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Abstract

The coil system HSH5V10T of Wendelstein 7-X is investigated with respect to its suitabil-
ity for the attainment of stable, high-¢, high-mirror, low-shear, high-3 plasma equilibria.
For this purpose the coil currents of the modular coils and the auxiliary coils are varied
individually, and a suitable current configuration is iteratively determined with the help
of a system of numerical codes that allows to calculate vacuum magnetic fields and to
trace field lines (GOURDON code), to determine fixed-boundary (VMEC code) and free-
boundary equilibria (NEMEC code), to compute the magnetic fields of finite-3 equilibria
(MFBE code), to analyse the magnetic field properties (JMC code) and to determine
the neoclassical properties (GUIDING CENTRE codes).



1.0 Introduction

Wendelstein 7-X (W7-X) [1,2] is an optimized Helias-type (HELIcal Advanced
Stellarator) stellarator with N = 5 periods. For its optimization the following set of

seven criteria has been used [3]:

e MHD properties

1. high quality of the (vacuum) magnetic surfaces,
2. good finite- equilibrium properties,
3. good MHD stability properties,

e Neoclassical properties

4. small neoclassical transport in the Imfp regime,
5. small bootstrap current in the Imfp regime,
6. good collisionless a-particle confinement,

e Realization by coils

7. good modular coil feasibility.

The plasma behaviour in the confinement region is completely determined by the
geometry of the confinement boundary within the last closed flux surface since this
boundary yields a Neumann problem for the magnetic field inside of this boundary.
Thus, the optimization with respect to the seven criteria given above was done by solv-
ing boundary value problems with the parameters of the plasma boundary being the
optimization variables [4, 5].

After the plasma equilibrium had been specified, the modular coil system was de-
termined. For this purpose the NESCOIL code (NEumann Solver for fields produced by
external COILs) [6] was developed to solve a Neumann problem at the plasma bound-
ary in which a surface current was determined on an outer surface enclosing the plasma
boundary, such that the normal component of the magnetic field produced by it was
minimized at the plasma boundary. The resulting surface current distribution on this
outer current-carrying surface was discretized into a finite number of current lines which
represent the central current filaments of the actual finite-size coils. The shape of the
outer surface and the number of Fourier components of the potential ®, from which the
current line had been calculated, were optimized with respect to technical aspects and
the quality of the resulting magnetic field in comparison to the originally given field. As
a result of these calculations a modular coil system called HS5V10N [7, 8] with 10 coils
per field period has been obtained, which provides a magnetic field with nested magnetic

surfaces and a specific rotational transform profile.



A flexible experimental device, however, requires a sufficently broad range of mag-
netic field parameters like the rotational transform, the magnetic well etc. This is
achieved by a set of four planar coils per field period [7,8], which is added to the coil
set HS5V10N in a helical arrangement. The coil currents in the modular coils and these
auxiliary coils are individually adjustable in order to produce various magnetic field

configurations.

Investigations of various magnetic field configurations [7 — 10] produced with the
coil set HSHV10N revealed an unfavourable aspect ratio for the high-¢ case. Its plasma
radius is nearly 20% smaller than that of the standard case. In order to improve the
aspect ratio at high rotational transform values it was necessary to slightly modify the
modular coils. It was possible to do this without significant changes of other magnetic
parameters, e.g. the plasma radius and the rotational transform of the standard case,

the shear, the magnetic well and the low harmonic Fourier components of the magnetic

field [9] (see also sec. 3.1).

It has been the aim of this work to investigate this modified coil set called HS5V10T
with respect to its suitability for the attainment of a stable, high-¢, high-mirror, low-
shear, high-3 plasma equilibrium. For this purpose, the currents of the modular and
auxiliary coils are changed individually, and a suitable current configuration is deter-
mined iteratively using a system of numerical codes that allows to calculate vacuum
magnetic fields and to trace field lines (GOURDON code), to determine fixed-boundary
(VMEC code) [11, 12] and free-boundary equilibria (NEMEC code) [12], to compute the
magnetic fields of finite-3 equilibria (MFBE code) [13], to analyse the magnetic field
properties (JMC code) [4,14,15] and to determine the neoclassical properties (GUID-
ING CENTRE codes), viz. the neoclassical transport [16,17], the bootstrap current

[18,19] and the collisionless a-particle confinement [20].

