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THE PHYSICS OF I0ON CYCLOTRON HEATING IN TOKAMAKS
Marco Brambilla

Institut fiir Plasmaphysik — EURATOM Association
Garching bei Miinchen, Germany

Abstract.

These lectures are an introduction to the theory of ion cyclotron heating of toka-
mak plasmas. In the first part we will derive the kinetic equation which describes the
evolution of the ion distribution function under the effect of resonant interactions with
the waves, and briefly discuss its solution. The second, somewhat longer, part will be
devoted to a discussion of launching, propagation and absorption of h.f. waves in this
frequency range, largely based on the exhamination of the local dispersion relation;
only very briefly we will also mention the derivation and solution of differential wave
equations adequate to describe wave propagation in non-uniform plasmas. It should be
clear that the kinetic and wave-propagation aspects of the theory are not really inde-
pendent from each other, since the distribution functions influence the coefficients of
the wave equations (particularly those which describe absorption), and, viceversa, the
distribution of h.f. field in the plasma is an essential ingredient of the kinetic equa-
tions describing particle-wave interactions. The coupling between wave propagation
and kinetic equations is nevertheless sufficiently loose that in practice it is possible,
and advantageous, to keep the two subjects separated, provided one remains aware that
mutual influences always exist.

Because of the tutorial nature of the lectures and the limited time available, we will
discuss mainly the physical foundations of the theory, omitting almost completely its
more thechnical aspects. In particular, we could not include any detail on the extensive
numerical simulations which play a most important role in the practical applications. We
have, however, mentioned also some of the more subtle problems which arise because
of the complicated geometry of tokamak plasmas, giving sufficient references for the
interested reader to be able to deepen her or his understanding with the help of the
original literature.




1 — The ion distribution function during IC heating.

1.1 — The heating mechanism. In its simplest form, ion cyclotron heating exploits the
secular acceleration of ions gyrating in phase with the rotating component E, of the
wave electric field when the resonance condition

w— k"‘UH =8 (1.1)

is satisfied, where k) and v are the parallel component of the wavevector and of the ion
velocity, respectively (parallel and perpendicular will always refer to the local direction
of the static magnetic field B). An appreciable number of ions simultaneously satisfy
this condition if

|lw — Q| = O(|Key |veni) (1.2)

where v = (2T;/m;)*/? is the thermal velocity of the ions. Taking into account the
horizontal variation of B =~ B, (1 + (r/Rsor) cos8) " in a tokamak (where r and 8 are
polar coordinates in the poloidal cross-section), this defines a vertical cylindrical layer
around the resonance w = {);, of width

AXeyel = 2n (veni/c) Rior (1.3)

where n) = ck [w, and Ry, the toroidal radius. AX., is always a small but non-
negligible fraction of the plasma radius, typically several centimeters.

1.2 - Cyclotron heating at the fundamental. The phase i between E; and the
gyration velocity of an ion can be written

=1, -I-/t (w — kv — Qi (r, 9)) dt (1.4)

where subscript zero denotes some reference point along the orbit. As the ion moves
along a magnetic field line 8 —0, = g(¢—¢,) on the magnetic surface r (¢ = R;or By /T By
is the safety factor, a measure of the pitch with which the lines of force wind around
the magnetic axis), the phase becomes stationary, dy/dt = 0, at the point where (1.1)
is satisfied. If the ion parallel velocity is sufficiently large so that its parallel accelera-
tion (f- V)B can be neglected, moreover,
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where we have taken into account that § ~ ¢/q ~ v} /qRior. Thus, putting the reference
point at the resonance itself,
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It follows that the resonance duration (i.e. the time during which 1) varies by less

than 7/2) is
1/2
~ (__TaRE,
s (rﬂcd'u" sin€|) (1.7)

where now r and @ are the radius and poloidal angle of the point where the ion crosses
the resonance. 7g., is always much longer than the cyclotron period (this is the essence
of the wave-particle resonance itself), although usually much shorter than the circulation
time 75 = gR¢or/v) of the ion in the tokamak. During the time 7ge, the perpendicular
velocity of the ion changes from v, to
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where the r.h. side is obtained using Eq. (1.6) around the point of stationary phase.
Averaging over 1), (thereby killing the linear term in A(v?)) and taking into account
that there are two transits through resonance for each connection length 2wqR;,,, one
obtains an estimate of the rate of increase of the ion perpendicular energy K , namely

dt ~— miQer|sing
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(for obvious geometrical reason this estimate does not hold on the magnetic axis, or
when the magnetic surface is just tangent to the resonance surface. We will return
on these and other details of cyclotron resonances in tokamaks later). Note that the
parallel velocity v of the ion cancels out in K.

1.3 — First harmonic heating. We will see in the next section, however, that in a
plasma with only one ion species the component of the wave electric field gyrating in
the same sense of the ions is very small at the cyclotron resonance for those waves
which can be launched from the outside in tokamak geometry. One way out of the
severe limitation imposed by this circumstance on the achievable heating rate is to use
instead the first harmonic resonance, w — kjvy = 2Q;. Heating at the first harmonic is
a finite Larmor radius effect. If the h.f. electric field is uniform in space the work made
by the electric field on a particle at resonance has opposite sign in the two halfs of each
cyclotron gyration, and the net result is zero. If ﬁE.,. # 0, however, the compensation is
not complete, and heating is possible. If the variation of E, over the ion Larmor radius
is small, as it is usually the case, a simple Taylor expansion around the ion guiding
center shows that we can expect the heating rate to be proportional to 03|V B, |2/92..

To estimate the heating rate in a toroidal magnetic field configuration we note that
when finite Larmor radius effects are important the expression (1.4) for the phase 9 =
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E -7 — wt as seen by the particle along its orbit must be generalized by taking into
account the perpendicular wavevector:

t k t
Y =1, + ]t:, {(w — k“v“) + 6::“ sin (¢ — 'n,‘/tu Qg d'r) } dt (1.10)

The new exponential factor in the expression for ¥, (¢) can be expanded into harmonics
of the cyclotron frequency using the identity

n=+-o0
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Modifying Eq. (1.8) accordingly, and assuming that along the particle trajectory reso-
nance occurs only for one value of n, one obtains
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(1.12)

For n = 1 to lowest order in the Larmor radius we recover (1.9); the result for n = 2
begins proportional to k2 v2 /Q2;, as expected.

1.4 — Quasilinear diffusion. In most cases the fractional energy change of an ion
at each crossing of the resonance is small; moreover, it is reasonable to expect phase
correlations between the ion gyromotion and the wave to be destroyed (by collisions or
by other mechanisms to be briefly discussed later) in a time much shorter than the time
of flight 7p between two successive transits through resonance. Under these conditions
heating can be described as a random walk in velocity space, with steps Av, given by
Eq. (1.8) or its generalizations separated by a time of the order of 75/2. The long-term
evolution of the ion distribution function then obeys a kinetic equation of the form

OF; n0e) o OF; OF;
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where the last term is the Fokker-Planck collision operator [1], and the first describes the
h.f.-driven diffusion in velocity space, known as quasilinear diffusion. The quasilinear
diffusion coefficient Dqy, is related to the average heating rate of the single particle by

_ A’Ui 2dK, 2 kivy 9
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This derivation of the quasilinear kinetic equation in toroidal geometry is due to Stix [2].
Previously, the same equation was obtained [3] starting from the quasilinear diffusion
coefficient of a uniform plasma [4], which is proportional to a §-function of argument
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w — kv — nfy; (the condition for resonance in the homogeneous case), and averaging
it over the Doppler-broadened resonance layer (1.3). The integration replaces the §-
function with a constant, leading to an equation essentially identical to (1.14). It goes
without saying that this euristic procedure can hardly be justified in a rigorous way.
Stix has shown, however, that the more realistic derivation taking into account the ion
dynamics in the toroidal magnetic field leads essentially to the same equation to lowest
order, i.e. as long as specific configurational effects, such as trapping of fast ions in the
local mirrors of tokamaks, can be neglected. This can be understood by noting that
the Bessel function factor in Dgy (k) ,v, ), which describes the resonant component of
the electric field of a plane wave as seen by a gyrating ion, should remain accurate
provided that the gradient of B, is sufficiently weak, so that the resonance lasts for a
large number of cyclotron periods. As remarked above, this condition is always well
satisfied. We will briefly discuss additional toroidal effects in section 1.9.

The coefficient D,, in Eq. (1.14) follows by comparison with Eq. (1.12). In practice,
however, it is more convenient to express D,, in terms of the power absorbed per unit
volume F,p,. This can be done using the power balance equation

1 OF; 5y
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In particular, a convenient procedure is to express D, in terms of the ‘initial’ heating
rate, when the distribution function is a Maxwellian:

o0
Pin — 4D, myn; f w® J2_, (Gw) e dw (1.16)
0
where & = k1 vthi/Qci. To lowest order in the thermal Larmor radius, then,
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for fundamental and first harmonic heating, respectively. The quantity P is directly
accessible experimentally from the time-derivative of the energy content of the plasma,
at the beginning of the heating pulse. Note also that D,, is proportional to the power

available per ion of the heated species.




