the ion
Bernstein wave diverges as w — {); from above. By contrast, the full FLR dispersion
relation predicts that this wave remains propagative below the ion cyclotron frequency
and in the MHD frequency domain w < £ (but with & wavelength shorter than the
ion Larmor radius, so that the conditions for the validity of the FLR expansion are
violated). Near w = €;, moreover, the power absorption predicted by the full FLR
model is not positive—definite, in contrast with a general theorem [16] according to
which in a Maxwellian plasma P,;, is always positive if terms explicitly proportional to
the gradients of the equilibrium quantities are neglected. In the SCK model the power
absorbed by the ions is always positive, as it should.

c¢) The electron FLR current. The SCK model must be completed by taking into
account the FLR electron current, which consists of two terms,

4ATi = 41ri -
2 — (2 , 72
—=j®== (JT +J ) (3.14)
respectively associated with TTMP damping and mixing TTMP with ELD:
4:mJg(fr) = —2—61{7_._ X [5\(°)(6_L X E'L)]

dmi i 510, _Z__ {VJ_ . [E‘°) (a( 6) Ec'u,(] + (3.15)

ot (59) [60 s 9.2.)]
with

~ ]_ L(J 1}2 +oo e-"u2 t . "N =
(o) 7 —pe “the s dr fw(t—t’) E
AYE = 3 Qz 2 . du N ( W /; N e

1 w2, v2 too  g—u? o r . )
(o) _ - _—pe “the 2 1 iw(t t)E(
&7 B = 200 2 J_o du VT (w Ow /_oodte I

In addition, the electrons contribute the small quantities

(3.16)

1 “"pe "-’th W ~2 1 “'pe '"the w
£ E. E_= E_ 3.17
202 ¢ w2 T Pe 202 2 w-20, (3:17)

to A2, p?, respectively.

ME, =
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3.4 — Boundary conditions. In TORIC the numerical integration is continued up to
the wall. The system of equation is therefore completed by boundary conditions at the
wall and at the antenna. The wall is assumed perfectly conducting, so that

E,(a) = E;(a)=0 (3.18)
The antenna is modelled by a current sheath on the magnetic surface ¢ = Va4,
JA = %’- Je(9, go) 8(y —ha)ia (3.19)
where J* is a line current density (A/m), and
@4 = cos (@ — )i, +sin (6 — a)il, (3.20)

for conductors inclined by an angle a to the poloidal direction. The jump conditions
for the tangential magnetic field are then

5[6xﬁ:‘)¢] =+ 2T e os (01— a)

vao € (3.21)
¢ e = ami _, '
= [V E),,]w = - J*sin(6—a)

(in practice, only the case & = © is implemented, since antenna currents parallel to B,
can excite short wavelength waves in the plasma periphery, whose numerical resolution
in toroidal geometry is nearly prohibitive). In addition, we must explicitly require the
continuity of the parallel electric field across the surface of the antenna, ¥ = 4,

By, =0 (B, =0 (3.22)

Finally, a Faraday shield with blades inclined by an angle 8 with respect to the equatorial
plane is simulated by imposing

—5in (€ — B) By +cos (8 — B) E; =0 (3.23)

on the magnetic surface in which the screen lies. Again only the case f = © is imple-
mented.
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4 - Weak—variational formulation.

4.1 — The variational integral. The first step towards the numerical solution of the
wave equations is to put them into the Galerkin weak—variational form by multiply-
ing Eq. (3.1) scalarly with an arbitrary vector function F belonging to a suitable test
function space (defined so that F satisfies the same boundary conditions as E), and
integrating over the whole plasma volume:

- 2-a =3 - - 4 2 =
/dVF*-{—C—2VxVxE+E+—W—Z(fP+JA)}=O (4.1)
w W

(In the code all lengths are measured in units of ¢/w, and the variational integral is
dimensionless). The second order operators are then eliminated by part integration,
and the resulting equation will be written

Qeurt + Qpl = Qant + Seurt + S;ol (4'2)

where Q, & denote volume and surface integrals, respectively. The latter extend over
the plasma surface and any other discontinuity surface; the surface integrals on the wall
vanish, however, because of the boundary condition at an ideal conductor. Moreover,
Qpi and Sp; will be further split into zero and second order terms in the Larmor radius
expansion,

Opi = 0N + 0P S =89 + 52 (4.3)
For simplicity, the vacuum displacement current will be collected with the zero Larmor

radius plasma current, as it is done when defining the dielectric tensor of the uniform
plasma.

We now list all the terms in Eq. (4.2) in turn; the surface terms are to be evaluated
at the “plasma surface”, which is a magnetic surface. The volume and surface elements
for the integrations are then

dV = RJ dip d9 dS = +RN, dd i, ' (4.4)

where in dS the positive sign is for a surface oriented from the plasma toward the
vacuum.

a) — The vacuum contribution. The identity

F’*-ﬁx§xﬁ=§xﬁ*-ﬁxﬁ—§-(ﬁ*x(ﬁxE")) (4.5)
gives for the vacuum contributions (excluding the displacement current)
2 - -
Qeurt = —%//RJ (V% F* -V x B) dy a (4.6)
w

and 2 ' _

Seurt = =3 / RN, {u,,, : (F x (V x E)) } do (4.7)
respectively.
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b) — The zero Larmor radius plasma current. The contribution from the zero Larmor
radius plasma current, including the vacuum displacement current, is

0¥ = //RJ{R:£E++F:RE_+F;13E¢}d¢dﬂ
(4.8)
= / RJ{F;; ($ &, —iDE,) + F; (iDEy + $E,) +F513E¢}d¢dz9

c) — The ion FLR current. After integration by parts, the contribution of the FLR
part of the ion current to the variational integral becomes

2 B —p - - - ~ -— -3
0 = _53 //RJ{V‘L (R FY) [&(2)% (R EL) - 8@V, - (a1, xg-Ej_)]
+ V.- (@ xR F}) [&@ﬁ (e x B+ B\ )+ 6PV, - (B- E’i)] }dq,{; do

=_2— / / RJ{ (0+F4)* AD (8,EL) + (B_F_)* p® (6_E_ )}dxﬁdﬁ
(4.9)

and

539 = - [rw.q,. {B-F [0 @ B) -89 @ x B 5]
(4.10)
+§-15"J*_ X [&zﬁ_L (e x gﬁi) + b2V - (R Eﬁ.)] }dﬁ

In writing the last form of Qﬁ’i), neglecting terms of order ©(80/0y) and 6(89/89),
we have defined

1 (= D e B,
(aiEi)z—{VL-(Q-EL)izVL-(Wxg-EL)}

X (4.11)
>3 [(Oy + vy) £i(8y + vy)] {eiz”' (E,;, +iE,)}
and we have used the fact that (cfr. Eq. (2.14))
1 Z ax\? .
Co FiSy = W (gﬁ F icos 9‘-53) = gt2%7 (4.12)
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d) — The electron FLR current. After integration by parts, the volume contributions
of the FLR part of the electron current to the variational integral become }

i c2 - - A - —
08 = -2— //RJ{(VJ_ x B )* A0 (V| x El)}dgbdz‘}
. c? - = - \7*¥ » |
Oftx =i=; / / RJ{ ;- (Vo xF)| €9 (acEe) (4.13)

— (8cFy)* €©) [ﬂ'C' Wi X E’L)] }

while the surface contributions are

58 =25 / RN, iy - {Fl x [,\(") (V1 x EJ_)]}dﬁ
(4.14)
Sirx —2-:—2 / RN, {ﬁi x [f(") (3¢E¢)ﬂ‘¢] -a¢}

respectively.

4.2 — Boundary conditions at the plasma edge. Let the plasma be bounded by the
magnetic surface 1 = 1,, on which moreover we allow for given surface currents J,
flowing in thin external conductors, to simulate for example the Faraday screen. To
handle such a discontinuity, surface contributions from the inner (plasma side, suffix p)
and outer (vacuum side, suffix v) face of the boundary surface must be added to the
variational integral. The contribution from the inner side is of the form

s,=-% [ an.{ s co e
D — —E T P~y ( ) :

~ (4.15)
+Fr [(6 x B)2 + £ (Ev)] — B (¥ x F:)g} do

where we have singled out the contribution from the vacuum part, Eq. (4.7), while those
from the FLR plasma current, Egs. (4.10) and (4.14), have been put together in the first
order vector differential operator 5(2), whose parallel component vanishes identically.
The contribution from the outer side of the boundary is

02 PR = PR - .
si=5; / RN,.{F,, (¥ x By2 — F*(¥ x E);;}dﬁ (4.16)

We recall that up to common a numerical factor the vacuum and FLR contributions
represent the electromagnetic and kinetic part of the power flux through the surface,
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respectively. The continuity of this flux at the surface imposes the boundary condi-
tions [17]

LP By =0

) =3 — T v - 47T’irw 8

(VX ER —(VxE)+LO(Er) = — (5 + ) (4.17)
- =3 - S 47!'2(61 s

(VxE)f,—(VxE),,:—— = J¢

where J,f) is a surface h.f. diamagnetic currents of amplitude such that

4miw =
— I =LP(EP) (4.18)

As a consequence, the surface contributions to the variational integral at 1 = 1, can be
expressed in terms of the external currents only,

Sp+8y = % / RN, {FyJ¢ - Ff J2} do (4.19)

The FLR surface terms, therefore, need not to be coded explicitly.

4.3 — The antenna contribution. If a small but finite thickness A4 is attributed to
the antenna, its contribution to the variational integral can be written

d7g

Qunt =~ Ay /f¢ RN J"(0,9) (7} (6 =) 4 F sin (0~ )} dvp (420

It is more convenient, however, to model the antenns, by a surface current flowing in
an infinitely thin conductor. If the antenna is located in vacuum, then, the tangent

magnetic field is discontinuous at ¢ = %4, and from each side of this surface we get
surface contributions to the variational integral such as

[Seuril,y, = % / RN, {F,;‘ [(9 B)], -F [(9x 'E*),,]w} ddp  (4.21)

PY=1a
where [S], = 8% — 8-, and superscripts + (—) refers to the outer (inner) side of the

conductor, respectively. The jump conditions (8.17) for the tangential magnetic field
are therefore equivalent to the condition

[Seurtly,, = Qant (4.22)
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5 — The spectral Ansatz.

We assume a solution of the form

T e
Ey=e™? 3~ BT (ng)e™ (5.1)

mMm===00

Because of axisymmetry there is no coupling between different n, components; in the
following, the argument n,, will usually be omitted.