This paper is organized as follows. Section 2 gives a description of the iteration
procedure and the code system. Various vacuum magnetic fields, which are created
by different current configurations, and their properties (e.g. ¢-profile, magnetic well,
magnetic mirror) are discussed in section 3. Finite-3 equilibria, their magnetic field
structures and their MHD stability properties are studied in section 4, while section 5
deals with the neoclassical transport and the bootstrap current in the lmfp regime and
the collisionless a-particle confinement. A summary of the results and an outlook to
further calculations are given in section 6 and, finally, a complete list of the numerical

parameters used in the codes mentioned above is put together in the appendix.



2.0 Iteration procedure and code system

The coil system HS5V10T proposed for W7-X (major radius: Ry = 5.5 m, plasma
radius: ag = 0.55 m) consists of fifty modular non-planar coils and twenty auxiliary
planar, non-circular coils, that is, ten modular and four auxiliary coils for each of the
five periods. The coils are superconducting and produce a magnetic field strength of 3 T

on the magnetic axis.

FIG. 1: Three-dimensional representation of the plasma tube (orange) of the so-called
standard case (see section 2) and the coil set HS5VI10T (blue: modular coils 1-5, reddish
brown: auxiliary coils A and B) for halt a period. The triangular cross-section on the
left side and the bean-shaped cross-section on the right side include Poincaré plots of
closed magnetic surfaces. Furthermore, the five islands of the standard case (yellow) and
the proposed divertor and baffle plates (pink) [8,21,22], which are intersected by these

islands, are shown.

Because of the periodicity and the stellarator symmetry only the five modular and
the two auxiliary coil currents of half a period are free for variations, while the other
currents are then determined by the symmetry conditions. That is, there are seven

degrees of freedom to produce various magnetic fields.
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An overview over the iteration procedure and the code system for optimizing the

coil currents is given in Fig. 2. There the iteration loops are shown including the names

of the corresponding numerical codes, which are used for the calculations. The iteration

loops and the numerical codes are explained in the following.

The seven coil currents form the INPUT of the iteration process.

The coil currents are used to determine the vacuum magnetic field by means of Biot-
Savart’s law and to trace field lines using the GOURDON code. In addition to
Poincaré plots of the magnetic field structure the GOURDON code yields the rota-
tional transform and the magnetic well of the vacuum magnetic field. Furthermore,

the last closed magnetic surface (lems) is determined.

The data of the coordinates along the field line forming the lems are used in the
DESCUR code [23] to approximate the lems by a set of Fourier coefficients. These
Fourier coefficients are the input of the fixed boundary equilibrium VMEC code and
the free-boundary equilibrium NEMEC code.

The VMEC code (Variational Moments Equilibrum Code) [11, 12] (here only used
in the vacuum case) is an energy minimizing fixed boundary equilibrium code as-
suming nested flux surfaces. It determines the plasma equilibrium inside a given
fixed boundary (which is the lems in the vacuum case) and yields the Fourier co-
efficients of the nested flux surfaces and of the magnetic field on these surfaces as

well as the rotational transform and the magnetic well.

The 3D free-boundary equilibrium NEMEC code [12] is a synthesis of the VMEC
code and the NESTOR (NEumann Solver for TOroidal Regions) vacuum code [24].
It is used to determine free-boundary finite-3 Helias equilibria. It yields the Fourier
coefficients of the nested flux surfaces inside and on the plasma boundary, the Fourier
coefficients of the magnetic field on these flux surfaces and the Fourier coefficients of
the potential ® on the plasma boundary, which determines the magnetic field outside
the plasma boundary. Furthermore, it calculates the rotational transform on the

flux surfaces, the magnetic well and the plasma volume of the finite-3 equilibrium.

In order to compute the magnetic fields of finite-3 equilibria on a grid inside and
outside the plasma boundary the MFBE code (Magnetic Field Solver for Finite-
Beta Equilibria) [13] is used. This magnetic field defined on a grid serves as input
to the GOURDON code, which traces field lines inside and outside the plasma
boundary and determines the lems of the finite-3 equilibrium. If this lecms does not
coincide with the plasma boundary obtained by the NEMEC code, the toroidal flux,
which is a free parameter in the NEMEC code, is modified, that is, the toroidal flux

is determined iteratively (see [13]).
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FIG. 2: Overview of the iteration procedure and the code system for optimizing the coil

currents.