1.5 — Linearization of the collisional operator. Due to the weak nonlinearity of the
Fokker-Planck operator, it is sufficient for our purposes to regard the heated ions as
test particles colliding with a thermal background plasma. This is obvious for minority
heating, since it amounts to neglect collisions of the diluted minority ions among them-
selves. In the case of first harmonic (FH) heating the justification is that due to the low
power available per particle one does not expect large ‘global’ deviations from thermal
equilibrium.

The collision operator for the heated species can then be written [5]

OF; isf1 0 o 148t Tt g
= — 2 2 | W (e = st
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where the sum extends over electrons and background ions; the second term, in which
# = v)) /v, describes pitch—angle scattering. Velocities are normalised to an appropriate

thermal velocity veng = (2T /mg)*/? (for the heated species, T} can be chosen to be the
temperature T, before heating), and ~;5 = vini/ving. Moreover, with ug = yigv,

(1.18)
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The linearized FP operator conserves particles, but energy is lost to the thermal bath
constituted by the background plasma: this corresponds well to the real situation and
allows stationary solutions of the quasilinear equation to exist.

In the electron contribution it is sufficient to retain the leading term of the small
argument expansion of ¥(u,),

(ue) =~ ko :::: v (1.21)

while ©(u.) can be neglected altogether. For the ion—ion collision terms Stix [2] has
suggested the approximations

k,,u,g
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where k, = 4/3y/m. The exact and approximate coefficients differ at most by a few
percent.



1.6 — Stix solution for minority heating. A major difficulty for solving the kinetic
equation (1.13) analytically is that the collisional operator is separable in spherical
coordinates (in velocity space), while the natural coordinates for the quasilinear diffusion
operator are cylindrical ones. If one nevertheless averages (1.13) over the pitch angle y,
one obtains an ordinary differential equation for the isotropic part F, of the distribution
function (we omit for simplicity the index referring to the heated species) which, after
a trivial first integration, can be written in dimensionless form (normalizing velocities
to the thermal speed)

1dF, v, (v)
Fodv W (0)+ 20 Dglen)” (1.%)
where : 5 g
Ba(en) = 5 [ -4 22 (61— 42)2) dy (124)

with § = k1 v4i/Qq and D, = PH"/44/Mp, T, is the isotropic part of the diffusion
coefficient.

In the case of minority heating, neglecting finite Larmor radius corrections in the
quasilinear operator (i.e. approximating J,(£v) with unity; we will see in the next section
that { < 1 for the waves used for IC heating in tokamaks), Eq. (1.24) can be integrated
in closed form [2]. Defining

TE€e

B = 1+ 7€ T€e €e+D
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Tite+D " ¢ +D

(1.25)
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where ki = (Am/Ai)Y?ko, D = D, Jky, T = Tr[Te, €c = (ne/Z3mar) [(me/mag)]*/?,
the solution can be written

_ 3 B .
Fo(v) = f, exp { v (a + TR ,302) } g = 0.41350 (1.26)

This distribution can be interpreted in terms of two ion populations. The “bulk” and
“tail” minority temperatures are easily recognised to be

ﬁﬂk=TM}iiiﬂgTM (1+D)

14 Te, (1.27)
Thoit ol (1+2) zT.-,B-
€e €e

respectively. The last approximations hold if D >> €., Ty /T. = O(1): in this approx-
imation 7*** depends only on the majority temperature, while T depends only on
the electron temperature.




For typical tokamak parameters and moderate minority concentration D is smaller
than unity even at relatively large values of the absorbed power density P,3,. Under
these conditions the tail temperature is nevertheless much larger than that of the bulk
(since €, < 1), but the number of ions in the tail is small, so that the energy stored in the
tail is only a modest fraction of the total energy in the minority. An example is shown
in fig. 1. In particular, the number of ions with energy so large that k v,1/Qs > 1
is very small, so that the approximations made in deriving Eq. (1.26) are well justified
(except the assumption of isotropy, to which we will return below). Nevertheless some
ions reach and exceed such energies, particularly in large devices where they are still
well confined. To determine their number and their evolution a much more sofisticated
approach is required, as briefly discussed in section 1.9.

1.7 — Analytic solution for first harmonic heating. No such fully explicit solution
is available when finite Larmor radius (FLR) effects are included, or in the case of
first harmonic heating; nevertheless the numerical quadrature of Eq. (1.23) is always
trivial. It is instructive, in particular, to consider in some details the case of first
harmonic heating in a single species plasma in the lowest order in the Larmor radius,
JE(éw) ~ £2w? /4. In this approximation the integral

b ¥ (v)vdv
o Tc(v)+ (4D1/15) 3

tends to a finite constant for v — co, and the distribution function obtained from
Eq. (1.13) is not integrable, a result which at first sight is physically unacceptable.
The origin of the failure of the small Larmor radius approximation in the case of first
harmonic heating is clear: as long as k) v, /Q; is small the rate of energy increase of
an ion is proportional to its perpendicular energy already possessed by the particle;
hence the heating will run away until saturated by finite Larmor radius effects. In the
lowest order approximation, therefore, the quasilinear kinetic equation does not possess
a physically admissible stationary solution.

(1.28)

In practice, however, with a minimal modification, the approximation (1.28) can be
safely used also in this case. Since all ions are heated, the power per ion is small
and D, is always much smaller than unity. It follows that v3Dg(v) < ¥.(v) up to
very large energies. The value of the integral (1.28) in the limit v — oo, although finite,
is therefore so large that F;(v) becomes insignificantly small well before higher-order
Larmor radius effects begin to play a role. It is then sufficient to regard Fj(v) as
practically different from zero only over a finite interval, chosing the cutoff energy large
enough for the normalization integral to have reached an essentially constant value,
yet sufficiently small for higher order terms in the Larmor radius to be still negligible.
On this finite interval Eq. (1.28) is perfectly adequate. This example illustrates well
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Fig. 1 - Minority distribution function in the isotropic approximation;
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Fig. 2 - Distribution function during first harmonic heating in the isotropic
approximation; Deuterium: ne = 8 1013cm'3, TIp=T, =5keV.
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the role of FLR effects in the quasilinear kinetic equation. Some ions certainly reach
perpendicular energies so large that such effects (and toroidicity effects discussed below)
become important, in particular to saturate quasilinear heating. For the bulk of the
distribution function, however, they can as a first approximation be neglected.

An example of distribution function of ions heated at the first cyclotron harmonic is
shown in fig. 2. The suprathermal tail is much less populated than in the case of minority
heating, in agreement with the smaller power available per ion. Since Dg; is proportional
to v2, however, the relative deviation from a Maxwellian increases with energy, and, in
contrast to the minority heating case, it is not possible to define a tail temperature: the
steepness of the logarithmic plot of F; decreases steadily as the energy increases. As a
consequence of this behaviour of F;, first harmonic heating tends to ‘boost’ himself: it
is relatively inefficient if the ion temperature of the target plasma is low, but becomes
appreciably larger than the ‘linear’ efficiency evaluated for a Maxwellian distribution
function as soon as the temperature exceeds a few keV in the center of the plasma. The
tail of supratermal ions produced by first harmonic heating can also somewhat enhance
the reactivity in a fusion plasma [6].

1.8 — Legendre polynomials representation of the quasilinear operator. At low to
moderate power levels the predictions of the elementary one-dimensional solutions of
the kinetic equation for the effective temperature of the suprathermal ion population
are in good agreement with experimental observations, except for the fact that most
of the energy is found in the perpendicular motion. It is surprisingly difficult to esti-
mate analytically the anisotropy resulting from IC heating; this information is therefore
usually obtained numerically using a fully two-dimensional Fokker—Planck solver [5).

For the solution of Eq. (1.13), however, an intermediate approach is possible, based
on the expansion of the distribution function of the heated ions in Legendre polynomials
in the pitch—angle variable,

-Fi(vuu: t) = ZFn(U: t) Pn(_lu‘) (1.29)

If only the steady-state solution is required, this Ansatz transforms the two—dimentional
partial differential (1.13) into a system of ordinary differential equations for the co-
efficients F,,(v), whose numerical solution is only slightly more demanding than the
integration of Eq. (1.23).

The key for the success of the Legendre polynomial expansion is a suitable represen-
tation of the quasilinear diffusion coefficient (1.14), obtained using the multiplication
theorem for Bessel functions:

Dag(v,p) = Do (1 - p?)P Y TF(Evv) u** (1.30)
k=0



where we have introduced the functions

Tr(ELv) = (5-1-”) Z kll(k k’)' Jpt+ir (E1.V) Tppke—ir (ELV) (1.31)

For each v Eq. (1.30) is a Taylor expansion around the exact value of Dy for p = 0; at
the same time, for y # 0 it also looks like an expansion in the Larmor radius. The series
converges very rapidly for &, v < 1. If £, v > 1 there is increasing internal cancellation
among successive terms; hence, although convergent everywhere, Eq. (1.30) is useful only
for values of £ v not exceeding a few units. This, however, is fully sufficient in practice.
The rapid convergence of the representation of Dy based on Eq. (1.30) guarantees that
using 5 to 10 terms the approximate diffusion coefficient will be positive everywhere in
the domain of integration: this is absolutely necessary for the stability of any numerical
integration scheme. Stability cannot be achieved with a straightforward Larmor radius
expansion of Dg;.