5.1 — Thhe differential operators in the spectral representation. With lengths in units
of ¢/w, the components of div E and curl E for the field (4.3) are:

and

where

dEp
Ze‘mﬁ{ 5 d¢ + vy By + (iky +u,,)Em+(ch+V<)Em} (5.2)

V x E)y = Z eimg{(z’kz,n + Yy ) B — (kg + ’Ywn)E:?n}
VxE)y=>" e"m"{(ikz‘ + Vo) EF + Yy B
™
[ (Fmg) ) o
Vx B), = Ze*""’{ [ (ddEJ J\C; m ) +7an17"} -

— (iky" +v¢w) By + e BT }

m_ T _ T
kn—NTcose Rsm@

L N
k¢ A sin © + Rcose

(5.4)

In particular, k¢ can be regarded as the local parallel component of the wavevector of
the Fourier component m. :

It is convenient to rewrite the divergence compactly as

with

-+co dEm' -
<3 - imd a3 >~B (2 , a®
V-BE=Y e E{sﬁ o +(m5P +50) B } (5.5)
m=—0c0 B
(1) _ 52 _ _, G 53 _ N
S Uy S Zm S f
(1) _ 5(2) _ 5(3) 5.6
V 1.7% sme S W;Q S 0 ( )
S’é )=y + z—z‘f cos© S(z) W.,Q 5’53) =0
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Similarly the curl can be written compactly as
+oo0

VxEa= Y, ™ Z{ ,(f'g r 5 (mBES + ES) E;,n} (5.7)
m=-=—0o0
where
p(1) _ p(2) _ H(3) _
Ryy =0 Ry = Ryy =0
R(l) —z—R‘ﬁ cos © — vy R(z) = —zﬁ-— sin © Rffg =0
=(1 Ny 2
R,(M) = —-z—R“l 8in © 4+ yy¢ prc) = +2-N— cos © Rffg =0
RO = zﬂR“i cos © + Yy R = z-N: sin© R® =
Rgm) =T R%) =0 Rgﬁl) =0 (5.8)
p(L) _ 5(2) _ 53 _ N
Ry == Rye = 'IN_ Roe =—7F
Rg{p) = zT‘{— SIn© — vy R(z) = --z-N- cos © Rgz =
p(1) _ 5(2) _ ~(3) _ N.
By =%n Ry = ""'ZTN Ry ==F
1 _ p(2) _ 5(3) _
R = R =0 R =

Finally, the operator in the ion FLR current has the spectral representation

1 — - —p =
§{V_L-(§°E_L):|:iv_;_'(’l-l:¢ Xé-E_L)}

. (5.9)
_ imo [ 7(3) ( OBy , 0B, (2) | (1) :
_;;e {Ti (6¢ il + (mT + 1) (By % i)
where
)  LN- [ 1 (07 ox
Ti_2.][ (319:“ 5053
~ 1 2) | a2 1 0Z 0X
Tf) = Sf/, :i:zS,g) [—- (—$zc058
2 ) a0 ET) (5.10)

2
1) _ 1 (e, o) |1 [9Z X
Ty 2{(5 izS )[ 679=cmosea'§
N.r O G 8\ o569 1 0z _ . OSQBX)]Z}
* 3y NZos) "N, &% ™
The coeflicients S(k), Rgg and T:,(:k) are functions of the poloidal angle ¥, but do not
depend on m. S
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9.2 — Construction of the variational integral. Expanding also the test functions F
in Fourier modes, the variational integral takes the form

ZZ / / BT i —m)o (ﬁ(m)*(¢)~ Qo0 E(m')(¢)) a9 dip
_ 4mi Z / / RJ e=im? (F<’">*(¢) Ta(ng, b, 19)) d9 dip (5.11)
+Z D / RN, &=m)? (Fm)*() . $% . B™(y,)) a9

On the r.h. side the first term is a weighted poloidal Fourier transform of the antenna
current; the last term extends over the plasma surface and any other discontinuity
surface, e.g. the antenna and Faraday shield locations.

The operator @Q°P has the form
Fm () . QOP . BOm) () =

dFm™* dET  gFms » ,
ZZ{ Top(m,2;m/',2) d’Z + d:b Top(m,2;m',1) ER

(5.12)

+ F™ Dyog(m, 1;m’,2 dEg F™T 1;m/, 1) E3
g\, m ) & + aﬁ(m7 1ma) B

The operator & op has a similar representation, except that it does not contain deriva-
tives of F*. According to the remarks made in section 4.2, however, the explicit form
of this operator is not needed. We now list the contributions to Q°P.

a) — Contribution from the curl operator. The contributions from the vacuum part
of Maxwell equations are

T g(m, L;m’, 1) = Z (mR(fa) + RS,Q)* (m'BD + EY)

a2, 1) = 10 (R) - (mR3 + B33)
(5.13)
gt i, = 5 (mB2+ 82)" (A5)

Rt - £ (1) ()
:
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b) — Contribution from the zero Larmor radius plasma current. The contributions

of the zero Larmor radius plasma currents are:
Tyy(m, Lm',1) = Tpp(m, ,m’, 1) = —5(w, % k)

Lyn(m, Lim/,1) = =T (m, 1;m’, 1) = iD(g, 9 kT¥)

Fg((m7 1 m,7 l) = _P(")b) 7, kznr)

with
A wsza -~ wgi w ~
L=1-%" 7 (-—:anz(-'ﬂla)) SAESY s xo,iz(xli))
. w? | wZ;
Ro1-3 5 (Collenn) ~ 1+ gt e
2
~ (.U
P=1-) -k = (a: Z’(moa))
and
A . m' 1 A ml . »
8@, 05k7) = 5 { L, 93 kF) + R, )}
N m’ 1 A ’ N
D@, 0;k7) = 5 {0, 9 k) - B, )}
Here .
—nfd,
Tn,a = Tpa(m,¥,d) = kmvth o

and Z is the toroidal Plasma dispersion function

- -+oo —u? t . Pt om
—il?an(iL'na) — / e\/;r {_w/ e ft’ L 'Uth(w:-:a_u'l)dt'l dt’}
—0o0

—C0

Which will be discussed in the next section.

c¢) — Contribution from the ion FLR current. Deﬁhing

, 1 w2, 92 . . 1w 2 w
2 (.9 k™) = LN Y Yshi (o 2 ) L 1%e Vi
A ("‘b"ﬂ’kc >_ 2292z c2 ( wozZ2z) 202, 2 w20

'vt,u w lw 'uthe w
P’ ($,9) = 22 22 20y +zn2 e w—20.
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the contributions from j;(z) to the coefficients I" can be written
r$) (m,1,m’,1) = T&(m,1,m’,1)
=2 (70 4+ mTO) . O, 0k7) - (7 +m! 7
+2 (T + m ) O (g, 95K (T8 +m )
r®) (m,1,m’,2) = T& (m,1,m’,2) =
=2 (T) - @, 0,87 - (IO + ! T)
+2 (7) TA@ g, 8 k) - (T +m 7) (5.20)
T3 (m,2,m’, 1) =T@ (m,2,m’,1) =
=2 (79 +mTD)" . )y, 8 k) - T
+2 (T + mT) " 2O (g, 0557") - T

o~

* ' ~ (3

T (m, 2, m',2) = T@ (m,2,m',2) = 2 (T9) - /O (s, 8;k7") - T
+2 (i"f')) O (g, 0;k7) - T

and

D (m,1,m',1) = -T2 (m,1,m’, 1)
= —2i (T + mT)". o (g, 057" - (T +m/ T)
+2i (TP + mTP) " X g, 087" - (T2 +m' T0)
I‘T(fg(m, 1,m',2) = —Fgﬁ(m, 1,m,2) =
- * ) ~ ~
= 21 (T9)" - @ (3, 8557") - (T 4+ m/ T
(a3 ! = = (2
+2i (7)) 2O, k7" - (TP +m' D) -~ (5.21)
T2 (m,2,m’,1) = -T2 (m,2,m/, 1) =
= —2i (T + mT) " o (g, 03 k7). T
2 (T +mT)" 2O @, 0;87) - T
IO "3
T2 (m,2,m!,2) =T'9 (m,2,m’,2) = —2i (Ti )) oD (y, % k) - T

+2i (TE) " \O (g, 957 - T
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d) — Contribution from the electron FLR current. The TTMP part of the electron
current gives the contribution

52) , p@MY\” 1
TEE (m, Lim',1) = 2 (mR( + BE) - Xe(w, 9 k7) - (m'RE) + BE))

3 {m
77 (m, 2;m’, 1) _2(1%?;)*-)\2(1/1,19; k) (m m'RE) + RE))
(¢

(5.22)
r2% (m, 15m,2) =2 (mES + R(l)) 2,5 k7) - (RE))
TE (m.2m',2) =2 (BE)) - xew, 9 k7) - (RE))
where the indexes «, § run only over the perpendicular coordinates 9, i, and
1 w . U3 - | ,
A= 2 Qg the ("moezoe) (5.23)

With the same index convention, the off-diagonal electron current gives the contribu-
tions

DM (m, Ly, 1) = (B + mBQ) - 20, 858) - K

A (m,2m', 1) = (B) - 0w, 95k - b

(5.24)
T (m, 1ym, 1) = (KP)* - €2, 05 K - (R +m/BE)
& (m, 1im',2) = (KF)* - 200, 5 KZ) - B
with g
gg_l Ype 'Uthe 22 7 : (5.25)

2 Wee 02 Loesoe

6 — Boundary conditions in the spectral representation.

6.1 — Regularity conditions on the magnetic axis. The Cartesian components of E
on the magnetic axis must be uniquely defined, i.e. independent from . From (2.13)
for b — 0 we get

e oo (3:5) 20+ () s0)
Ex(0) = Zez‘m”{ - ( Alr %’5 ) ES™(0) + (J—\lr:%g)oEgm(m} (6.1)
E,(0) =Y ™ E{™(0)
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"These equations completely define the harmonic contents of the electric field components

at 9 =0. It is convenient to write the resulting conditions in rotating components.
Defining

1 8z iy 1 07 m _im
(73) = Zamem (7:5),=Sxme™ 62

we obtain
0= (2t F ixtm—m) (ES™)(0) x iE{™)(0))
m’ (6.3)
0= E™(0)

for all m # 0. If magnetic surfaces approach circular shape as 1 — 0, then X~ =
~X1=4i/2, Z7' = Z' = 1/2, and all other coefficients in Eqgs. (6.2) vanish. The first
two of Eqgs. (6.3) then reduce to '

1 ol _ -1 _ -1 _
By +iB; =0 By —iBy" =0 (6.4)
$=E,77"EO for all other m

The regularity conditions for E suffice to guarantee that the differential opera-
tors V- E and V x E (hence the wave magnetic field §) are finite on the magnetic
axis. Additional conditions on the derivatives should in principle be imposed to ensure
that B and V - E are also indepependent from 1 as 9 — 0. These conditions, however,
are automatically nearly satisfied because of the divergence of the appropriate elements
of the metrics near the axis, and it is not necessarily to impose them explicitly.

6.3 — Antenna conditions in the spectral representation.

a) Conditions at the antenna conductors. According to Eq. (4.22) the currents in
the antenna conductors provide the r.h. side of the discretized equations. In the spectral
representation this driving term is

47g
w

Qant = Z / RN, =™ J%(9,n,) [F7™* cos (6 — o) + F{"*sin (€-) - a)] 0.3
m

v (6.10)
the integral extending on the magnetic surface 9 = ¥4 in which the antenna is located.
As already mentioned, only the case © — a = 0 is implemented.