e The natural coordinates for calculating local and global instabilities and neoclassical
properties are the magnetic coordinates [25]. Therefore, the JMC code transforms
the curvilinear coordinates (s,u,v) [11] used in the VMEC and the NEMEC code
into the magnetic coordinates and yields the Fourier spectrum of the magnetic field,
which determines the neoclassical properties. Furthermore, the stability of the three-
dimensional finite-3 equilibria with respect to Mercier [26] and resistive interchange
modes [27] is studied by means of the JMC code [4, 5, 15]. If the Fourier spectrum of
the magnetic field shows undesirable properties or if the stability criteria of Mercier
and resistive interchange modes are not fulfilled the coil currents are modified and

the calculations start from the beginning.

e The neoclassical transport [16, 17], the bootstrap current [18, 19] and the collisionless
a-particle confinement [20] are calculated with various GUIDING CENTRE codes
(GC codes). In the case of unfavourable neoclassical properties the coil currents

are modified.

e The CAS3D code [28] is a stability code for nonlocal mode analysis starting from
the formulation of the MHD energy functional in magnetic coordinates. It has been
shown that in Helias stellarators Mercier mode stability has to be satisfied to avoid
global modes and low poloidal number ballooning modes then do not exist [3]. The
CAS3D code has therefore not been used within the iteration procedure described

here.



3. Properties of the vacuum magnetic fields
3.1 Comparison of HS5V10N and HS5V10T

First, the magnetic fields produced with the coil sets HSH5V10N and HS5V10T will

be compared in this section.

HS5V10N HS5V10T

case A

FIG. 3a: Poincaré plots of the vacuum magnetic fields of the standard cases (case A)
tor HS5V10N and HS5V10T. At the symmetric bean-shaped cross-section flux surfaces
(black dots), a chain of five islands (green dots), the last closed magnetic surface (red
dots) and ergodic field lines (blue dots) are plotted.

Figures 3a,b show the vacuum magnetic field structures of the standard cases (case
A) with five macroscopic islands and the high-¢ cases (case B) with four macroscopic
islands outside the last closed magnetic surface (for the corresponding coil currents see
Tab. II in sec. 3.2). With respect to the proposed divertor concept [8,21,22] - the
divertor plates intersect the macroscopic islands [10] - the lcms is defined as the last

closed magnetic surface inside the macroscopic islands (red dots in Figs 3a,b). In case A



only small changes in the magnetic field structure prevail (compare also Tab. I), while
important differences occur in case B. There, using the coil set HS5V10T, the volume
inside the lems increases, i.e. the aspect ratio decreases (see Tab. I) and the ergodization

of the edge region is reduced, i.e. the remnants of the macroscopic islands are enlarged.

HS5V10N HS5V10T

so e

case B

FIG. 3b: Poincaré plots of the vacuum magnetic fields of the high-t cases (case B)
tor HS5V10N and HS5V10T. At the symmetric bean-shaped cross-section flux surfaces
(black dots), four islands (green dots), the last closed magnetic surface (red dots) and
ergodic field lines (blue dots) are plotted.

The Fourier representation of the magnetic field B in magnetic coordinates [14, 25]
is given by
B = Z Bmn(s) cos[2m(mb — no)],
m,n

with s the flux label and 6, ¢ the poloidal (index m) and toroidal (index n) variables. A
complete Fourier description of the W7-X magnetic field produced by a set of modular
and auxiliary coils needs a rather large number of contributing harmonics, the great

majority of which may be assigned to one of three groups according to their toroidal
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mode number n. These groups are identified with (1) the toroidal nature of the device
(n=0); (2) the stellarator structure (typically 1 < n < 3); and (3) the modular ripple
(typically 8 <n < 12). In particular, the component By describes the main magnetic
field containing the deepening of the magnetic well at finite 3, By 1 represents the helical

curvature, By the toroidal curvature and Bp 1 the mirror field.

case A case B
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FIG. 4: Comparison of the largest Fourier coefficients By n of HS5VION (4) and
HS5VI0T (solid line) for the cases A and B. The By s are plotted versus /s. Fourier
coefficients smaller than 0.01 are not shown. Byg(s = 0) = 1 has been subtracted in

plotting Bog.
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FIG. 5: Comparison of the rotational transtorms ¢ of HS5VION (+) and HS5V10T (solid
line) for the cases A and B.