Details of the numerical implementation of this approach can be found in [6]. Here
we present (fig. 3) an example of solution for the minority heating case, for compari-
son with fig. 1. The distribution of perpendicular velocities is, apart from an obvious
normalization factor, essentially identical with Stix analytic solution. The distribution
of parallel velocities for vy =0 (i.e. F(¥,x=1)), on the other hand, remains nearly
Maxwellian, with a temperature close to the value T}, predicted by the analytic the-
ory for the low-energy part of F,(v). These results explain the success of the analytic
model in predicting the experimental observations. Similar results are obtained for first
harmonic heating.

1.9 — Toroidicity effects on energetic ions. Before leaving the subject of the determi-
nation of the jon distribution function during IC heating, it is8 worth discussing briefly
the limits of the elementary theory presented above. We have already mentioned that
Eq. (1.13) fails on magnetic surfaces tangent to the cyclotron resonance layer. This is
due to the fact that on such surfaces the two points of stationary phase, which we have
treaded separately, merge together. This case, although more complicated, can still be
treated analytically; the divergence of Dy on such surfaces (sinf — 0) is replaced by
a large but finite peak, beyond which (for surfaces which just miss the resonance) Dy
goes rapidly to zero.

In deriving (1.13) we have neglected the parallel deceleration of the ions by the -V B
force in the inhomogeneous toroidal magnetic field. ICR heating, however, increases
directly only the perpendicular energy of the ions, any increase in parallel energy occur-
ring only through collisional relaxation. As the ion energy increases, its collisionality
decreases, while the pitch angle is increasing, so that the ion will finally be trapped in
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Fig. 3 - Distribution function of the ions during cyclotron heating.
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the toroidal magnetic well. Heating will continue only as long as the reflection point
remains on the high-field side of the w = nf{l,; layer: a more deeply trapped ion does
not see the resonance until pitch-angle scattering increases sufficiently again its parallel
energy. Thus ICR heating tends to accumulate energetic ions along the cone in velocity
space, internal to the trapped ion region, which correspond to ions marginally missing
the resonance: : 7

vl = eq

'Uﬁ )eq B Byes — Beq (1-32)
(subscripts res and eg refer to the resonance position and the outer equatorial point
on the magnetic surface, respectively; this equation is immediately obtained from the
conservation of energy and magnetic moment outside resonance). For such ions, of
course, Eq. (1.5) is not valid, and one must take into account that the quasilinear
diffusion coefficient has a more complicated pitch angle dependence than predicted by
Eq. (1.14); in particular, it goes to zero if v3 /’uﬁ is larger than the r.h. side of (1.32).
A simple model for Dy taking these effects into account can be found in [7]; a more
rigorous derivation in [8].

In large devices such as JET the energy of ions produced in this way during minority
heating can reach the MeV range. Their ‘banana’ trajectories are so thick that a kinetic
equation which assumes that they move on a magnetic surface is no longer adequate [9].
To describe the evolution of this ion population, which can be important for example
for diagnostic purposes, a Montecarlo approach [10] might be more appropriate.

1.10 - Phase randomization and superadiabaticity. A further assumption made in
deriving equation (1.13) is that the phase 1, at a transit through a resonance is un-
correlated with the phase at the previous transit. For most ions, this can be made
plausible with the following estimate. The number of cyclotron gyrations between two
resonances i8 ~ {7 = (lciqRior/v). Hence if collisions change v by Av) during 75,
o will be changed by Ay, ~ QciqRsorAv /'uﬁ. Decorrelation is guaranteed if Ay, = 1.
Since Av)/v = v (v],;/v®) 75, Where v;; is the thermal ion-ion collision frequency, this

condition can be written 2
QeiqRior Vii ”?hi >1 (1.33)
v" nm 'U2'U"

The first factor is large enough to compensate for the smallness of the other two. If the
ion energy is very large, however, this condition will finally be violated.

This still does not necessarily imply the breakdown of the random phase assumption,
since other mechanisms can ensure decorrelation: e. g. interactions with low frequency
fluctuations, or the fact that FW has a broad spectrum in ky. The phase 1, is very
sensitive to such perturbations, again because of the large numbers of cyclotron periods
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between two interactions. Even in the absence of such perturbations, decorrelation can
also be the result of Hamiltonian stochasticity, if the amplitude of the electric field at
resonance is large enough. An ion in a tokamak subiect to the IC resonance is an ideal
dynamical system for the onset of Hamiltonian chaos because of the large difference in
the periods of the gyration and bounce motion. This aspect of IC resonances has been
investigated in [11]; the general problem of the validity of the quasilinear equation is
discussed in [12].

In any case, it is true that there is an upper limit to the ion energy above which one
must expect the random phase assumption to fail. Above this energy the quasilinear
picture of ICR heating is no more valid, and ion heating stops; this situation is known
as ‘superadiabaticity’. In practice, however, the superadiabaticity limit on ICR heating
is unlikely to play any role compared, for example, to losses of very energetic ions by
diffusion and finite orbits effects.

2 — Launching, propagation and absorption of IC waves.

2.1 — The dispersion relation of ion cyclotron waves. The next question arising when
investigating a h.f. heating scheme is whether a wave exists which can be launched from
outside the plasma, and which is able to penetrate to the plasma core to be thermalized
there. This question, or set of questions, can best be answered by examining the local
dispersion relation in the plasma. This is the solubility condition of the algebraic form
of Maxwell equations for a plane wave (i.e. with space and time dependence of the form
exp{ —i(wt — K - 7) }) in a homogeneous plasma having everywhere the same parameters
(density, temperature, magnetic field) as the real plasma at the point of observation.
These equations can be written

kx (kx Bg,)+ekw)- By, =0 (2.1)

and the dispersion relation is therefore
- c? 3 -
H(k,w) = det ;j(k;k_, — Jijk ) + e,-_,-(k,w) =0 (22)

Here ¢ is the dielectric tensor, ¢ = I + 4mig/w, and g the h.f. conductivity tensor. The
latter can be obtained by evaluating the h.f. currents in the plasma in response to the
wave field by integrating the linearized Vlasov equation [13]. The contribution of each
charged species to €;; can be written as a series of terms resonant at each harmonics
of the cyclotron frequency, with modified Bessel functions of argument k3 v2, /2, as
coefficients; the series arises by expanding the wave phase as seen by the particles along
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their ‘unperturbed’ orbits just as in the previous paragraph. It is also useful to recall
that the power absorbed per unit volume is proportional to the antihermitian part of &
w =, A
Fops = -8-1—1'- EE,w £ EE'W (23)
It is not difficult to show that the same total power absorption is obtained by integrating
this equation or Eq. (1.15) over a cyclotron resonance layer (1.3) in the tokamak.

Since equilibrium gradients are ignored when evaluating J*f, by symmetry e (Fy w),
and therefore also H, depend only on the parallel component kj and on the modulus &,
of the perpendicular component of the wavevector with respect to the static magnetic
field (we will equivalently use the parallel and perpendicular index, n| = ck)/w and
ny = cky /w). To discuss the solutions of (2.2) in a tokamak it is convenient to regard
it as an equation for k, , since the frequency and k) are fixed by the generator and the
antenna geometry, respectively (for kj this is only a first approximation; we will return
later on this point).

2.2 — The compressional Alfvén wave. If for the moment we neglect finite temperature
effects, Eq. (2.1) can be written

S — nﬁ —iD nin) E.
iD  S—nj-n} 0 - | E, | =0 (2.4)
nin 0 P—n? E,

where, to lowest order in the electron to ion mass ratio,

R—14 Y _ Y5 b3 Wai you el R
i bl il T Ww+ Q) T S Qei(w + Qi)
2 2 2 2
w, w, w_. we.
L=1 <P pe. N ___TRLEL2 2 VA iPin (2.5)
TR on: Z w(w — ) Z 0w — O)
2
[7%)
— pe

and § = (R+ L)/2, D = (R— L)/2. In R and L (which are the components of €
when E, is decomposed in rotating components Ey. = (E, + iE,)/2), the contributions
from the vacuum displacement current and the electron polarization drift (first and
second term, respectively) are mostly negligible, while the much larger contribution from
the electron E x B, drift (third term, which, however, cancels out from S) can be merged
with the ion contributions using charge neutrality in the form ¥, ; w2, /(wQ.) = 0.

e,i “pa

13




It is useful to remark that in tokamak plasmas w2, /Q2, is of order unity (typically
somewhat smaller than one in the plasma center), so that in the ion cyclotron fre-
quency range w? /w2, = O(m?2/m?). We can therefore, as a first approximation, neglect
the electron inertia. Then |P| — oo, and from the third line of (2.5) E, — 0: the elec-
trons screen any h.f. field parallel parallel to the external magnetic field. We then find
that (2.2) has only one solution for k%, which can be written

2 __ R 2 _ ) £
nl =ni)r=— (n“ (nﬁ )_En;) i (2.6)

This is the compressional Alfvén wave, or fast wave (FW) (in the russian literature also
known as magnetosonic wave), which is the natural candidate for plasma heating and
current drive in the ion cyclotron range of frequencies. Excluding insignificantly low
densities, in a plasma with a single species of ions L and S are positive for w < 2 and
negative for w < €, while R is always positive (actually, larger than unity). The fast
wave, therefore, is propagative only if nﬁ < R. The surface where the equality

nﬁ =R (2.7)

is satisfied is called the ‘low-density cutoff’. Waves with nﬁ > 1 are evanescent in vac-
uum, and become propagative only above this cutoff. This puts an upper limit to the
values of nj which can be efficiently launched from outside.