If the antenna is immersed in a cold low density scrape-off plasma, numerical pertur-
bations are sometimes observed in the form of relatively strong oscillations of the fields
over a few radial mesh intervals on both sides of the antenna (akin to a localized spectral
pollution). To improve the situation in these cases we have provided the possibility of
having two radial mesh points at 9 = 104, one on each side of the conductor. With this
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option, the jump conditions (3.21) are used as relations between the variables at the
two points. This is implemented by adding to the stiffness matrix at the inner point
the appropriate surface contribution. Using the jump conditions to express the values
of (V x E)™ on the inner side of the conductor in terms of those at the outer side, this
gives

_ CZ s (o ? % 1 — 7 £ I Shm’
s =25 2 [RN, =m0 [Em (G x Byp' — R (9 x B ]
m,m/’ .

p=yp%

i (6.11)

+— ;/RNT e™™ J*(9,ny) [FI™* cos (© — a) + F{™*sin (© — a)]wdﬁ

which is a “natural” boundary conditions for the FEL discretisation. We must then also
impose the continuity conditions for the tangential field components, which translate
immediately into the continuity of the corresponding Fourier coefficients:

[Er],, = [EE],, =0 (6.12)
These are “essential” boundary conditions. The continuity of the perpendicular mag-
netic field, [B,’;‘] = 0, is a consequence of the previous two, and needs not to be
imposed sepamtely“.l As an alternative to the inclusion of the radial currents in feeder
and shorts, on the other hand, one can explicitly impose the continuity of E, across the
antenna (which strictly speaking should be a consequence of Eq. (5.37)). The rationale
of taking the feeders into account is to compensate for the apparent charges at the tips

of the main conductor due to the discontinuity of J*(«9) [18]. Requiring explicitly the
continuity of Ey should have the same effect.

The two alternative ways of imposing the matching conditions at the antenna usually
give identical results, as they should. When the direct method has numerical problems,
the two-point method, particularly with a forced continuous Ey, sometimes (but not
always) improves the behaviour of the solution in the layer around the antenna.

b) — Conditions at the Faraday screen. The simplest implementation of a Faraday
shield consists in imposing that the component of the electric field parallel to the blades
should vanish on the corresponding magnetic surface ¥ = 9r. If the blades are inclined
by the angle 8 to the toroidal direction, the resulting condition are equivalent to

~sin (6 — B) By (¥r) + cos (0 — B) B (4x) = 0 (6.13)

(for simplicity, we have neglected the weak dependence of © on ¥). Again, however,
only the case © — 8 = 0 has been implemented.

c¢) — Conditions at the wall. The conditions at the metallic wall translate into
EM1)=Er1) =0 (6.14)
for all m.
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7 — Parallel dispersion and power balance.

7.1 - Approximation to the toroidal plasma dispersion functions. The integrals (5.18)
which describe parallel dispersion have formally to be evaluated according to the Landau
prescrition, Im(w) — 0+. If this limit is taken literaly, however, they contain resonances
not only at the harmonics of the cyclotron frequency, but also at the harmonics of the
toroidal bounce frequencies of passing and trapped particles [19]-[20]. This is not only
analytically and numerically untractable, but in most cases also physically incorrect. As
discussed in [21], collisional phase diffusion efficiently destroys the phase memory of the
particles, thereby eliminating the bounce frequency dependence of the plasma response.
Hamiltonian stochasticity induced by repeated resonant wave-particle interactions can
also lead to the same effect [22].

Because of phase diffusion, only the contribution from the last stationary point
in the 7 integral, i.e. from the last transit through a cyclotron resonance, has to be
taken into account in Eq. (5.18). Models for the resulting “toroidal plasma dispersion
function” have been discussed in [23]-[27]. The most complete treatment is due to
Lamalle [27], who has also indicated how to evaluate the integrals (5.16) for more general
distribution functions. The expressions obtained in [27] for Z are also consistent with
the quasilinear diffusion coefficients which should be used in the kinetic equation for the
steady-state distribution function in toroidal geometry [28]-[29]; their implementation
therefore would allow a truly self-consistent treatment of ion cyclotron heating. This
is in principle possible also in TORIC; the execution time, however, would increase by
orders of magnitude. A different but powerful approach, based on the solution of Vlasov
equation in action-angle variables, has been proposed in [30]; its application to TORIC,
however, would not be straightforward.

In [31] we have argued that the effects of toroidal trapping can be safely neglected
when investigating wave propagation and absorption. In the simplest approximation,
retaining only quadratic terms in the expansion of the fase around the stationary point,
the velocity integral can then be performed analytically to give [24]-[25]

-~ o w . 2
Z(%n) = Z(Tn,y) = —i / eion =T ) g (7.
0
with
w dlog R\
o~ - 7.2
7 (ZkﬁR'vth) ( o ) sin © (7.2)

evaluated at the cyclotron resonance. This approximation is equivalent to assume that
ions cross the resonance layer with constant velocity. For large argument |z,|>> 1
the function Z(z,,7) has the same asymptotic behaviour as the Fried-Conte Plasma
Dispersion Function of the uniform plasma [32],

2
e—u

1 [t 2
- i “%n 7.3
Z(z2) ﬁ/_m S du-+ivre (7.3)
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to which it reduces when v — 0; Z(z,,~) differs appreciably from Z(z,) only in the
resonance layer |z,| = O(1) where dispersion and damping are important. The most
important effect of toroidicity as expressed through the parameter  is an appreciable
broadenening the resonance region. Unfortunately, the imaginary part of Z(z,,7) is
not everywhere negative. As already noticed in [24], this gives rise to difficulties in
* interpreting the local power balance, since it makes the local power deposition by ion
cyclotron damping negative in some regions even in a Maxwellian plasma. By a more
accurate treatment of the parallel particle motion, Lamalle [27] has shown that the local
power deposition in a Maxwellian plasma is positive defined everywhere, as one would
expect.

An accurate approximation to the r7—integral which takes into account toroidal broad-
ening of the cyclotron resonances while avoiding the unphysical oscillating behaviour of
Eq. (7.1) in the asymptotic region, has been proposed in [31]. Following this reference,
in TORIC Z is approximated in terms of the ordinary Plasma dispersion function Z
with the argument evaluated using an appropriate effective parallel wavenumber

w — nf,

~%0 Z(Tn) ~ —Zo Z(%n) Zn = FDer rom (7.4)

with (k”)eff given by

¢1+_4

(kp)ess = bj——— (7.5)

This equation can be understood by noting that Lye, = (2Rvs/nQsin ©)1/2 is the
resonance length for a single ion. This length adds nonlinearly to the thermal Doppler
broadening (kjve/w) R of the cyclotron resonance layer. In particular (kj)ess remains
finite even in the limit kj — 0:

1/2
W
(kessr — ( T sin 6) for ky — 0 (7.6)

This also allows to take advantage of the efficient algorithms available to evaluate the
function Z [33].

7.2 — The local power balance in the spectral representation. Identifying in Eq. (5.2)
F with E and taking the imaginary part, we obtain' the global power balance in the
form

- ReZ { / / RJ e~im? (E"<m>*(¢) : fA(n¢,¢,ﬂ)) do d¢}
(7.6)

m) > { / f Ry gitm'=m)? (E(m)*(¢) Q°P . Bm) (¢)) 9 d¢}

m m’
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This is an exact consequence of Vlasov-Maxwell equations. The Lh. side is the power
launched by the antenna. The integrand of the r.h. side differs from the local rate of
dissipation at most by the divergence of a vector which represents a reversible kinetic
transport of energy by the hot plasma; this difference however averages to zero on each
magnetic surface. On the other hand, the concept of irreversible h.f. power dissipation
is meaningful only for times much longer than the transit time of thermal particles in
the tokamak. Hence it will suffice to consider the local dissipation rate averaged on each
- magnetic surface, which can be read directly from (7.6):

Pasth) = i 3 { [ Ractrlm (B0-). g0 B a0}

m m'

The ¥ integration annichilates the contribution of the kinetic power flux. We now
enumerate the various contributions to P,ps(1).

a) Fundamental ion cyclotron absorption: We derive the explicit form of P, for
the case of fundamental ion cyclotron absorption; the other cases are similar. From the
definition, we have

i) = =1 33 [ RIS (B () L, 9, 67) BS™ () do - (7.8)

m m'

Writing the imaginary part explicitly and exchanging m and m/ in the second term we
can rewrite this in two equivalent ways:

P@)=23 / RJ ' =m)?

m m'

{ES{") “(4) {Im [L(¢, 9, k7 )] +Im [L(, 3, K7 } E{™) W} (19)
= —Re) Z- / RJ & =m? { B () Im [L(w, 9, k7)| BS ()} do

m m’

The power balance has been implemented in the last, asymmetric form.

b) Electron Landau damping:

P = Re Y Y [ RI =m0 (B () I [P, 9, k7)) B ()} a0
"’ (7.10)
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¢) Ion second harmonic absorption:

w 02 ol
PO (y) = —g- Re N =5 / RJ gilm'—m)d
m m'

o) (AEDP  dET i} i
3) Y (1) (2) m $(2) . m'
[T_ (w iy )+(T_ + mT¢ +iED ] Im()\i (3, 9; K ))

o [dET  dE™ - . C
-» {Tﬁs) ( T o > + (T9 + mf?) (57’ +imp )]

(7.11)
d) Electron Transit Time damping:

PTT () = __RGZEEZ /RJ i(m! —m)o

m m!

{ {R@ dzp (mﬁéﬁ - “‘2) Eg‘} . Tm (2 3\0(¢,19;k2n')) (7.12)

[ d¢' (w73 + 5) £} o0

e) Mixed electron term:

Preiy) = LR Y Y (00 [ Raeitm=ms

m m' =ty

{ [Rgg; dﬁf + (B + mE®) E”‘] Im |20, k7| - (kBT (7.13)

+ (kg ER)” - Tm [ (w, 97| - {R%’ =3 + (BE +m'RY) B3 } } do

7.3 — The global power balance. By integrating Eqgs. (7.7) to (7.12) over the plasma

volume, the total power absorbed P,p, and its repartition among different species (ion
and electrons) is obtained. A consistency check is offered by the fact that the total
absorbed power summed over species must be equal to the power radiated by the antenna

with

Pt =Re)  E{™*(3ha) - J™ (7.14)
m
Jm = / RN, e~*™3 J,(9) d (7.15)

28




In addition, assuming that there is no absorption between the antenna and the
wall, Pyps must be equal to the electromagnetic power flux across the magnetic surface
¥ =14 toward the plasma center,

P, = gi-r /RNTIm {E; (gv“' x E*)C ~E} (5§ % E)n} 4o (7.16)

which in the spectral representation becomes

em — _ZZ/RN et(m—m )S

m m'

7

- oy BT :
« | pB) 78 (2) 1) !
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The comparison of P, with both P,,; and P,,, gives an idea of the numerical accuracy
of the solution.

7.4 — Ad-hoc damping of ion Bernstein waves. The wavelength of ion Bernstein
waves becomes rapidly shorter as they propagate away from the mode conversion layer.
When k1 v44i/Qei R 1, the SCK approximation breaks down, and its use often gives
unphysical results. At the same time, the numerical resolution of such short wave-
lengthss is problematic. Ion Bernstein waves must therefore be damped before their
wavelength becomes too short. This is done by adding to A? (Eq. (5.20)) a correction
which simulates absorption by perpendicular ion Landau damping:

4
iK (1 - ﬁ?-%““) Bess f(zr)e ®2oL if k2 )pw > 0 and p2 > p2.,,

67 = Ki (7.18)
0 otherwise
where
2 _ k_l_vthz) = ( w )
My = ( 292 Bw 2 Ty k.l.vth‘i Bw (719)
Bess = Bi(w) (1—f+f-g%(£%> flzi)=23+1

while K1, K2, f and p2,,, are parameters which can be adjusted by the user. The
z3 factor before the exponential is characteristic of perpendicular Landau damping
by weakly magnetized ions; the second term in f(z, ), as well as the correction to the
local B in B¢y have been added to avoid A2 to become negligible when 8; — 0, k; — oo.
The p2 ,—dependent factor provides a smooth transition between the undamped and
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the damped region. By an appropriate choice of the free parameters (of order unity
except f < 1) it is not difficult to make shure that all damping occurs far from the
mode conversion region, and does not interfere with mode conversion itself and with the
reflection of the fast wave from the ion-ion cutoff.