In Fig. 4 only the largest Fourier coefficients By n of cases A and B versus /s are

shown. For clarity, Fourier coefficients smaller than 0.01 are neglected. By (s =0) =1
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is subtracted in plotting By o. For the standard case (case A) the By, ns of the old coil set
HS5V10N denoted with + and the coefficients of the new coil set HS5V10T represented
by solid lines are almost the same, while in the high-¢ case (case B) small deviations
occur. The Fourier coefficient By ; corresponds to a mirror field of approximately 5% for

the standard case and is slightly increased (a~ 6%) for the high-¢ case.

The profiles of the rotational transform ¢ and the magnetic well V" are plotted for
the cases A and B in Figs 5 and 6 comparing the two coil sets. Again no deviations are

visible in the standard case, while for the high-¢ case a small deepening occurs.

case A case B

-2.0 | | | -2.0 | | |

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Vs Vs

FIG. 6: Comparison of the magnetic wells V"' of HS5VION (4) and HS5VI10T (solid
line) for the cases A and B.

TABLE I: Rotational transform 1y on the magnetic axis, aspect ratio A, magnetic well

VII — (VI

e — Vo) Ve (V... = specific volume on the lcms, Vi = specific volume on

the magnetic axis) and volume V' enclosed by the lems for the vacuum magnetic field

configurations A and B produced by the coil sets HS5V10ON and HS5V10T.

case A
coil set L0 A V" %] V [m?]
HS5V10N 0.861 10.69 -1.07 28.88
HS5V10T 0.856 10.79 -1.03 28.48
case B
coil set L0 A V" %] V [m?]
HS5V10N 1.005 12.91 -1.40 19.99
HS5V10T 1.002 11.24 -1.59 25.96
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The results of the comparisons are summed up in Table I, which contains the rota-
tional transform to on the magnetic axis, the aspect ratio A, the magnetic well V" and
the volume V inside the lcms of cases A and B for the two coil sets. While the magnetic
field properties of the standard case are almost unchanged, the high-¢ case is improved
by the new coil set HS5V10T, that is, the aspect ratio is reduced so that the volume

inside the lems increases substantially.

The comparisons of the standard cases and the high-¢ cases show that an increase
of the rotational transform leads to an increase of the aspect ratio and a reduction of the
volume inside the lems. The rotational transform of the high-¢ case is only slightly higher
than unity on the magnetic axis. That is, for the corresponding finite- equilibrium with
high average (3 the rotational transform will fall below unity - an increase of 3 leads to
a decrease of the rotational transform - so that the low-order rational value (5/5) occurs
inside the plasma. In the next section the coil currents are varied in order to find a
vacuum magnetic field configuration with a higher (-value at the magnetic axis without

a too large reduction of the volume inside the lems.
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3.2 High-¢, high-mirror magnetic fields

To produce a high-¢, high-mirror vacuum magnetic field with reduced shear the coil
currents have to be chosen suitably. Table II contains the currents of the modular coils

1,...,5 and the planar coils A and B for five magnetic field configurations of W7-X.

TABLE II: Currents of the modular coils 1...5 and the planar coils A and B for five
different magnetic field configurations of W7-X. I, [MA] is the nominal coil current
for producing a magnetic field strength of (By) = 2.5 T, which is averaged along the
magnetic axis. F¢ is the factor related to the cases A-E for each coil type given in the

table leading to an individual coil current I, = I Fe.

Iy F.
case [MA] 1 2 3 4 5 A B
A 1.450 1.000 1.000 1.000 1.000 1.000 0.0 0.0
B 1.593 1.000 1.000 1.000 1.000 1.000 -0.220 -0.220
C 1.556 1.064 1.105 0.962 1.013 0.972 -0.235 -0.235
D 1.717 1.116 1.085 0.846 0.785 0.734 -0.300 -0.125
E 1.779 0.981 1.003 0.846 0.846 0.827 -0.315 -0.150

Case A, the so-called standard case, which has already been discussed in the previous
section, is realized by equal modular coil currents and no planar coil currents. In order to
obtain the high-c case (case B, see previous section), equal currents through the planar
coils are added. To realize a high mirror the modular coil currents have to be varied
(case C, high-¢, high-mirror case), and for reducing the shear the currents of the planar

coils have to be different (cases D and E, high-¢, high-mirror, low-shear cases).