The name of the wave is due to the fact that the oscillating magnetic field is paral-
lel to the static magnetic field, as it is easily shown using (2.4) and B = (c/w)k x E.
Since according to (2.6) n} = O(w2;/02%), it is also not difficult to see that the or-
der of magnitude of the perpendicular phase and group velocity is the Alfvén speed
v4 = (9% /w?;)!/? c. This is true even at ion cyclotron resonances, since the divergences
of L and S in numerator and denominator of (2.6) compensate each other. How this
is possible can be understood by looking at the wave polarization. From the first two
lines of Eq. (2.4) one finds

E, _ nj — R
E_ "~ nf — L

(2.8)

This shows that when w — (1; the component of the electric field which rotates with
the ions vanishes, thereby allowing J_:‘_f to remain finite, and eliminating the singularity
in the behaviour of the fast wave at ion cyclotron resonances.

It is easily checked that the perpendicular wavelength of the compressional Alfvén
wave is much larger than the thermal ion Larmor radius: k%v3,/0% = n?},;/c =
O(B:) < 1, justifying our neglect of finite Larmor radius (FLR) effects (the role of
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parallel dispersion near cyclotron resonance and due to the electrons will be discussed
below). The only exception suggested by Eq. (2.6) is where

2 _ o~ whi

ﬂ“ _S—_¥;§.—:ﬁg (2.9)
When w/Qg; — 0 this is the Alfvén resonance [14]. At frequencies w = 0(Q) in a
plasma with a single ion species, on the other hand, this condition can be satisfied
only at very low densities in the plasma scrape-off, where its only effect can be some
parasitic absorption in front of the launching structure [15], whose discussion is outside
the scope of these notes. As we will see below, on the other hand, this resonance plays
a fundamental role in plasmas with more than one ion species of ions. We will also see
that FLR effects are important near w = 20, although not apparent from Eq. (2.6).

2.3 — Power absorption at the fundamental. The circumstance that E, is screened
by the resonant ions themselves would seem to make impossible to heat the ions at the
cyclotron fundamental. The conclusion that E, vanishes at w = Q;, of course, is not
entirely correct, since when the plasma temperature is taken into account the singularity
of the dielectric tensor is smoothed out by the Doppler broadening of the resonance, so
that [1]:

is replaced by — i Z(zt) (2.10)

w — ﬂa‘
in L (and S), where 28 = (w — nf.q)/ k|| V¢he, and (assuming a Maxwellian ion distri-
bution and a real argument z)

Ll
eu

Z(z) = -\71_;[.—:‘0 < 4 du+ivTe ™ (2.11)

is the well-known Plasma Dispersion function [16]. From the behaviour of the r.h. side
of (2.11) for small argument, illustrated in fig. 4 for a typical set of parameters, one
concludes that at resonance |E.|/|E_| = O (nﬁ ufh,-/cz). If ny # 0, therefore, |E|
is small, but non zero. The fractional absorption through the resonant layer (1.3) can
then be estimated by integrating the power balance equation following from the Poynting
theorem and Eq. (2.3),

dP X w 2 wz‘ s —mi2
— e Im(L) = /=L 2t =% 4 b
across this layer, where the incident flux Px (here the horizontal component of the
Poynting vector) is given by .

Px = g-n, |Ey|? (2.13)
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Fig. 4 - The function X, Z(x;) with X, = (0—-Qw)*x, and x o= Wk ¥y .
The curves shown are for x'oI = 125, 250, 500, and, for the real part, oo
(cold limit or perpendicular propagation).
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Here X and Y are horizontal and vertical coordinates in the poloidal plane, and we have
for simplicity assumed that the wave propagates horizontally, i.e. k; = kx. Only the
argument z} of the exponential factor in Im(L) needs to be regarded as space dependent,
while all other quantities can be taken at Q;; = w. Using (2.8) and (2.11) one easily

obtains
APy w R, wg‘"- i Zv?hi (2 14)
— o~ — =] =n :
Px C o ch:z I c2

Thus jon heating at the cyclotron frequency does occur, but with a very low efficiency.
As we will see below, first harmonic heating of a single species plasma, although a FLR.
effect, is much more efficient.

2.4 - Ion-ion resonances and minority heating. The best efficiency, however, is ob-
tained with IC fundamental heating of a minority species sufficiently diluted to be unable
to screen E,. We have then a situation in which the wave polarization is determined
by the majority, which is not resonant, and the absorption by the resonant minority,
which can then be heated with great efficiency [17]. The most popular minority heating
scheme in medium size tokamaks has been fundamental IC heating of a small fraction
of H' ions in a deuterium plasma. Other minority heating scenarios, e.g. Hed+ in D+,
however, have also been successfully attempted, and might be more interesting under
reactor conditions.

In a multi-species plasma L and S have a zero between each pair of cyclotron frequen-
cies. The quantitative investigation of minority heating must therefore take into account
the existence of a perpendicular resonance (ion-ion or Buchsbaum resonance [18])

ny — 00 where -nﬁ =85 (2.15)
and an associated cutoff
ng—0 where nj =1L (2.16)

separated by a layer of evanescence. As long as nj < wp;/Q%; = O(m;/m.) these con-
ditions can be approximated by S = 0 and L = 0, respectively, and depend essentially
only on the relative concentrations v; = n;/n. (with Y Z;»; = 1). Denoting the ma-
jority and minority species with indexes M and m, from (2.5), (2.9) and taking into
account the horizontal variation of B one finds

Xs A l ZM/AM s Zm/Am}
§ IO i { e R~ Zngl A

R, 2

X Zy[Am
— 1 + VmZm {'Zm"‘/'_Am' g 1}

(2.17)

16




20000
15000F
10000}

5000 |

-5000

-10000

-15000

a) ny, ={
b)n,=4
c)n,=8
0.99 (D/QHeB
-4000
-6000

Fig. 5 - Hej minority in D*: dispersion relation in the vicinity of the
" . . 2
ion-ion hybrid resonance. ny /n,=0.025, mpelffce= 0.5,

B;=PBe=0.01 (T =5.1keV). Full lines: real part; dashed lines:
imaginary part.

16a



S

where Xg, X, are the horizontal distances of the ion-ion resonance and cutoff, re-
spectively, from the cyclotron resonance of the minority ions located at the toroidal
radius R,. The wave singularities approach the latter point when the minority con-
centration tends to zero. Both lie on the high-field side of this layer if the minority is
the “lighter” species (i.e. the one with the largest charge to mass ratio), and viceversa.
Taking into account that the ratios Z/A are never larger than unity, moreover, one can
show that the wave resonance is always to the high-field side of the cut-off. An example
of perpendicular index in the equatorial plane of a tokamak near an ion-ion resonance
(2.5% Heg ™ in D) is shown in fig. 5.

2.5 — The Budden model. When the compressional wave is launched from the outside
towards an ion-ion resonance it will be partly reflected from the cutoff and partly trans-
mitted through the evanescence layer. In a plane stratified model in which only the
horizontal variation of B is taken into account, the cold-plasma wave equation which
describes propagation through the ion-ion layer can be cast into the form [19]

a% [(1 = 52‘3)34,] +nip(1 ~ %‘-’)m =0 (2.18)

where n} ;. can be taken at X =0 (minority cyclotron resonance). A simple change of
variable transforms this into a Whittaker equation (a particular case of the confluent
hypergeometric). The solutions satisfying the appropriate conditions at large distance
(‘outward radiation conditions’ on the side opposite to incidence) yield the coefficients
of transmission and reflection. They can be written

Ry =(1—-e™2m)2 T, =e2m incidence from the cutoff side
(2.19)
R_=0 Ty =e2m incidence from the resonance side
where - w
m=5nLF ZIX‘ - X (2:20)

is the ‘optical thickness’ of the evanescence layer. For typical parameters 1h is of order
unity, so that both reflection and transmission depend sensitively of the precise experi-
mental conditions. Note that R, and Ty do not add up to unity; the missing power is
interpreted as absorbed, with absorption coefficient

Ay =e™m (1 - ¢72m) A_=1—¢"2m (2.21)

Within the present model, absorption at ion-ion resonances (which should not be con-
fused with cyclotron damping) is explained by the fact that the group velocity of the
wave tends to zero as Xy is approached; its true origin, namely mode conversion to a
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Fig. 6 - Budden reflection, transmission and absorption coefficients from
an ion-ion resonance-cutoff layer (perpendicular propagation).
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short wavelength electrostatic wave, can be clarified only when finite temperature effect
are taken into account. For a wave incident first on the resonance (high-field-side launch-
ing) absorption is nearly complete when 77y 3> 1; for a wave incident first on the cutoff
(low-field launching) it cannot exceed 1/4, the optimum being reached when m=1/2
(fig- 6). In applying these results, however, one should be aware that the launched wave
can be reflected further from the low-density cutoff nﬁ = R or from the vacuum vessel,
so that a partially standing wave can exist in some region of the plasma,; this obviously
alters the total power absorbed at the ion-ion resonance. Equations (2.21) give only the
so-called ‘first transit’ absorption.