At high harmonics, w > Q, perpendicular ion Landau damping arises due to the
onset of Hamiltonian stochasticity in the ion motion in an electrostatic wave propagating
nearly perpendicularly to B, [34] [35]; stochasticity around the fundamental and first
harmonic is even more easily observed, but attributing the form (7.18) to the resulting
damping is arbitrary, although convenient.

7.5 — Regularization of Alfvén and ion—ion resonances. The perpendicular index of
the Fast Wave is nearly singular whenever

nf— S0 (7.20)

Ion-ion resonances in a multispecies plasma in the mode conversion regime (low |
and weak ion cyclotron damping) satisfy this condition, and can be very sharp. To
“regularize”these quasi-singularities, an ad-hoc “collisional” damping can be added to
S by writing

(7.21)

. n? — Re(5))?
S-—>S+iKaw,[Re(R)!exp{-— 3,,,,( I (5) }

[Re(R)]”

The parameters K,y and Qgq- can be adjusted by the user; values K, =~ 0.1 and
Qawr ~ 10 usually ensure that this damping is closely localized near the singularity,
yet sufficient to obtain a sufficiently well behaved solution. This procedure, however, is
mostly unable to cure the convergence problems due to Alfvén resonances {(w < €¢;) or
Lower Hybrid resonances {(w > ;) occurring at low density in the plasma periphery.

In the code a separate bookkeeping is made of the amount of damping due to the
modification (7.21) to S. Physically, if power is absorbed by collisional broadening of
wave resonances it should be attributed to the electrons.

8 — The Order Reduction Algorithm.

The Order Reduction Algorithm (ORA) was introduced in [12] to cure the short-
comings of the zero Larmor radius approximation without renouncing to its simplicity.
For this purpose, the ion FLR current is omitted, but the zero Larmor radius ion cur-
rent is ‘corrected’ by adding to the zero Larmor radius elements of the dielectric tensor
the approppriate FLR corrections in algebraic form. This is equivalent to replace the
differential operator describing j;-(:z) by its algebraic limit obtained with a local WKB
approximation.
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In TORIC, this is implemented by replacing R and L (Eqgs. (3.3)) with the effective
quantities

Rep =R —n3)rwp® Legs =L —n3)rwi® (8.1)

where 4% and A® are given by Eq. (3.9), and n2 )y is the index of the compressional
wave, obtained by solving the local dispersion relation in the limit of negligible electron
inertia

@t | [(nﬁ —8)+ (nf - R)A® 4 (n - E)ﬁ(z)] nd +(n} - L)} -R) =0 (8.2)

Care must be taken to chose the fast wave root throughout: in the evanescence regions
between a cutoff and a confluence with the Ion Bernstein wave, it is the root with
positive imaginary part. The FLR corrections to R and L provide the correct amount
of damping of the fast wave near first harmonic cyclotron resonances, and eliminate the
singularity of the cold limit at ion-ion resonances.

9 — Nladial discretization and numerical implementation.

9.1 — Evaluation of the coefficients on a magnetic surface. A finite system of coupled
ordinary differential equations in 1 is obtained from the variational integral (5.2) by
choosing the test functions in the form

ﬁ = %@ e'm? o 60 oo Omm, (9'1)

where Uq, 0o = 1, 2, 3 are the unit vectors of the local Stix frame, and the poloidal
modes are restricted t0 —Mpaz < Mo < Mpaz. Each of these equations has the form
of a convolution sum between the Fourier transform of the fields and those of the coeffi-
cients on each magnetic surface. The latter are evaluated using the Fast Fourier Trans-
form (FFT) algorithm. Note that several of the coefficients arising from the h.f. plasma
current, namely all those which are influenced by parallel dispersion, depend in addi-
tion explicitly on m through k7"; in this case the FFT must be performed separately for
each value of m. For optimal efficiency of the FFT the number M, of poloidal Fourier
component used in the representation of the coefficients is always a power of 2.

The number M, of poloidal modes kept in the representation of the solution, on the
other hand, is always odd, M; = 2 Mper + 1. To avoid having to check the summa-r
tion boundaries in the convolutions between coefficients and unknowns, and to make
optimal use of the information about the ¢ dependence of the coefficients, the condition
M, > 2 Mynqz is imposed. To reconstruct the fields after solution of the radial equations
the inverse Fourier transform must be taken. To be able to use the same FFT routine
as for the evaluation of the coefficients, the arrays of field components on each magnetic
surface are extended to M, elements by adding zeros in the outer positions.
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The construction of the FFT of order M, requires information from M, equally
spaced points in 9. From this obvious statement it becomes clear that M, must be suf-
ficient to allow a good resolution of the poloidal variation of the resonant Z—functions
on each magnetic surface, while M, must be sufficient to resolve numerically the short-
est wavelength waves occurring in the solution. To a large extent these two criteria are
independent from each other, a fact well confirmed by convergence tests. It is never-
theless clear that the most reasonable choice of M, and M, should be such that M is
the smallest power of 2 greater than 2 M,.

9.2 — The radial discretization. To implement the Finite Element (FEM) discretisa-
tion, the interval 0 < 1 < 1 is subdivided into N, intervals (elements), and the solution
is assumed to have the form

2
ExW)=>_> Ex,(r) H.(&) (9.2)
r ov=l

where &, (—1 < & < 1) is the normalised coordinate on element r, and the support
functions H,., (&) are

H,o(&) = Ho(€) (-1<€<1)
o { ($re1—$r)H1(§) H0<E<L1 9.3)
T @em o)) i (c1<£<0)

in terms of the Hermite cubic interpolating polynomials H, and H;, defined on the
master interval —1 < ¢ < +1 as:

Ho(€) = (l¢] - 1)*(2l¢] +1)
Hy(€) = (¢l - 1)%

With these normalisations, E2(r) and EX(r) are the values of E, and of its first deriva-
tive, respectively, at the mesh point 9 = 4,.. Cubic Hermite FEM have the distinctive
advantage to allow solutions (wave electric field) with continuous derivative (wave mag-
netic field) everywhere. They have been introduced for wave problems in [11].

(9.4)

When (9.2) is used in the variational integral, on each element z, < z < z,41 one
has to evaluates integrals of the form

N n Tr41 N R n dﬁﬁ
_Q_ (Hm ﬁ> =/ {_E_(O’O) Hq Hg + A, g(O, 1) Hy ‘E;'l‘
o 5 (9.5)
dH dH,g
I‘(l 1) — Iz dx } dx
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where the indexes in T which have not been omitted refer to the order of the derivative
of the test function to the left and to the right of the operator, and A, = Tr41 — Tp.
‘These integrals are evaluated with Gaussian integration; the standard option is with
three points per element.

The stiffness matrix M can then be constructed by making the following attributions:

Q (Ho(€)Hp(®)) = M, (r7)
Q (Au(9), Hs(-1+8) = M, (rr+1)
Q (Ha(-1+6),Hp€)) = M_,r+1r) 8.6)
Q (Ha(-1+),Hs(-148) = M_,(r+1,r+1)

(diagonal blocks get two contributions, out of diagonal only one). These attributions are
performed automatically by a set of all-purpose “master” routines which have already
been used in several wave problems..

9.3 — The solver. The block structure of the discretized system is

Li'fi"1+£i'§i+§i.fi+1=’m 1=1,...,N, (9.7)

with

L,=0 R, =0 (9.8)

Each Z; is a (6 M,)—dimensional complex vector made up by the Fourier components
of E and dE /di at 1 = 1p;. Adding the boundary conditions at the antenna increases
the number of elements by one, but does not alter this structure; the antenna current
contributes to ; at ®4. The other boundary conditions are easily implemented by
modifying the appropriate blocks of coefficients.

The Ansatz

Zia1=E

L, 4 5:‘,, + ﬁ'_l - (9.9)

leads to the upward recursive relation
-1
£‘=—(2i+£i'——E—-i-1) ‘B,
. | (9.10)
F;= (Q'z +L; 'gi—-l) ' (37’ L ﬁi*)

to be initialised by E 0= 0, .ﬁo = 0. The downward recursion (9.9) then begins with

N, = ﬁN,,- The matrices to be inverted are LU-decomposed and the equations (9.8)
are implemented using LINPAK routines.
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The solver based on this method has the advantage of simplicity and is relatively
efficient, but is very memory—consuming. Since only the matrices E , and the vectors F;
need to be stored, a factor 3 is gained with respect to methods in which all blocks L.,
LD ., B, of the stiffness matrix must be simultaneously present in memory. Nevertheless,
for Ms poloidal modes and N, radial points the matrices E . taken together have (6 x
I45)? x Ny complex elements. The size of the correspondmg array limits the largest
mesh which can be handled in a given computer. The solver used in previous version
of TORIC [4] employed virtual memory on disk, thereby eliminating this restriction at
the expense of a more complicated structure and slightly slower execution. If required,
interfacing the new version with the old solver would be straightforward.

10 — Using the TORIC code.

10.1 - ‘Modes’ of the code. TORIC can be used in three ‘modes’: exploratory, run
and diagnostic. We now give a brief survey of each mode.

1) The exploratory mode. This mode is chosen by setting ISOL = 0, and allows to get
quick information about the behaviour of the dielectric tensor, the local perpendicular
index of the Fast and Bernstein waves, etc., both as functions of X along the equatorial
plane, and as function of ¥ on a few selected magnetic surfaces. The plots which can
be obtained in this mode are:

— The poloidal plasma cross-section with the shape of magnetic surfaces;
— The electron density and temperature and the safety factor g as functions of 1p;

— Information on the local dispersion relation: the elements R, L, S of the cold
dielectric dielectric tensor, the FLR elements p and A, and the two roots n? )ry and
n? )sw of the dispersion relation corresponding to the magnetosonic and the Bernstein
branches, respectively, as functions of position in the equatorial plane, for the three
values m = —Mj,, 0, +M, of the poloidal wavenumber.

~ Information on local damping: the values of 22 = w/kjvihe and of k3 v3,,/202
for the Bernstein wave, the damping of Alfvén resonances (imaginary part added to S)
and of ion Bernstein waves (imaginary part added to A?), as functions of position in the
equatorial plane, again for m = —M,, 0, +M,;

— The real and imaginary part of L, A and of n? )pw and n? )gw as functions of o
on five equidistant magnetic surfaces for the case m = 0;

— The Fourier transforms of the quantities listed above.
The information gained in the exploratory mode is often useful to prepare for a
run in a new unfamiliar situation. A look to n%)rw and n%)pw and their Fourier

transforms, for example, gives immediate qualitative information on wether the mesh
used is sufficiently dense for the situation under investigation.
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2) The run mode. In the run mode (chosen by setting ISOL = 1) the stiffness
matrix is built and inverted, and the solution (i.e. the values of the coefficients of the
FEM discretization) is stored on disk. This is by far the most time consuming step; to
keep the execution time as low as possible, the output is restricted to a summary of
the results, and only the electric field components, the compressional component of the
magnetic field along the equatorial plane, and the power deposition profiles are plotted.
The options available in the run mode are explained in the nest paragraph.

3) The diagnostic mode. In the diagnostic mode (chosen by setting ISOL = -1)
the solution is read again from disk, and is used to get more detailed information on
the wave pattern, power balance, and so on. The separation between the inversion of
the stiffness matrix and the elaboration of the results has two advantages: it allows to
develop and test new diagnostics and visualization facilities without having to run each
time a full case; and it makes possible to combine the results of several runs for the
same plasma parameters but different values of the toroidal wavenumber Ty, SO that
the complete spectrum of a real antenna can be scanned.

In addition to the electric and magnetic field components along the equatorial plane
and of the power deposition profiles, in the diagnostic mode one can plot: the divergence
of B (proportional to the charge separation due to the h.f. waves) along the equatorial
plane; the Poynting flux versus radius; and contour plots of the three electric field
components in a poloidal cross-section. Contour plots or three-dimensional plots of the
power deposition are not foreseen, since the power deposition is essentially a surface
quantity. Finally, as a “diagnostic” tool, plots of individual polodal components of E as
functions of 9 can be obtained; this is sometimes useful to investigate the convergence
of the spectral expansion.

10.2 — Available options. We now list the available options, indicating mutual in-
compatibilities when appropriate. Several of the options were made available to make
possible the comparison of the standard model of TORIC with alternative models used
in the literature or by other codes.

a) Number of independent variables. Normally, the three components of the wave
electric field are evaluated simultaneously. This is obtained by setting NVRB = 3. It
is also possible, however, to omit the evaluation of the parallel component by setting
NVRB = 2. In this case only Transit Time damping by the electrons is taken into
account if IFLRE = 1 (cfr. ¢) below); if IFLRE = 0 no power goes to the electrons (the
perturbative evaluation of E; which was used in FISIC has not been implemented in
TORIC).

b) Ion model. The model for the ions is set by specifying the integer IFLR. The
standard choice is IFLR = 1, which corresponds to the SCK model. With IFLR =0
the finite Larmor radius terms from the ions are omitted; this choice is recommended
for example when investigating electron heating or current drive in the absence of ion
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cyclotron resonances. The value IFLR = —1 is reserved for the Order Reduction al-
gorithm. It should be noted that the zero Larmor radius approximation and the OR
algorithm are sometimes subject to spectral pollution; this problem can often be over-
come by specifying RPSIBW appropriately (see below).

The following options specify further how ion terms are treated:

— Toroidicity effects on ion cyclotron resonances. The broadening of ion cyclotron
resonances due to toroidicity discussed in section 5.1 is taken into account if IQTOR =1
(standard option) and omitted if IQTOR = 0. The parameter IQTOR is ignored if
IBPOL = 0 (cfr. d) below);

— Damping of ion Bernstein waves. Stochastic damping of ion Bernstein waves is

taken into account if ISTOCH = 1. The parameters Ky, K, and P2 in Eq. (5.18) A

are called ENHSTC, QLBSTH and QLBEPS, respectively; they should all be of order
unity. By adding an appropriate real contribution to A2 it is also possible (but not
recommended) to set an artificial lower limit to the wavelength of the IB wave, of the
order of QMSHBW times the length of a radial mesh element.

Ion Bernstein waves can be altogether suppressed (made evanescent) by altering )\?
outside a given magnetic surface r = RPSIBW. This is done by imposing

A§2) = p® = —(D Re(S) (10.1)
With this substitution the local perpendicular index of the slowest wave is
n%)sw = 25/(0% + p@) = ¢ (10.2)

corresponding to a strongly evanescent wave. The constant 0',(,2) can be adjusted by
the user (variable SIGVAC); it is defined so that when equal to unity the evanescence
length is twice the radial mesh step. This option, which is turned off by chosing RPSIBW
negative or larger than the vessel radius, can be useful in situations where Ion Bernstein
waves violate the FLR approximation before being successfully damped for reasonable
values of ENHSTC, QLBSTH and QLBEPS. A similar approach turns out to be useful
also to suppress spectral pollution in vacuum behind the Faraday screen.

— Damping of ion—ion and Alfvén resonances. Setting IALFVN = 1 forces damping
near Alfvén singularities according to Eq. (5.22). The parameters Ky and Qg are
called ENHRES and ANSLIM, respectively. Typically, both should be of the order
of 10%; a run in the exploratory mode can be useful to optimize the choice of these
quantities. This option should be used only if other damping mechanisms are too weak
to ensure that near-singularities can be properly resolved, in particular in the case of
isolated ion-ion resonances and with the OR algorithm.
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c) Electron model. The model for the electrons is set by specifying the integers
NVRB (which indicates the number of components in E) and IFLRE. The standard
choice is NVRB = 3, IFLRE = 1, which corresponds to the full FLR model for the elec-
trons, including the TTMP, ELD and the mixed term. With NVRB = 3, IFLRE = 0
FLR terms are omitted, i.e. only ELD is taken into account. With NVRB = 2 and
IFLRE = —1 the parallel electric field is neglected, and only the TTMP term is taken
into account. To obtain quantitatively accurate results in spite of this approximation,
the coefficient describing TTMP damping is multiplied by 0.5 [36]. Finally, NVRB = 2,
IFLRE = 0 corresponds to the zero electron inertia, zero electron Larmor radius approx-
imation: in this limit the electrons completely screen out the parallel electric field E,
but play no role in the absorption.

d) Poloidal magnetic field. The integer IBPOL specifies wether the poloidal com-
ponent of the static magnetic field is taken into account (standard choice, IBPOL = 1)
or omitted (IBPOL = 0). The reason to offer the option IBPOL = 0 is that the com-
bination IFLR = 0, IBPOL =1 is not physically meaningful. The option IFLR = 0
suppresses ion Bernstein waves by lowering the order of the local dispersion relation
in n?%, but leaves unchanged the order in nﬁ With IBPOL = 1, however, nf is itself a
differential operator; as a consequence, at ion—ion resonances mode—conversion excites
shear Alfvén waves propagating nearly parallel to the magnetic field lines on the side
of the resonance opposite to that on which one would expect the ion Bernstein waves.
The shear Alfvén wave root of the dispersion relation, however, is spurious, except in
the very low pressure limit 8; < m./m; [7].

e) Modeling the plasma edge. The outer plasma layers often pose the most difficult
numerical problems, since a given mesh in ¥ becomes less and less dense as the radius
increases. At the same time, because of the low density and temperature at the plasma
periphery, the wavelength of hot plasma waves becomes very short there. To alleviate
these problems, we have tried and implemented several alternative treatments of the
scrape—off plasma: in difficult cases the model giving the best results can be found by
trial and error.

The parameter for the choice of the model for the outer layers is IMDEDG; modeling
in this region, however, is influenced also by other parameters, such as RPSIBW. The
options are: - :

— IMDEDG = 2 — The plasma extends up to the walls, with the density and tem-
perature profiles specified by the user. The antenna is immersed in the plasma.

— IMDEDG = 1 - The plasma extends to the wall, but outside the Faraday screen
the density is modulated poloidally so that it nearly vanishes around the antenna:

neff(¢,1§) =ne('¢v){l—0.5[1—ta.nh (g;&)]} - (103)
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where ¥, = Lgpn;/2a is the angular aperture of the antenna, and AY the mesh step
in ¥. Ion Bernstein waves are suppressed in the whole region behind the screen by
specifying RPSIBW to coincide with the screen position. This is the most realistic
model: the antenna is (nearly) in vacuum, while elsewhere the plasma extends to the
wall. This model occasionally predicts an enhanced value of E; between the antenna
and the Faraday shield; this might well be a real effect.

— IMDEDG = 0 — The plasma extends to the wall, but outside the Farady screen it
is cold and dissipationless.

— IMDEDG = -1 - A vacuum layer extends between the Faraday screen and the wall.
This choice has been provided for comparison with other codes which make the same
assumption, using a separate analytic treatment for this layer, including the antenna
boundary conditions. The solution in the vacuum layer, unfortunately, is prone to
spectral pollution for low n, modes.

— IMDEDG = -2 — This choice is similar to the previous one, except that spectral

pollution in the vacuum layer is suppressed by slightly modifying Maxwell equations,
as discussed below. ‘

Maxwell equations in vacuum are invariant for rotations around the local radial
direction, or, in other words, their solutions do not depend on the presence of the
poloidal component of the static magnetic field, except indirectly through the boundary
conditions at the plasma-vacuum interface. We have therefore found it convenient, in
cases IMDEDG | 0, to switch off By in the vacuum region. This not only speeds up the
computation, but appreciably reduces the tendency to spectral pollution.

10.3 — Performances of TORIC. Both the memory requirements and the execution
time of TORIC increase linearly with the number of radial elements N, and quadrati-
cally with the number of poloidal modes M,. Rough estimates are

Memory: | 1074 (N, M2) MW
CPU time (Cray YMP): 1072 (N, M2)  sec

for a run of the most complicated model (IFLR = IFLRE = IBPOL = IQTOR =
IMDEDG = 1). All other models execute faster. The OR algorithm, in particular,
reduces the CPU time by a factor between 1.5 and 3 (for the same mesh).

These performances limit the size of plasmas which can be confortably handled
by TORIC, since the effort required for a full scan of the antenna spectrum increases
roughly as the cube of the plasma size. The full version of TORIC is well adapted
to plasmas of the size of ASDEX Upgrade or somewhat larger; it is possible to deal
" routinely with plasmas of the JET or ITER size only with the Order Reduction option.
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10.4 — Convergence. Convergence of the radial FEM discretization is generally very
good: the only requirement is that the mesh step should everywhere be somewhat
smaller than the shortest wavelength in the solution. Problems arising if Ion Bernstein
waves are allowed to propagate in the region where k) v4;/f2e; 2 1 can usually be over-
come by increasing ad-hoc damping of these waves. More difficult can be to ensure the
numerical resolution of evanescent shear waves excited near the plasma boundary, par-
ticularly if the edge density is low and n, small. Collisional damping can help provided
no Alfvén resonance occurs close to the plasma edge.

Convergence of the poloidal expansion is easily achieved if absorption is sufficiently
strong, which is usually the case if the toroidal wave number is not too close to zero.
When a non—negligible fraction of the power is mode—converted to ion Bernstein waves
(low toroidal wavenumbers) the number of poloidal modes required increases. As long
as the overall field pattern is not disrupted, however, lack of complete convergence of
the poloidal expansion does not greatly affect the power balance. Convergence can
nevertheless be problematic in situations where absorption is weak, and in the presence
of sharp resonances, particularly if located far from the magnetic axis.

A rough indicator of convergence is the comparison of the total power deposited in
the plasma with the power radiated by the antenna. The latter, moreover, is evaluated
in two independent ways, namely as (f A E), and as flux of the Poynting vector through
the magnetic surface in which the antenna is located. In well converged cases the three
values agree typicaly within a fraction of a percent; the remaining discrepancy is mostly
imputable to inaccuarcy in the integration of the power deposition profiles over the
plasma volume.

It should be kept in mind, however, that the consistency of the power balance is
neither sufficient nor, in some sense, necessary for a convergent solution. As already
mentioned, the most difficult numerical problems often arise in the outer plasma lay-
ers; in particular, convergence of (f A" E) at the antenna is considerably more difficult
to achieve than convergence of the field pattern inside the plasma. The Galerkin dis-
cretization of the problem turns out to be very robust with respect to local inaccuracies;
thus power deposition profiles and wave pattern in the plasma are often well converged
even if the power balance is wrong by 20% or more. By contrast, obviously spectrally
polluted solutions sometimes have a surprisingly good power balance. In doubt, only
the comparison of runs with different meshes can prove or disprove the reliability of a
solution.