2.6 — Minority heating and mode conversion regimes. In writing Eq. (2.18) we have
neglected cyclotron damping by the minority ions. It can be estimated iteratively from
Eq. (2.12), including, however, only the minority ions contribution to Im(L), while the
solution of the wave equation is used to relate |E |2 to the incident flux. In this way it

is found that
APX 1 w sz e
—_— — — o B .
P11 Thewel BNz (cR°) (92,,,,) Vi (233
with
thzhm T 2
En =0 n“—-g-f- Vn (2.23)

where o = O(1) depends on Z/A of the two ion species. APy /Py is proportional to v,
at very low concentrations, €,, < 1, and inversely proportional to it in the opposite
limit, €y, >> 1. The best cyclotron absorption occurs when e,, is about unity (the peak
value of 7y as evaluated in this way can be comparable or even larger than unity; in
this case a better approximation would be APx/Px ~ 1 — e~7evet),

The existence of two regimes can be easily understood by looking again at the dis-
persion relation and the polarization of the compressional wave in the vicinity of the
cyclotron resonance of the minority. If ¢, < 1 the thermal Doppler broadening AX et
of the cyclotron layer is of the same order or larger than the distance to the ion-ion
resonance, so that the singularity associated with the latter is smeared out and mode
conversion suppressed (cfr. again fig. 5 with ny = 8). It is easily seen, moreover, that
under these conditions the minority ions are not sufficient in number to screen E,: this
is the minority heating regime proper. At larger concentrations (or smaller values of ny)
the ion-ion resonance is well separated from the layer where the imaginary part of n, )
is appreciably different from zero, while screening of E, by the minority ions begins to
reduce cyclotron absorption, so that mode conversion dominates.

Since the values of ni which can be launched are limited by the conditions imposed
by the R-cutoff, the optimum vy, is quite small, typically a few percent. It is not always
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easy to control the plasma composition to such a precision, since differential absorption
and recycling by the walls often play a larger role in determining the relative concen-
trations than direct gas feeding. One should also be aware that antennas launching the
fast wave are always much shorter than the vacuum wavelength, and therefore excite a
rather broad spectrum of n values (cfr. fig. 8). The condition €y, S 1, therefore, should
strictly speaking be interpreted as determining which portion of the spectrum is ab-
sorbed predominantly by cyclotron damping. Even averaged over the power spectrum
of real antennas, however, first transit absorption by the minority shows the character-
istic dependence on v, predicted by Eq. (2.23), and the distinction between the two
regimes remains valid.

Finally, we may note that since antennas can be located in practice only on the
outer side of the torus, minority heating will be more efficient in the case of ‘lighter’
minority ions. In the case of an heavier minority the evanescence layer screens the
cyclotron resonance from the antenna, so that in Eq. (2.23) Px must be interpreted as
the transmitted flux only. In this configuration, absorption by the minority decreases
exponentially with v,, when the concentration exceeds the optimum value. For lighter
minority it decreases only as v, so that control of the plasma composition is much less
critical. The case of Ht in DT belong to the latter category, but is peculiar, because
the minority fundamental coincides with the first harmonic of the majority; to fully
understand this situation it is necessary to take into account FLR effects. This will be
done in section 2.9 below.

2.7 — Launching the compressional wave. The dispersion relation also gives useful
insight on the design and performances of IC antennas. Since the oscillating magnetic
field of the compressional wave is parallel to the static magnetic field, it must be excited
by h.f. currents flowing in the poloidal direction. Thus antennas for IC heating consist of
one or more poloidally oriented conductors. In the simplest configuration (fig. 7 a) each
conductor has two feeders in push-pull at the two ends, and a central short to ensure
symmetry. A more complicated design used in ASDEX Upgrade in Garching is shown
in fig. 7 b. The purpose of such complex configurations is to present to the plasma a
poloidal current distribution Jp(#) as uniform as possible, and in any case in the same
direction throughout, over a sufficiently large frequency range. If Jy changes sign, as it
does when the electrical length of the antenna exceeds half of the wavelength, its poloidal
spectrum is rich in components with large poloidal wavenumber, which excite waves
evanescent in vacuum and therefore poorly coupled to the plasma. Non-conventional
launchers, in particular using ridged or folded waveguides, have also been proposed [20]—
[21]. They have advantages, but since they work only above a minimum size, they can
hardly be tested in small tokamaks, and are therefore still in the development phase.
Finally we may mention that most IC antennas today have lateral protecting limiters
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and a Faraday screen. The latter consists of a more or less densely packed array of
toroidally oriented metallic stubs, shorted on the lateral limiter or to the wall, whose
purpose is to optically isolate the main conductors from the plasma, and to short stray
fields parallel to the static magnetic field, which could lead to parasitic absorption in the
low density edge plasma where they are still not completely screened by the electrons.
At the same time they are essentially transparent to the radial and poloidal components
of the electric field, which are those which excite the compressional wave in the plasma.
Cooling the Faraday screen adequately in a reactor, however, would be exceedingly
difficult; IC antennas without screen have been recently successfully tested.

Antennas with two or more conductors which can be excited with a controllable phase
shift relative to each other allow shaping the launched power spectrum (repartition of
the power between partial waves with different n)) in order, for example, to optimize
minority heating, or to have a sufficient directivity for current drive. It has become
customary, although stricily speaking incorrect, to call a configuration exciting a sym-
metric spectrum peaked at nj = 0 a ‘monopole’ antenna, one exciting an antisymmetric
spectrum with no power in the nj = 0 component a ‘dipole’ antenna (fig. 8).

Spectral shaping is also useful to reduce the excitation of Fourier components with
nﬁ S 1. These components can excite surface modes guided between the wall of the
vacuum vessel and the plasma surface. Because of the long parallel wavelength of these
modes, the associated parallel electric field, although weak, can correspond to potential
drops of hundreds of Volts along open field lines terminating on the wall or on metallic
limiters at some distance from the antenna. This is made particularly dangerous for
the production of impurities by a nonlinear mechanism known as h.f. sheath rectifica~
tion [22]. Electrons in the scrape-off plasma screen E, along the open field line, but
cannot short out the inductively excited potential. Most of the potential drop, therefore,
occurs in a non-neutral sheath near the metallic obstacle, whose thickness is of the order
of the Debye length, or, if the field line is incident at grazing angle, of the ion Larmor
radius. Since the transit time of the ions in this sheath is shorter than the wave period,
this mechanism allows the acceleration of escaping ions through the full potential drop.
The energy of ions hitting the wall is then sufficient to extract impurities from the wall
with high efficiency [23]-[24].

The power spectrum of an antenna can be qualitatively predicted by an equation of
the form
Px(ny) = P |Ja(ny)|* exp (-—2f Iny)r| d_X) (2.24)

The toroidal Fourier spectrum J,(n)) of the antenna current, in turn, is the product of a.
factor describing each conductor, and a factor which takes into account the number and
relative phase of conductors. The former is always very broad because the width d of
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each conductor is a small fraction of the vacuum wavelength; the second modulates the
spectrum into separate ‘lines’ whose width is inversely proportional to the number of
conductors, and whose position depends on the phases. The exponential factor in (2.24)
takes into account the evanescence from the antenna to the R-cutoff. As already re-
marked, its presence puts an upper limit on the values of nf which can be efficiently
launched, in order of magnitude nﬁ S a fraction of (w2;/92) = O(mi/m,.). This re-
stricts the flexibility of spectral shaping. A more severe limitation is the fact that |
does not remain constant during propagation in toroidal geometry (section (2.15)).

It should also be remarked that Eq. (2.24) is a good approximation only if absorption
is sufficiently strong to rule out the existence of high-quality cavity eigenmodes of the
plasmarfilled vessel. If this is not the case, the values of kj which are closer to such
eigenmodes are preferentially excited, and the actual power spectrum will consist of well
separated ‘lines’, and thus differ appreciably from (2.24). The position of the eigenmodes
can be easily estimated in simplified geometry (slab or cylindrical models of the plasma).
Their ‘exact’ position in the spectrum and the amount of broadening due to damping,
however, can be predicted accurately only by solving the wave equation in realistic
geometry. It is clear, in any case, that global eigenmodes play a more important role
in small than in large device: both their separation and their quality factor (sharpness)
are likely to decrease as the plasma dimensions and performances increase.