A situation which TORIC is definitely unable to handle, as already mentioned, is the
presence of Alfvén or Lower Hybrid resonances at the plasma periphery. Short wave-
length solutions associated to these singularities interact strongly with the boundary
conditions. Resonance layers of this kind, moreover, are often strongly inhomogeneous
also in the poloidal direction, since they do not coincide exactly with a magnetic surface.
In such cases, convergence is nearly impossible to achieve with a reasonable mesh.
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10.5 — Numerical resolution of Ion Bernstein Waves. The problems posed by the
numerical resolution of lon Bernstein waves (IBW) become obvious when one think that
their wavelength becomes comparable to the ion Larmor radius before they are damped
away. This in principle seems to require prohibitively large poloidal wavenumbers,
particularly at large radii: the minimum number 2M + 1 of poloidal modes should
satisfy
TQa'

Vthi
In fact, the requirements are somewhat less severe, because only modes around n ~0

are efficiently mode converted. For example, for minority heating of Ht in Dt the
criterion is

Mz

(10.4)

|y lvens € “ZQery (10.5)
Te

since at larger values of k) Doppler broadening of the cyclotron resonance washes away
the conversion region. As a consequence of this restriction on my the wavefronts if IBW
tend to align with magnetic surfaces. This is fortunate, because convergence in the radial
mesh is much easier to obtain at all radii. For waves with low toroidal wavenumber the

requirement is therefore
nyg e

MR (10.6)

Ne Vthi
reduced by a factor ~ ng/n. compared to (10.4), but very still difficult to satisfy in
the outer plasma layers of large devices. It is also clear that waves with large toroidal
wavenumber will be subject te much less conversion to IBW, since the spectrum of Ky
presented by these waves is centered on values which do not satisfy (10.5). Even in
this case, however, full convergence will not be achieved unless poloidal modes around
n) =~ 0 are adequately sampled. Thus in principle one should require

T nyg 7
M2 |n,|— + —
| “’lqR Ne Ushi

(10.7)

where g is the safety factor. At first sight, this is even more severe than (10.6); as n,, in-
creases, however, coupling among poloidal modes decreases, because the Fourier trans-
form of the coefficients of the wave equation has a narrower my distribution. Thus
excitation of poloidal modes with n =~ 0 is very weak, and omitting them results in a
negligible error.

10.6 — A note on Spectral Pollution. As mentioned above, the solutions obtained with
the cubic FEM discretization in the radial variable can be spoiled by spectral pollution,
i.e. by numerically generated oscillations on the scale of the mesh step. The origin of
this problem is easily understood. The dispersion relation of plane waves satisfying the
discretized equations (in the local or WKB approximation) is slighltly different from the
dispersion relation of the continuous equations, the differences in wavevelength being
of the order of the mesh step Ar. The discretized solution, therefore, is reliable only
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for waves with wavelengths sufficiently larger than Ar. Spectral pollution occurs when
an evanescent wave with evanescence length of the order Ar is transformed into a
propagating wave (with a wavelength of the same order) by the discretization.

In vacuum or in the plasma in the zero Larmor radius approximation (including the
Order Reduction case) the wave equations admit only two independent solution. In
these cases the third order FEM discretization always introduces a third independent
wave. This has no consequences as long as this spourious additional wave is evanescent,
but becomes the dominant feature if it happens to be propagative. When this occur,
however, it can be suppressed by modifying slightly the vave equations so that they
possess a third evanescent wave with evanescence length just large enough to be robust
to the discretization. This is done in TORIC by adding a term of the form

v (aﬁ ¥:) (10.8)

with o, > 0 as small as possible. This trick can be regarded as a modification of the
discretization procedure which eliminates a numerical instability without interfering
with the other properties of the solution. The spurious evanescent wave (whether due
to the discretization or artificially imposed by modifying the wave equations) is slightly
excited at discontinuities, e.g. at the antenna. The FEM discretization, however, is
extremely robust to local perturbations which do not radiate, since it always choses
automatically the solution which dies away exponentially from the excitation point. The
local perturbation, therefore, does not interfere with the other boundary conditions, and
does not alter in any way the solution elsewhere.

Empirically, the OR algorithm turns out to be almost immune to spectral pollu-
tion. In the standard ASDEX Upgrade case discussed below only the n, =0 and 1
modes showed some sign of pollution (the mode n, = 0 is singular in the OR, approx-
imation, since it has no absorption whatsoever, and in principle the solution should
be infinite. The fact that it could nevertheless be run obtaining a recognizable field
pattern, although irregular and with very large amplitude, indicates a weak numerical
dissipation). The full wave equations showed spectral pollution in vacuum for In“,[ < 5;
it could be suppressed successfully by the procedure indicated above.

As mentioned above, spectral pollution in the vacuum layer behind the Faraday
screen is often successfully suppressed by switching off the poloidal component of the
magnetic field in vacium. When all three approaches (i.e. straightfordward integration,
regularization by a term of the form (10.8) and By = 0) can be used, they give practically
identical results provided o, is sufficiently small.
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11 — Examples.

For space reasons, only a “reference” case for TORIC can be presented here, namely
a minority heating scenario in ASDEX Upgrade (5% Hydrogen in a Deuterium plasma).
We will also omit any discussion of the results from the point of view of the physics of
IC heating. The plasma and antenna parameters are listed in Table 1 (this table is part
of the standard output of the code itself). The density, temperature and g(1) profiles
are shown in fig. 1 (note that safety factor at the separatrix, 1 = 0.68, is only g ~ 3.5;
the poloidal field in vacuum is irrelevant). Fig. 2 and 3 show the components of the
dielectric tensor and the roots of the dispersion relation along the equatorial plane for
the toroidal wavenumber n, = 20 and the central poloidal mode m = 0; also shown are
the ratio of the parallel phase velocity to the electron thermal speed z., the imaginary
contribution added to A? to damp ion Bernstein waves, and the value of k2 vZ 5 /Qcy
for the Bernstein wave.

11.1 — Minority regime. We consider first the toroidal wavenumber n, = 20, which
is representative of the spectre of the antisymmetric (dipole) antenna at f = 30 Mhz.
This is a relatively “easy” case well in the minority heating regime, with high single-pass
absorption and rather weak excitation of ion Bersntein waves. Figure 4 shows the fields
components in the equatorial plane, fig. 5 the Poynting flux and the power deposition
profiles, and fig. 6 contour plots of the electric field (real part of E4, E_ and E¢) in
the poloidal cross-section at the antenna position. A summary of the power balance is
given in Table 2 (run n. 1) .

Particularly interesting from the numerical point of view is the solution in the outer
layers. The plasma terminates at the Faraday screen and the antenna is located in
vacuumn. Although spectral pollution is globally absent, there is some hint of it in the
spikes of the electric field at the ‘discontinuities’ represented by the Faraday shield and
the antenna itself; they are particularly conspicuous in the plot of V-E , Which in vacuum
should be strictly zero. The magnetic field, on the other hand, behaves well everywhere.

The number of poloidal modes used to obtain the solution of figs. 4 to 6 was 31, with
a poloidal mesh of 64 points and a radial mesh with 300 elements. From the results
of table 2, however, it appears that reasonable convergence can be achieved with fewer
poloidal modes. With 19 modes (run n. 3) the CPU time is reduced by almost a factor 3
without appreciably spoiling the results. With as few as 11 modes and 32 points in ¢
(run n. 5) the power balance and the power deposition profiles are still nearly unchanged,
and the field pattern is perfectly recognizable, although rough.

A closer exhamination, on the other hand, shows that full convergence has not been
reached even with the largest number of modes used. The Poynting flux towards the
plasma and (f E) at the antenna agree to 5 digits, but the total power deposited in
the plasma is about 5 % lower, a much larger discrepancy than justified by the inherent
inaccuracy due to the discretization. Part of the discrepancy is due to the spikes of E
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near the antenna. A further reason, however, must be identified with the failure to fully
resolve Bernstein waves with the poloidal mesh available, as discussed in section 10.5.

Also interesting is to compare the complete model with simulations in which the
model has been simplified. The first of such simplifications (run n. 3a) consists in ne-
glecting the toroidal broadening of ion cyclotron resonances (cfr. section 7.1). This
reduces somewhat minority absorption, and makes the power deposition profile of Hy-
drogen narrower (and therefore peaked sligtly off-axis, since the resonance is located
about 3 cm to the inside), as shown in fig. 7a. The additional available power goes
mostly to the electrons, but for a small part also to ion Bernstein waves, whose ampli-
tude, accordingly, is appreciably larger. Ever in a relatively small tokamak, however,
this is not a large effect, and its importance decreases with the plasma size.

Next (run n. 3 b) we have run the same case with By = 0. If the poloidal component
of the static magnetic field is neglected the argument of the toroidal Z functions in the
dielectric tensor elements is the same for all poloidal modes; exploiting this, the overhead
for the evaluation of the stiffness matrix is appreciably reduced. The results (fig. 7b)
are nevertheless almost indistinguishable from those of the previous run, both globally
and in details. We can conclude, not unexpectedly, that when the toroidal wavenum-
ber n,, is sufficiently large the broadening of the kj spectrum due to the (ms/r)sin©
contributions, although numerically important (10 S kj < 30 near the magnetic axis
if —15 < my < +15, does not strongly affect the power deposition profiles, all modes
being anyhow well in the minority regime.

Finally, we have investigated the performances of the Order Reduction Algorithm.
With 19 poloidal modes (run n. 6 and fig. 8) the field pattern and the global power
balance are remarkably close to those obtained with the exact model. In the power
distribution among species, however, one notes that heating of the majority is somewhat
increased, since the power which was previously mode-converted to IBW is now assigned
to harmonic heating.

In the ORA the ion FLR current is an algebraic instead of a differential operator,
but to evaluate it one must solve the local dispersion relation at each point of the
mesh. If the mesh is kept constant, therefore, the gain in execution time is relatively
modest. The advantage of the ORA is that the number of mesh points can be drastically
reduced without spoiling the convergence. This is illustrated by runs 6 to 9a. The
latter, in particular, which has been further accelerated by suppressing the evaluation
of the parallel electric field, offers a sufficiently accurate power deposition profiles in less
than 10 s. In this operation mode TORIC compares favorably in performance with plane
geometry and even ray-tracing codes, and could be used in conjunction with transport
codes for the quantitative predictions of ICRH in tokamaks.

For comparison, the results from the slab code FELICE and the ray\r tracing code
RAYIC for the same case are also listed in table 2, and in figs. 9 and 10, respectively.
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Although the plasma size is such that the validity of the Eikonal approximation is rather
marginal, the agreement is good; ray tracing, however, predicts slightly broader power
deposition profiles (note that in RAYIC ¢ =1 is at the plasma edge; the profiles of
FELICE, of course, cannot be compared). It is also interesting to note that the range
of k) predicted by RAYIC near the magnetic axis is quite comparable with the one
predicted by TORIC, although the origin of the spread (the different evolution of K
along different rays) is completely different.

Ray tracing also offers an estimate of the so called “single pass absorption”, a some-
what vaguely defined quantity which, however, is a useful indication of the strength of
damping. Ray tracing stops either when all the power is absorbed, or at the cutoff as-
sociated with an ion-ion resonance; the efficiency of mode conversion there is estimated
from a modified slab model constructed keeping constant the vertical component kz of
the wavevector [37]. In RAYIC, therefore, the single pass absorption takes into account
damping of the incoming wave (but not of the wave reflected from the cutoff) at the
cyclotron resonance, and absorption by the electrons between the antenna and the ion-
ion cutoff; the mode converted power, moreover, is attributed entirely to the electrons.
For the present case the single pass absorption defined in this way exceeds 90%.

11.2 — Mode conversion regime. As an example of the difficulty of reaching con-
vergence for low toroidal wavenumbers we consider now the case ny, = 4, well in the
mode conversion regime. According to RAYIC the single pass absorption in this case
is only about 15%, and Felice predicts a rather large amount of power going into the
excitation of ion Bernstein waves. Although toroidicity has been predicted to decrease
substantially the efficiency of mode conversion [30], this is obviously a difficult scenario
for a full wave toroidal code.

If the wave equations are straightforwardly integrated through the vacuum layer
behind the Faraday screen, the solution in this layer is found to be heavily polluted.
Fortunately, pollution disappears if either we regularize the equations according to the
scheme of section 10.6 (with o, = 4107%), or we switch off the irrelevant B, in vac-
uum. The two procedures give identical results to an accuracy of ~ 10~* or better.
It is remarkable, moreover, that in the run with polluted edge the compressional mag-
netic field pattern and the power distribution profiles in the plasma are not only well
behaved, but almost identical with those of the unpolluted case (fig. 11, to be compared
with fig. 12 below). This illustrates the robustness of the FEM discretization to local
perturbations of the solution. When pollution is eliminated, one finds a rather strong
surface wave between the antenna and the Faraday shield. This mode has my = —8,
which makes nl2 ~ 1 in vacuum. This kind of ‘guided’ wave in vacuum is often found
also by FELICE [38], although not in this particular case. In toroidal geometry, how-
ever, it is strongly localized to the low field side, and, in contrast to the predictions of
the slab approximation, does not contribute appreciably to the radiation resistance of
the antenna, since it cannot radiate to infinity.
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Once the pollution problem is overcome, a run with 19 poloidal modes (64 points
in the poloidal mesh) appears to reach an acceptable convergence, although the power
in the plasma is about 15% too large (figs. 12-13). A closer look to the field pattern,
however, reveals that convergence is poor just inside the separatrix. Thus in the plot
of E; along the equatorial plane short wavelength oscillations can be seen on the low-
field side near the plasma edge, where Bernstein waves should be evanescent. These
oscillations “spill over” from the high field side, where Bernstein waves are excited, due
to insufficient destructive interference among poloidal modes.

Increasing the number of poloidal components, however, further spoils the consis-
tency of the power balance, instead of improving it. As can be seen in Table 3, with 31
modes the discrepancy between Py, and (J- E) at the antenna is a factor 2. The reason
is that the parallel wavevector of components with my ~ —15 happens to be around zero
just in the region where Ion Bernstein waves propagate (modes with large positive m.,
on the other hand, have a sufficiently large k to be in the minority regime in which
mode conversion is suppressed). Thus with 19 modes the domain of Fourier space in
which mode conversion is most efficient is only marginally explored, while with 31 modes
the scan is stopped just in the middle of it. Since in the sums giving P, there are large
internal compensations, it is not astonishing that the error in the power balance is larger
in the second case. We must conclude that as far as Bernstein waves are concerned the
convergence of the run with 19 poloidal modes is illusory; to reach true convergence one
should use say 63 modes and 128 points in the poioida.l mesh. Such a run, unfortunately,
would require about two hours of CPU time and 100 Mwords of memory, and we have
not attempted it. We stress, however, that while the mode converted power is likely
to be somewhat underestimated, the other dissipation channels and their radial profiles
are already essentially correct in the runs made.

We will also mention that if we assume a warm low density plasma to extend to
the wall, we find little change in the field pattern and in the ion and electron heating
profiles, but the antenna loading and the mode conversion efficiency are increased by a
factor of about 3. These runs, however, are so poorly converged that we cannot consider
these results as quantitatively accurate. ‘

If we neglect the poloidal magnetic field in the plasma we find an increase in majority
harmonic damping, and less electron heating. This is due to the suppression of k-
broadening: when By is taken into account, a non-negligible part of the positive my
components have a sufficiently large k) to be in the minority regime; this decreases
harmonic damping and increases damping by the electrons. Thus, in contrast to the
previous case, the poloidal magnetic field has a nonnegligible influence on low n, modes.
The results of the order reduction algorithm are again close to those of the standard
case, although electron heating is also somewhat reduced, probably because electron
damping of Bernstein waves is no more available.
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In the mode conversion regime the results of FELICE and RAYIC agree less well
with those of the toroidol wave code. In FELICE the dominant toroidal effect, namely
the large dispersion of kj due to the poloidal magnetic field, is completely omitted; for
the single value of k| retained, moreover, a much larger mode conversion efficiency is
predicted. The power profiles of ray tracing, on the other hand, account for only 15% of
the total power, so that a detailed comparison is difficult; it is clear, however, that they
are again too broad, a fact which is probably to be attributed to the marginal validity
of the Eikonal approximation for a plasma of this size.

12 — Conclusions.

TORIC gives very satisfactory results in ICRH scenarios with good absorption. The
flexibility of the code and the numerous options available offer the possibility of inves-
tigating the effects of toroidicity on the propagation and absorption of cyclotron waves
in details. The Order Reduction Algorithm, on the other hand, makes it possible to ob-
tain sufficiently accurate power deposition profiles with a very reduced numerical effort.
Since power deposition profiles taking into account correctly the toroidal geometry are
very difficult to produce with any other approach, this constitute a decisive progress in
view of the simulation of ICR heated discharges.

Reaching a full numerical convergence in situations with low absorption and large
excitation of short wavelength modes (ion Bernstein waves) is more difficult, and might
require very long runs with prohibitively dense meshes. Even if complete convergence is
- not achieved, however, TORIC often gives acceptable solutions also in such scenarios,
which can be very useful to understand the physics of ICR heating and to predict the
radial power deposition profiles. Spectral pollution, in particular, can almost always be
avoided.

Future development which are particularly desirable are a better treatment of the
vacuum region around the antenna, and the inclusion of the effects of quasilinear defor-
mations of the ion distribution functions on the coefficients of the wave equations.
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A-1
APPENDIX: PARAMETERS AND INPUT COMMONS
OF THE TORIC CODE
A) P ter s

LVRB Dimensions of the arrays of the field components
(normal value 3; can be set to 2 if NVRB=2)

LMOD Dimensions of the arrays of the poloidal Fourier modes
(must be = NMOD)

LTT Dimensions of the arrays of the poloidal angle mesh
(must be a power of 2 and satisfy LTT 2 NTT)

LELM Dimensions of the arrays of the radial (psi) mesh
(must satisfy LELM 2> NELM+1)

NGAUS Number of Gauss quadrature points in each element
(normal value 3)

NSPMX Dimensions of the arrays of ion species
(must satisfy NSPMX 2 NSPEC)

NPROF Dimensions of the arrays of the density and temperature
profiles.
NMHD Dimensions of the arrays of the MHD profiles

ACONC (NSPMX) ion species concentrations (n_i/n_e).

AELLIP Ellipticity at the magnetic axis.

AICURR Plasma toroidal current (ka).

ALFANT Inclination of the antenna to the polidal plane (deg)

(only ALFANT = 0 is implemented at present)

ANSLIM Threshold for onset of collisional regularization of
ion-ion and Alfvén resonances.

ANTLC Propagation constant along the antenna.
If < 0 the current goes smoothly to zero
at the antenna tips.

ANTLEN Half-length of the antenna (cm)

ATM (NSPMX) Atomic mass of the ion species (a.u.)

AZT (NSPMX) Atomic charge of the ion species (a.ﬁ.)

BZERO Toroidal magnetic field at the vessel center (T).
DENEC Central electron density (cm™-3)
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DNEDGE

DNWALL

ENHCOL

ENHSTC
ENHRES

FREQCY

GAMVAC
GLDN
GLTE

GLTI

IALFVN

IBCANT

IBPOL

ICLPLO(3)

ICOLL

IFLR

IFLRE

-Control of the poloidal magnetic field model.

A-2

Electron density at separatrix or limiter (cm”™-3)

Electron density at the wall (cm™-3)
(only with IMDEDG = 0)

Factor for the enhancement of collisional damping.

Enhancement factor for the stochastic damping of IB
waves

Enhancement of the collisional regularization of ion-ion
and Alfvén resonances (only with IALFVN = 1).

Applied frequency (hz)

Evanescence length of ad-hoc wave for the suppression
of spectral pollution (in units of the mesh step; only
with IMDEDG = -2 or 0 < RPSIBW < RWALL)

Scrape-off density decay length, cm.

Scrape-off electron temperature decay length, cm.

Scrape-off ion temperature decay length, cm.

Collisional regularization of ion-ion and Alfvén

resonances.
= 1 - taken into account;
= 0 - ignored.

Boundary condition at the antenna:
0 - One point (standard)
= 1 - Two points

= 1 - taken into account;
= 0 - ignored (should be used with IFLR < 0).

Contour plots for E4,E-, Ez (ISOL = -1).

= 1 - made;

= 0 - skipped.
Collisions:

= 1 - taken into account;

= 0 - ignored.

Choice of the plasma model for ions in the plasma.
= 1 - FLR effects included;
- FLR effects ignored.
- Order Reduction Algorithm
= -2 - Order Reduction with suppression of
spectral pollution

1" n
|
= O

Choice of plasma model for electrons in the plasma.
= 1 - ELD, TTMP & mixed term taken into account;
= 0 - only ELD included.
= -1 - only (1/2)*TTMP included (with NVRB = 2)
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IMDEDG

INTMHD

IouT

IPLBEQ

IPLEEQ

IPLEQL

IPLDIV

IPLLEV

IPLMAG

IPLMOD

IPLNTQ

A-3

Choice of plasma model behind the Faraday screen:
= 2 - plasma, full dielectric tensor;

1l
'__\

o
!
=

- same, going to vacuum for the antenna;
- cold dissipationless plasma;
- vacuum;

- vacuum with suppression of spectral

pollution.

MHD model:

=1 -

=0 -

Coefficients of the MHD configuration
defined by the user and interpolated with
splines;

Analytic default (pseudo)-equilibrium.

Output level.

= 0 - reduced output;

= 1 - normal output.

= 2 - detailed output (for tests only);
Plots of the wave magnetic field along the equatorial
plane.

= 1 - done;

= 0 - skipped.
Plots of the wave electric field along the equatorial
plane. :

= 1 - done;

= 0 - skipped.
Plots of the dielectric tensor and index squared
along the equatorial plane (ISOL = 0).

= 1 - done;

= 0 - skipped.
Plots of div.E along the equatorial plane.

= 1 - done;

= 0 - skipped.

Quality of the plot output (1 or 4 plots per page)

nn
o
|

Plots of
1_
O_

Plots of
=1 -
=0 -

high (1 plot per page);
low (4 plots per page).

the MHD tokamak configuration (ISOL = 0).
done;

skipped.

the poloidal mode coeffs vs radius (ISOL = -1).

done;
skipped.

density and temperature profiles (ISOL = 0).

done;
skipped.