As an element of the h.f. system, the antenna is fully characterized by its complex
imput impedance Z,. The imaginary, or reactive part of Z, can be estimated by consid-
ering the conductor as a piece of transmission line, with appropriate boundary conditions
at feeders and shorts. The resistive part of Z,, on the other hand, can be evaluated
accurately only by solving the wave equations in the plasma. Because of time limita-
tions, we cannot discuss these calculations; details and further references can be found
in [25]. It will suffice here to mention that, due to the fact that most of the power is
radiated in Fourier components with nfi > 1 and must tunnel through the evanescence
layer between the antenna and the R-cutoff, the load is rather sensitive to the density
profile near the plasma edge. To get a radiation resistance of the order of at least a
few Ohms, as required for a stable matching of the whole system, the main conductors
cannot be located too far from the plasma: this is perhaps the most difficult constraint
to be satisfied to implement ICR heating or FW current drive in the reactor. Antisym-
metric or current-drive antennas, moreover, are more demanding than symmetric ones
in this respect. Abrupt changes in the edge profile, such as those which occur at the
L-to-H confinement transition, or even during short periodic bursts of losess (ELM’s)
in the H-regime, can also influence the loading resistance to the extent that feedback
matching might be required to protect the amplifiers from excessive reflection.
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2.8 — The FLR dispersion relation. To complete our understanding of the disper-
sion relation in the IC range of frequencies it is important to exhamine a few effects
which were previously omitted, namely ion FLR effects, finite electron inertia, and finite
electron temperature. Inclusion of finite electron inertia makes H (w, k) a second order
polynomial in n2. Ion FLR effects introduce perpendicular dispersion, i.e. make e;;
depend on k%. To the lowest significant order in the Larmor radius, the dispersion
becomes then a third order polynomial in n3 . In other words, each effect adds a new
wave: electron inertia brings in the shear Alfvén wave, FLR effects a pressure-driven
wave.

From the form of the vacuum term in Eg. (2.3) it is not difficult to see that the
FLR contribution responsible for the pressure-driven wave is the one of the ions to e,,.
Writing

1
€2z =S — aan? o = 5(,\2 + p2) (2.25)

where Ay and p; are the FLR corrections to L and R, respectively, we obtain the FLR.
dispersion relation in the form

= —oand + (5 + Paoy)n}

(2.26)
+P{ [("ﬁ = 5) + (nj — R)Az + (nf — L)pz)] n? + (n} — R) (nff — L)}

(FLR terms must be retained also in the coefficients of n{ and n? because P is so large).
The coefficient o3 is easily obtained from the hot plasma dielectric tensor by expanding
in the Larmor radius, and contains in principle a term resonant at the fundamental and
one resonant at the first harmonic. The former is always a small correction to the zero
Larmor radius part S, which also resonant at the fundamental. We therefore keep only
the latter,

1 w2, 22 1 w2, v2 w
p P _pPx “tha —z% Z (& L & P “tha 2.97
2 2 -~ ﬂgq c2 ( o ( 2 ) ) P2 2 ~ ﬂga 2 w+ 2ncct ( )

which is very large near w = 2Q,; where S is regular. It turns out that this is not only a
convenient simplification, but actually gives a much better agreement of Eq. (2.26) with
the full hot plasma dispersion relation near the fundamental cyclotron resonance (the
failure of the complete FLR expansion near w = {2 is due to the fact all roots of the
disperion relation except the FW have a wavelength much shorter than the ion Larmor
radius in this frequency domain).

As long as the roots of (2.26) are well separated, the smallest one is just the FW (2.6),
with a small correction due to the finite pressure. Near the Alfvén resonance (2.9),
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however, this root is no more divergent, but has a confluence with a short—wavelength
wave. The nature of the new root depends on the value of the ratio [Poy/S| =
(me/m:) - f(w/9ei), where f is a numerical factor of order unity (but much larger thacn
unity near the first cyclotron harmonics), and §; = (w2, /02)(v2,,/c?) the normalized
ion pressure.

a) If the plasma is very tenuous and cold,

ﬂ‘. .<< me/mi (2.28)
the confluence occurs with a wave whose dispersion relation can be written

f 4
nd =nl)s =@} - 5)5 (2.29)

If w/ky > vine this is the cold-plasma shear Alfvén wave (SAW), and is propagative on
the low magnetic field side of the confluence; in the opposite limit it is called ‘kinetic
Alfvén wave’ (KAW), and is propagative on the high magnetic field side. The third root
does not satisfy the condition k3 v2,;/02% < 1, and must be discarded.

b) In a typical fusion plasma, however, the opposite condition usually prevails, namely
Bi R me/m; (2.30)

In this case, the confluence occurs with the pressure-driven root, whose dispersion rela-

tion is

nﬁ -8
o2

ni=nj)p~-

(2.31)

This wave is the first member of the family of electrostatic waves which exist near
harmonics of the ion cyclotron frequency, known as Ion Bernstein waves (IBW) [26];
it is always propagative on the high magnetic field side of the resonance. In this case
SAW or KAW still exist as solutions of the hot plasma dispersion relation, but do not
play any role near the Alfvén resonance. In other words, condition (2.30) justifies the
zero electron inertia approximation, |P| — oo, which simplifies (2.26) to

0=0gand + [(nﬁ -S)+ (nﬂ — R)X2 + (nff — L)pg)] nd + (nf — R)(n{ —L) (2.32)
In the following we will consider mainly situations where this approximation is valid.
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2.9 — First harmonic heating in a single species plasma. In the limit of perpendicular
propagation

Bi w i -iz B & Biw

A2—)2w—2ﬂc,r_X A2_2c

diverges at w = 20,;. Hence ion FLR effects are always important near the first cy-

clotron harmonic, although this could not have been predicted from (2.6) alone. The

dispersion curves (fig. 9) show a double confluence between the FW and the IBW, sep-

arated by a ‘frequency gap’ in which the two roots of (2.32) are complex conjugate, and

the two waves evanescent. The confluences are easily located analytically by searching
for the roots of the discriminant of (2.32):

Rior (2.33)

290 .. — 2 ni —R
&‘_{“:’_) __.ﬂ‘._h_F__z_ B = ——L £ >0 (2.34)
W conf 1+ hF n"_

(h% =2 1/3 in a deuterium plasma). They both lie on the high-field side of the resonance;
the optical thickness of the evanescence layer can be estimated as

2 = %ﬁz nJ_)F %,Rtor (2'35)

with n, )r taken at the resonance in the cold limit.

To evaluate reflection and transmission through the resonance layer the wave equa-
tion must be solved. Because the FLR terms in the dispersion relation depend on the
wavevector, however, in a nonuniform configuration they become second order differen-
tial operators, whose form is not uniquely determined by the dispersion relation alone.
It turns out [27] that the correct FLR wave equation in this case is

1 d2 d (A dE, d?
0= (Em +R) [E (?ﬁ')] e 2 ﬁ"z‘(SE+) —RLE, (2.36)

where R = —§ = (2/3)(w};/0%), L = —2(w2,;/Q%), and i, can be regarded as con-
stants. The solutions of this self-adjoint equation can be written in the form of Laplace
integrals [28], and from their asymptotic behaviour for large X and the radiation con-
ditions the reflection and transmission coefficients can be determined. The result is
identical with that of the Budden model, Eq. (2.19), with, however, 7, replacing n;.
The ‘absorbed’ power in this case appears as power transported away from the reso-
nance region by the Berstein wave, a phenomenon known as (linear) mode conversion.
The IBW can be absorbed by electron Landau damping if its parallel phase velocity is
sufficiently small; alternatively, it can be absorbed by stochastic acceleration of the ions,
which can occur when the wavelength becomes shorter than the ion Larmor radius [29).
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Fig. 9 - Dispersion curves near the first ion cyclotron harmonic for perpendicular
(n,=0) and oblique (n = 4) propagation. msé ni: 0.5, p=0.02
(T.=T; =5.11 keV), hydrogen plasma.
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Fig.10 - Hydrogen minority in Deuterium plasma, § = 0.02, mégﬂi: 0.5,
T,=T;=5.11keV. Hot -plasma dispersion curves near the ion-ion
resonance, perpendicular propagation.
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If n)| is not zero, there is a layer of witdth AXcya (Eq. (2.3)) around the cyclotron
harmonic resonance where n3 ) is not real (fig. 9 with nj = 4). The evanescence layer
is completely washed out and the confluence of the FW and IBW suppressed if AXeya
extends beyond the farthest confluence point determined by the minus sign in Eq. (2.34).
The condition for the validity of Eq. (2.36) is therefore

Vthi
c

Bi > |ny (2.37)
The Lh. side grows faster than the r.h. side with the plasma temperature, and is moreover
proportional to the plasma density, which does not enter in the r.h. side. Since the values
of ny which can be launced by IC antennas are nearly independent from the plasma size,
this condition is more easily satisfied with increasing plasma performances. It has been
pointed out [30] that this circumstance might somewhat reduce the efficiency of first
harmonic ion heating in the reactor. It turns out, however, that for waves excited from
the low field side, which encounter first the cyclotron harmonic, this is only a minor
effect.