51



IPLOPW

IPLOPY

IPLTHT

IPRODF

IQTOR

ISOL

ISTOCH

IWDISK

MAINSP
NELM
NMOD
.NPHI
NSPEC
NTT

NVRB

PPNEE
PPNEI

PPTEE

A-4

Plots of power deposition profiles.

1 - done;
0 - skipped.
Plots of the Poynting flux profile.
1 - done;
0 - skipped.

Plots of the dielectric tensor vs theta and of its
Fourier transform (ISOL = 0).

1 - done;
0 - skipped.

Density and temperature profiles:

1 - entered by the user;
0 - default

Toroidal broadening of the cyclotron resonances.

1 - taken into account;
0 - ignored.

to the solver.

1 - solver called (TORICA);
0 - skipped (exploratory runs, TORICT).
-1 - skipped (solution read from disk, TORICB)

- Ad-hoc IBW damping.

1 - taken into account;

0 - ignored.

Results to be written on disk (ISOL = 1 only)
1l - yes;
0 - no.

Majority ion species.

Nunber of radial elements.

Number of poloidal modes (preferably odd).

Toroidal wavenumber.

Number of ion species.

Number of points in theta (power of 2)

Number of components of the electric field:

3 - Ez taken into account;
2 - Egz ignored.

Outer power in the default density profile.

Inner power in the default density profile.

Outer power
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PPTEI
PPTIE
PPTII
QBFRAC
QLBSTH
QLBEPS

QMSHBW

RANT

RFARSH
RPLASM
RPSIBW
RSHIFT

RTOR

RWALL
TEEDGE:
TEMPEC
TEMPIC (NSPMX)

TEWALL

TIEDGE (NSPMX)

TIWALL (NSPMX)

ZELLIP

ZTRIAN

A-5
Immer power in the default electron temperature profile.
Outer power in the default ion temperature profile.
Inner power in the default ion temperature profile.
Minimum effective beta in the stoch. damping of ‘IB waves.
Threshold of (k**ri)2/2 for the onset of IBW damping.
Enhancement factor for IBW stoch. damping.

Minimum allowd IBW wavelength (in units of the mesh step;
ignored if £ 0).

Radius of the antenna position (cm).

Radius of the Faraday shield position (cm)
Plasma radius (cm)

Maximum radius allowing IBW propagation.
Shafranov shift (cm).

Major radius (cm).

Vessel radius (cm).

Electron temperature at the separatrix (keV)
Central electron temperature (keV)

Central ion temperature (keV)

Electron temperature at the wall (keV)
(only with IMDEDG 2 0)

Ion temperature at the separatrix (kev)

Ion temperature at the wall (keV)
(only with IMDEDG 2 0)

Ellipticity of the outer magnetic surface.

Triangularity of the outer magnetic surface.
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TABLE I

TOKAMAK PARAMETERS:
Major radius = 165.000 cm

Plasma radius (separatrix) = 50.000 cm
Faraday Shield radius = 55.000 cm
Antenna radius = 60.000 cm
Vacuum vessel radius = 70.000 cm
Central magnetic field = 2.000 Tesla
Toroidal plasma current = 750.000 ka
Safety factor g on axis = 1.118
Safety factor g at separatrix = 2.698
Shift of the magnetic axis = 4.500 cm
Triangularity = -0.150
Ellipticity: at plasma edge = 1.600
Ellipticity: at magnetic axis = 1.000
PLASMA PARAMETERS
Central electron density = B8.000E+13 cm—-3
Central electron temperature = 2.000 kev

Electron density at the limiter 2.000E+13 cm-3

Electron temperature at the lim. = 0.400 kev
Ion Species 1

Charge (atomic units) 1.0

Mass (atomic units) 2.0

Concentration (Ni/Ne) = 0.950

Central temperature = 2.000 kev

Harmonic resonance at X = -2.703 cm
Ion Species 2

Charge (atomic units) 1.0

Mass (atomic units) 1.0

Concentration (Ni/Ne) = 0.050

Central temperature = 2.000 kev

Fundam. resonance at X = - =2.703 cm
Default profiles (1 - psi”pi)“pe

Density: pi = 3.00pe = 1.00

Elec. temperature: pi = 2.00 pe = 1.00

Ion temperature: pi = 2.00 pe = 1.00

Parameters of the scrape-off plasma:
Decay length of n = 2.000 cm

Decay length of Te = 5.000 cm
Decay length of Ti = 5.000 cm
Electron density at the F.S. = 4.797E+12 cm-3
Electron temperature at the F.S. = 0.134 keVv
Electron density at the wall = 4.001E+12 cm-3
Electron temperature at the wall = 0.027 kev

) PLASMA MODEL:
Ions: finite Larmor radius approximation
Ion Bernstein waves damped

k.rho_1 > 0.50
Factor in exp(—-g*w”2) g = 2.00
Enhancement factor = 5.00

Parallel electric field taken into account

Electrons: Landau damping and TTMP with mixed term
Collisions omitted

Poloidal magnetic field taken into account

Toroidal broadening of IC resonances taken into account

Plasma extending to the wall
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WAVE AND ANTENNA PARAMETERS

Frequency = 30.000 Mhz
Toroidal wavenumber NPHI = 4
Equiv. parallel index = 3.856
Feeders at the ends in push-pull

Half-length of the antenna = 50.000 cm
(LC)—constant of the antenna = 1.500

MESH PARAMETERS

Number of poloidal modes: 21
Number of poloidal mesh points 64
Number of radial elements: 301
Number of radial mesh points: 302
Psi at the plasma edge: 0.680
Psi at the Faraday shield: 0.757
Psi at the antenna: 0.837
Faraday shield at meshpoint: 229
Antenna at meshpoint: 253
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TARLE 2

(g = 20)
Description of the run and CPU time on the CRaAY-1
(1) Complete, 31 poloidal modes (64 pts) 837.0
(2) Complete, 25 poloidal modes 546.6
(3) Complete, 19 poloidal modes 350.0
(4) Complete, 15 poloidal modes (32 pts) 183.7
(5) Complete, 11 poloidal modes 119.4
(la) Same as (1), with plasma extending to the wall 859.3
(3a) Same as (3), without toroidal broadening 337.7
(3b) Same as (3), Bg =0 236.2
(6) ORA, 19 poloidal modes 209.9
(7) ORA, 15 poloidal modes (32 pts) 115.9
(8) ORA, 11 poloidal modes 72.1
(9) ORA, 7 poloidal modes (16 pts, 151 rad. elem.) 17.2
(9a) Same with Ez = 0 9.6
(10) RAYIC (Ray Tracing) 6.0
(11) FELICE (slab), 25 ny modes 74.9
a) Repartition of the power

minority majority electrons Bernstein

(fundam) (1st harm) waves
(1) 79.89% 7.61% 10.98% 1.52%
(2) 79.80% 7.63% 10.99% 1.58%
(3) 79.57% 7.67% 11.02% 1.74%
(4) 79.52% 7.68% 11.03% 1.78%
(5) 79.15% 7.67% 11.05% 2.14%
(1a) 80.37% 7.68% 10.55% 1.40%
(3a) 77.37% 7.81% 12.81% 2.00%
(3b) 76.84% 8.07% 13.35% 1.73%
(6) 75.52% 11.47% 13.01% -
(7) 75.34% 11.61% 13.05% -
(8) 75.90% 11.47% 12.63% -
(9) 76.65% 11.34% 12.01% -
(9a) 76.98% 11.39% 11.63% -
(10) 68.70% 13.01% 10.33% -
(11) 71.02% 13.87% 13.41% 1.69%
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(62 1SS GV NI S

(R
oo o

absorbed
in the plasma

o O O O O O O o

O O O O O

.012430
.011223
.011602
.009609
.010516

.060905
.012570
.012866

.014121
.012767
.012299
.011545
.011686

.012489

b) Global balance (MW/m3.A)

Poynting

O O O O o

flux

.013086
.012297
.012727
.010553
.011558

0.065857

o O

O O O O o
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.012647
.013886

.014353
.012970
.012467
.011670
.011686
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<J.E>

.013085
.012297
.012726
.010552
.011557

.066349
.012646
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.012969
.012465
.011668
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TARLE 3

(rg

4)

Description of the rum and CPU time on the CRAY-1

(1) Complete, 31 poloidal modes (64 pts)

(2) Complete, 19 poloidal modes

(2a) Same as (2), B8 =

(3) ORA, 19 poloidal modes

(4) RAYIC (Ray Tracing)

(5) FELICE (slab), 25 ny modes

a) Repartition of the power

majority

(1st harm)

24.

13

20.

12.

20.
20.

97%

.85%

83%

39%

21%
76%

electrons

0.45%

0.43%

0.01%

0.04%

4.64%
0.01%

b) Global balance (MW/m3.A)

minority

(fundam)
(1) 72.13%
(2) 84.87%
(2a) 75.77%
(3) 87.57%
(4) 75.10%
(5) 46.84%

absorbed

in the plasma

(1) 0.020038
(2) 0.015650
(2a) 0.012866
(4) -

(5) 0.013029

Poynting
flux

0.014852
0.014681

0.013886
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Figure Captions.

Fig. 1 — Density, temperature and g-profiles for the standard ASDEX Upgrade case.

The ‘separatrix’ is at ¢ = 0.68, where g ~ 3.5; the values of g outside the plasma are
irrelevant.

Fig. 2 — The dielectric tensor elements L, R and S, the perpendicular index squared
of the Fast Wave; k| for the my = 0 component and w/ k|vire for the electrons along
the equatorial plane. Standard ASDEX Upgrade case: n, = 20, plasma parameters in
Table 1.

Fig. 3 — The FLR contributions }\,(2), p§2) to the dielectric tensor; the correction to /\52)
which simulates stochastic damping of Berstein waves; perpendicular index squared of
the Bernstein wave; value of k3 v2, 5 /202, for the Bernstein wave along the equatorial

plane.

Fig. 4 — Wave electric and magnetic field components along the equatorial plane, stan-
dard ASDEX Upgrade case.

Fig. 5 — Power deposition profiles and Poynting flux for 1 kA in the antenna, standard
ASDEX Upgrade case.

Fig. 6 — Contour plots of E,, E_, E; in the poloidal plane, standard ASDEX Upgrade
case.

Fig. 7 — Power deposition profiles for the standard ASDEX Upgrade case, but: a)
without toroidal broadening of cyclotron resonances; b) with By = 0.

Fig. 8 — Wave fields along the equatorial plane, power deposition profiles and Poynting
flux, and contour plots of Ey for the standard ASDEX Upgrade case, solved with the
Order Reduction Algorithm.

Fig. 9. — Results of the ray tracing code RAYIC for the standard ASDEX Upgrade case.

Fig. 10 — Results of the FELICE slab geometry code for the standard ASDEX Upgrade
case.

Fig. 11 — Compressional component of the wave magnetic field and power deposition
profiles in a solution with spectral pollution in vacuum. n, = 4, plasma parameters in
Table 1.

Fig. 12 — Wave electric and magnetic field, power deposition profiles and Poynting flux
for the same case as in fig. 11; vacuum layer integrated with By = 0.

Fig. 13 — Contour plots of E4 in the poloidal plane for the case of fig. 12.
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Fig. 4a
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Fig. 4b
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Fig. 4c
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Fig. 4d
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Fig. 10a
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Fig. 13
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