The amount of harmonic cyclotron damping suffered by the FW wave itself while
transiting through the first harmonic resonance can be easily estimated in the two
limits of negligible and very large Doppler broadening, using once more an equation
similar to (2.12), but with Im(Az) on the r.h. side. An equation which interpolates well
between these two extremes is [31]

APy . LT w Orn
PX =MNfp = 4ﬁ1 n..L)F thor 1 +6fh (2.38)
where 022 /2
Ny /c
6fn = Lﬁ}'— (2.39)
1

is the parameter which characterizes the transition between the case of quasiperpendic-
ular propagation (675 < 1) with little harmonic damping and efficient mode conversion,
and the case of large Doppler broadening (675 >> 1) in which harmonic cyclotron damp-
ing dominates and mode conversion is suppressed. We may also note that in the latter
limit the ratio between harmonic and fundamental cyclotron damping in a single species
plasma is roughly APy (2Q;)/APx(Qe) ~ n2 /nparsq > 1, as anticipated.

2.10 — Hydrogen mincrity in a Deuterium plasma. The analogy of Eq. (2.38) with the
two heating regimes in a two-species plasma will have been noted. Indeed, as illustrated
by the dispersion curves of fig. 10, minority heating of hydrogen in deuterium goes over
continously into the pure D* case as the H* concentration tends to zero. The dispersion
relation for this scenario for nearly perpendicular propagation can be discussed as in
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the previous case, taking into account the singularities of both L due to the minority,

and g3 due to the majority. The two confluences between the FW and the IBW are
located where

QcH —w i 3 \/3 3 3
= )conf =—3¥r —Pp*4/7Pp (Bp +2vg) ~ —yvr V 3Pove (2.40)

the last approximation being valid if vy, although small, satisfies v > Bp. In this limit
the farthest confluence asymptotically approaches the position of the cold-plasma ion-
ion resonance. Because of the square root in the second term, however, at low minority
concentrations the width of the frequency gap due to finite Larmor radius effects easily
exceeds substantially the width predicted for the evanescence layer by the cold plasma
approximation. Accordingly, the condition to be in the minority heating regime can be

written
RH ~ 3 3
) 2 SV + ‘\/ 2ﬁDVH (2.41)

We can add that in this regime the minority is preferentially heated as soon as vy = Bp,
and second harmonic heating of deuterium correspondingly reduced compared to the
pure DY case.

Ui

[nl

The wave equation in the mode-conversion regime is a fourth-order differential equa~
tion (since it must describe both the FW and the IBW) which combines the singularities
of Eq. (2.18) and Eq. (2.36). This equation, to our knowledge, has not been solved in
closed form. The results of numerical integrations for the reflection, transmission and
mode-conversion coefficients, however, can be reproduced accurately using once again
the Budden expressions (2.19) and (2.21), with

n=m+vn2(m + ) (2.42)

where 7; is given by (2.20) and 7 by (2.35). The formal analogy of this expression
with (2.40) suggests that this might be an exact result, although this has not been
proven. As in the pure D case, the power described by A is transported away by the
ion Bernstein wave.

2.11 — Cold-plasma resonances and mode conversion. The replacement of a cold-
plasma singularity by a mode conversion layer (with or without frequency gap) is a
universal characteristic of wave resonances in the absence of dissipation when finite
pressure effects are taken into account. Thus for nearly perpendicular propagation the
confluence of the FW with the pressure-driven wave (or with the shear Alfvén wave in
very low 3 plasmas) occurs also in the scenarios where the minority resonance does not
coincide with the first harmonic of the majority. In this case, however, o3 is much smaller
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and the wavelength of the IBW correspondingly shorter, so that the confluence layer is
very narrow. In this case any residual damping (ion cyclotron damping of the minority
in the tail of the Doppler broadened cyclotron resonance, electron Landau damping,
or even collisional absorption) is sufficient to eliminate the confluence; the cold-plasma
description of the wave resonance is then perfectly adequate, as the dispersion curves
in fig. 5 for oblique propagation clearly illustrate.

2.12 — Electron heating. In hot tokamak plasmas damping of the FW on the electrons
always competes with ion heating. One can also purportedly avoid damping on the ions
when the FW is used for current drive. To estimate the importance of electron damping

one must in the first place take into account parallel dispersion in €22, Tewriting the last
line of Eq. (2.5) as

w
kyvthe

wie
pe ' —
€2z X ~—5 T, Z'(z.) Te =

(2.43)

In addition, as pointed out by Stix [2], it is necessary to take into account the FLR
corrections contributed by the electrons to ey ~ S — n} (02 +27.) and €, = —¢,y ~
inin)f. Expanding the hot plasma dielectric tensor to second order in the electron
Larmor radius, and keeping only the leading terms in w/Qe, one finds

1 wWpe V3, 1 wpe v o
= _———-fef_ = ———— e 2 7l 2.

Te 2 ngc 62 { Te Z(me)} Ee 2 wnce 2 Te (..“35) ( 44)
Although not contributing significantly to the FLR dispersion relation, 7. and £, are
required to determine correctly the parallel component of the FW electric field and } G
From the third line of (2.1) one gets

z = ngljl.'P {Ea: B iEeEy} (245)
The refractive index of the fast wave satisfies always n3 < |P|; moreover, except near
the Alfvén resonance nf = S, |E,/E,| = O(w/Q) is of order unity or smaller. If
Be < me/m;, therefore, & = O(BeQce/w) is negligible, and this equation predicts the
characteristic inverse dependency of E, on the density due to screening by the electrons
in a cold plasma. Under the more typical condition Be R me/m;, on the other hand,
the first term within the bracket in Eq. (2.45) is negligible, and one obtains

E, == inyny -2 Vire p (2.46)
3z == .1ny Q. c2 V¥ y

In this regime E, is independent from the plasma density, and proportional instead
to the plasma temperature. This residual parallel field is required to maintain charge
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neutrality. Note that £, /P is a real quantity independent from the parallel phase velocity
of the wave; Eq. (2.46), therefore, is valid even if |z,¢| < 1, i.e. when damping by the
electron is very strong.

According to Eq. (2.3), the density of power absorption by the electrons can be written

w
Piy = o{ — 20 T () 1y P

(2.47)
+2nn) Im (&) Tm (EXE,) + Im (P) |E,,|2}

The last term is the well-known electron Landau damping (ELD), due to the secular
acceleration of the electrons along the static magnetic field by the parallel component
of the wave electric field when the Cerenkof resonance condition w = kv is satisfied.
The first term is known as Transit Time Magnetic Pumping (TTMP, a name with only
historical justification); it is similar in nature to Landau damping, but is driven by the
i .V B force due to the compressional magnetic field of the wave, where [ is the magnetic
moment of the gyrating electron. TTMP is therefore a finite Larmor radius effect, as
the form of 7. immediately makes clear. The second is known as ‘mixed’ term. In the
high-beta regime the three terms are of comparable magnitude, i.e. Landau damping
and Transit Time cannot be considered separately. Inserting (2.46) into (2.47) one
obtains s

g w P i
Ps, = E‘Eni Be VT ze % |Ey|2 = o= VT zde % |E,|? (2.48)

The first expression is half magnetic pumping alone (i.e. evaluated as if E, where exactly

zero); the second is just half the Landau damping which would correspond to the electric
field E, alone.

Damping of the compressional wave on the electrons is proportional to nZe. Thus,
although not ‘localized’ in the same sense as cyclotron damping, it is strongest in the
plasma core. It also increases with increasing plasma performances. In medium-size
tokamaks it is rather inefficient until the central temperature reaches a few keV. In the
reactor, however, easily half or more of the launched power will be absorbed by the
electrons, even when the conditions for IC damping are optimized.

We may finally notice that since the electrons satisfying the Cerenkoff resonance
condition are accelerated along the static magnetic field, ELD and TTMP are not very
sensitive to toroidal trapping. Neither k) nor v, however, are constant when toroidicity
is taken into account. It follows that an electron can satisfy the Cerenkoff condition
only over a finite segment of its orbits. The consegences of this when only one wave is
present and collisions are neglected have been explored in [32]. The effects of the broad
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kj-spectrum typical of FW propagation in tokamaks and of collisions or perturbations
by low-frequency fluctuations are however likely to dominate. The electron distribution
function is then determined by a quasilinear equation similar (except for the inclusions
of FLR effects in TTMP and in the mixed term) to the equation used to describe
h.f. current drive in the Lower Hybrid frequency domain [33].

2.13 — Ion Bernstein Wave heating. A review of IC heating would not be complete
without mentioning that Ion Bernstein waves have also been proposed for auxiliary
heating of tokamak plasmas. For details and references, we must refer the reader to a
dedicated review [34]. Here it will suffice to note that since IBWs are electrostatically
polarized and have a very large perpendicular index, their main electric field is along
the direction of propagation. Such a polarization can hardly be excited directly from
outside the plasma. Instead, an antenna with current oriented parallel to the static
magnetic field can be used to launch first the slow cold-plasma wave (2.29), which then
converts into a IBW a few centimeters inside the plasma. Good loading of the antenna
is possible only if the density near the antenna is sufficiently low to allow propagation
of the SW in the plasma scrape-off, and the first cyclotron harmonic resonance of the
ions is located just outside the plasma, so that the perpendicular index of the IBW in
the conversion layer is not excessively large [35].

Since the excitation of the SW occurs mainly through E,, which in turn is proportional
to n) (cfr. Eq.(2.45)), launching with an antisymmetrically phased array of waveguides
mounted flush on the vacuum vessel with their long side in the poloidal direction is
likely to be preferable [36]. Waveguide arrays can be used also to launch higher-order
IBWs. The principle of such arrays is identical to that of the ‘grill’ which is used to
launch the slow wave in the Lower Hybrid domain [37]; the main restriction to their use
in the IC range of frequencies is access, since the lower frequency implies larger guide
dimensions.

Once inside the plasma, IBWs can be absorbed by electron Landau damping if their
parallel phase velocity is slow enough, or by cyclotron harmonic damping as they cross
the next harmonic resonance in the poloidal cross-section. Nonlinear heating mecha-
nisms are also possible [29].

The use of IBWs for auxiliary heating in large tokamaks, however, is likely to pose
serious problems. Being electrostatic waves, their perpendicular group velocity is very
slow, in fact comparable to the ion thermal velocity. This implies that to transport
a given power flux across magnetic surfaces the electric field amplitude must be much
larger than in the case of the compressional wave, whose perpendicular group velocity
is of the order of the Alfvén speed. The power flux, moreover, is not associated with the
Poynting vector (which vanishes for an electrostatic wave), but with a flow of coherent
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oscillation energy of the ions. Finally, due to the very short wavelength, the optical
path from the edge to the absorption region is very large. As a consequence of all this,
any linear or nonlinear parasitic absorption mechanism, even quite weak, might easily
compromise the penetration of IBWs into large plasmas.

2.14 — FLR wave equations for IC waves in tokamaks. The elementary considerations
presented to this point give a sufficiently complete coverage of the physics of IC heating,
so that it has been possible to write a simple subroutine based on the equations of this
overview and allowing a rapid evaluation of ICR heating scenarios [38]. It is clear,
however, that quantitative results on antenna loading, power deposition profiles, etc.,
require the solution of appropriate wave equations. The limited space available does
not allow to present details on how such equations are derived and solved; we will
limit ourselves to mention the main principles, referring to the literature for further
information.

The constitutive relation (ie. the relation between the h.f. electric field and the
h.f. current) of a hot, inhomogeneous plasma can be obtained by integrating the lin-
earized Vlasov equation along the ‘unperturbed’ orbits of charged particles in the static
magnetic field. This leads to a non-local relation, since particles contributing to Jh 7 at
a given time and point in space, but having different unperturbed velocities there, have
seen different h.f. fields along their previous trajectories (this property of hot plasmas
is known as ‘spatial dispersion’; in the uniform limit it implies that the dielectric ten-
sor ¢ depends on the wavevector E) Once Jj, 7 18 known, the wave equations are easily
obtained by writing Maxwell’s equations

2 -
VxVxE=—{E+ﬂJM} (2.49)

in a coordinate system appropriate to the geometry of the confined plasma. Because of
space dispersion, these equations in a hot plasma are strictly speaking integro-differential
equations [39].

In the direction perpendicular to B,, however, one can take advantage of the fact
that in the IC frequency domain the wavelength of the FW, and in the most interesting
regions that of the IBW as well, is large compared to the ion Larmor radius. A Taylor
expansion around the ion guiding centers then puts the wave equations in differential
form in this direction. This way of deriving the FLR wave equations has been followed
first in [40] and [27] assuming for simplicity a plane-stratified geometry; for details and
further references cfr. [41]. In the approximation corresponding to the FLR dispersion
relation (2.32) it is sufficient to evaluate in this way the ion FLR current J; in response
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to the perpendicular field component E,. Separating zero and first order part in the
Larmor radius, it can be written in rotating components

Ji=JO + 72 (2.50)

The zero Larmor radius part is

47 f(o)

— LE,it, + RE_@_ (2.51)

where we have introduced the integral operator

i +co —u? t - '
im=-% [ et (“"“’ / dt’e‘f"”‘“”“"ﬂfn-) (251)
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oo
(R, being non-resonant, can be approximated by the local limit (2.5)). The FLR part
is found to be

2 p-
47”.](2)= :73-_ {VJ_ U(z)ﬁl-@-ﬁ_ﬂ_)-—ié'(z)ﬁ_]_' (ﬁc Xé-EJ_)l

(2.52)
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and p; given by (2.27). In (2.52) i, is a unit vector along the static magnetic field, and

the matrix B = R"1 is the reflection matrix with respect to the plane containing B,
and V B,:

B-Ey =B\ -2, x (B x ;) (2.55)
where i, is a unit vector in the direction of the perpendicular part of the gradient of
the static magnetic field.

If toroidal curvature is neglected, i.e. if the tokamak is assimilated to a plasma ‘slab’,
the hf. field can be assumed to be a plane wave with a constant kj, and the integral
over the parallel motion and over the distribution of parallel velocities can be performed,
leading to the Plasma Dispersion function as in the homogeneous case; the FLR wave
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equations are then purely differential [41]. This approximation is sufficient, in particular,
to develop quantitative models of the antenna coupling [25]. The only new feature with
respect to the cold limit is that the presence of a pressure-driven wave in the plasma
requires additional boundary conditions to be imposed at the vacuum-plasma, interface;
the nature and physical meaning of these conditions are discussed in [42].

2.15 — Toroidal effects on wave propagation. Meaningful power deposition profiles,
on the other hand, can be obtained only by solving the wave equations in fully toroidal
geometry. Being in vector form, Eqgs. (2.51)—(2.55) can be easily written explicitly also
in this case (for an alternative derivation directly in toroidal geometry which, however,
ignores parallel dispersion, cfr. [43]). Due to parallel dispersion, they remain, however,
an integral, non-local relation along magnetic field lines.

A discussion of the time and parallel velocity integrals in Eqs. (2.52) and (2.53) which
takes into account the effects of toroidicity on the ion motion discussed in section 1.9
can be found in [44]. For most purposes a simpler approximation, equivalent to the one
made to obtain the quasilinear diffusion coefficient (1.12), is sufficient. It is convenient
to expand the wave field into toroidal and poloidal Fourier components,

+o00
E=¢m™ Y Em(n;r)e™ (2.56)

m=—00

Because of axisymmetry there is no coupling between different n components, but due
to the poloidal variation of the coefficients of the wave equation a large number of m
modes are strongly coupled to each other. To each value of m, however, corresponds
locally the parallel wavenumber

kj(n,m) = —— cos O+ Z5in® (2.57)
Rior T

where tan© = B,o/Bior is the ratio of the poloidal to the toroidal component of
the static magnetic field. If Qc;(r,¥) where taken at the observation point instead
than at the particle position, the integrals would reduce again to Plasma Dispersion
functions, with a different value of k) for each Fourier component. The correct integrals
obviously have the same asymptotic behaviour far from cyclotron resonances; close to
such resonances they can be evaluated exploiting the stationarity of the phase [45].
An interpolation between these two limits, which is uniformly very accurate and easily
implemented numerically, has been proposed in [46]. It consists in using the Plasma
Dispersion function, with, however, an effective value of the parallel wave number

m)-—_—-VI"’? Iy |sin@sin®]  (2.58)

ky)ers = ky(n, Y
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The y—dependent factor adds to the thermal Doppler broadening of the cyclotron layer
& correction which takes into account the finite length of the resonances of individual
ions (neglecting those with turning point close to the resonance itself). Thus kpers
does not vanish even in the limit kj — 0, a result which is easily seen to be physically
correct.

The Ansatz (2.56) tranforms the integro-differential wave equations in tokamak ge-
ometry into a (large) set of coupled differential equations for the radial variation of the
amplitudes of the poloial Fourier components. Methods for their solution and examples
of results can be found in [47]-[48]; a review of other approaches for the solution of
the wave equations in toroidal geometry and further references can be found in [49].
Here we mention only that the second term in Eq. (2.57) is responsible for considerable
broadening and even scrambling of the kj-spectrum excited by the antenna, particularly
near the magnetic axis r — 0.

2.16 — Quasilinear effects in the propagation of IC waves. The coefficients of the con-
stitutive relation (and those of the local dispersion relation (2.32)) have been written
assuming Maxwellian ion distribution functions. They can be easily modified, however,
to take into account the deviations of the ion distribution functions from thermal equi-
librium discussed in section (1). This task is greatly facilitated by the fact that in the
FLR approximation the distribution of perpendicular velocities enters in these coeffi-
cients only through its two lowest momenta, namely the density and the perpendicular
pressure. The quasilinear distribution of parallel velocities, on the other hand, must
replace the Maxwellian in the definition of the Plasma, Dispersion function.

Clearly, the increase in perpendicular pressure due to heating will influence in par-
ticular the efficiency of mode conversion near first harmonic resonances. The presence
of suprathermal ions with excess of energy in the parallel direction, on the other hand,
broadens the cyclotron resonance layers, and enhances ion cyclotron damping. The
results of section 1.8 suggest simple analytic approximations by means of which the
modified Plasma dispersion function can be easily evaluated and the importance of
these quasilinear effects estimated [50].
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