Figure 7 shows the vacuum magnetic field structures of cases C, D and E for the
bean-shaped cross-section and in Figs 8, 9 and 10 the corresponding Fourier coefficients
of the magnetic field, the profiles of the rotational transform and the profiles of the
magnetic well are plotted. While the rotational transform on the magnetic axis increases
from case C to case E, the volume inside the lems decreases (see Fig. 7 and compare
also Tab. III). That is, a decrease of the shear, as it is realized in case D and case E
(see Fig. 9), is accompanied by a volume loss. While the auxiliary coil currents influence
mainly the profile of the rotational transform, the mirror is influenced by the modular
coil currents. Case D therefore has the largest mirror field of the three cases (see Fig.
8). Its Fourier coefficient By amounts to 20%, which is twice as large as in case C and
case E. Furthermore, the magnetic well depth of case D is clearly reduced with respect

to the cases C and E (see Fig. 10).
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case C

14

case D

FIG. 7: Poincaré plots of the vacuum
magnetic fields of cases C, D and E. At the
symmetric bean-shaped cross-section flux
surfaces (black dots), four islands (green
dots), the last closed magnetic surface
(red dots) and ergodic field lines (blue
dots) are plotted.
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FIG. 8: Largest Fourier coefficients By, of
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FIG. 10: Comparison of the magnetic
wells V' of cases C (x), D (+) and E
(solid line).

FIG. 9: Comparison of the rotational
transforms ¢ of cases C' (x), D (+) and
E (solid line).

The results of the comparisons of cases C, D and E are summed up in Table III,
which contains the rotational transform ¢g on the magnetic axis, the aspect ratio A, the

magnetic well V' and die volume V inside the lcms.

TABLE III: Rotational transform 1y on the magnetic axis, aspect ratio A, magnetic well

VII — (VI

e — Vo) Ve (V... = specific volume on the lcms, Vi = specific volume on

the magnetic axis) and volume V' enclosed by the lems for the vacuum magnetic field

configurations C, D and FE.

case (0 A V" %] V [m?]
C 1.018 11.41 -1.38 25.19
D 1.058 11.80 -0.66 24.38
E 1.062 12.85 -1.16 20.48
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4. MHD properties
4.1 Finite-3 magnetic field properties

The newly developed MFBE code [13] allows extended investigations of the finite-(
structure of the magnetic field. It computes the finite-3 magnetic field inside and outside

the plasma boundary and, thus, makes an iterative determination of the lems possible.

Free-boundary equilibria with an average beta of () = 0.04 are computed by means
of the NEMEC code for the high-¢, high-mirror cases C, D and E, and the corresponding
magnetic fields of these equilibria are determined on a grid by using the MFBE code.
Figure 11 shows the Poincaré plots of the magnetic fields of cases C, D and E for the
bean-shaped cross-sections. They are the results of the iteration procedure that allows

to find the lems by coupling of the NEMEC and the MFBE code [13].

The comparison of the finite-3 fields with the corresponding vacuum fields given in
Fig. 7 shows that the volume inside the lems decreases, i.e. the aspect ratio increases
(see also Tables IIT and IV). Furthermore, the magnetic axis is slightly moved in outward
direction and the ergodization of the edge region is increased. The large remnants of
the 5/4-islands, which prevail in the edge regions of the vacuum fields of cases C and E,
almost disappear for (#) = 0.04, while the closed magnetic surfaces in the vacuum edge

region of case D ergodize and relatively large remnants of the 5/4-islands are still found

in the finite-(3 field.

In Fig. 12 the largest Fourier coefficients By, of the magnetic fields of cases C, D
and E are given for (§) = 0.04. All Fourier components except By o depend only weakly
on [ (compare Fig. 8). This is a consequence of the weak change in geometry of the flux

surfaces as (3 is increased (see Figs 7 and 11).

The pressure profiles and the rotational transform profiles of cases C, D and E with
() = 0.04 are plotted in Figs 13 and 14. The steepest pressure profile belongs to case
E, while it flattens from case E to D because of the increasing plasma volume (see Tab.
IV). The rotational transform ¢o(0) on the magnetic axis lies above unity for the cases D
and E and below unity for case C. In the latter case this low rotational transform value

appears at approximately half the plasma radius (see Figs 11 and 14).
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case C

18

case D

FIG. 11: Poincaré plots of the magnetic
fields of cases C, D and E for (3) =
0.04. At the symmetric bean-shaped
cross-section flux surfaces (black dots),
four islands (green dots), the last closed
magnetic surface (red dots) and ergodic
field lines (blue dots) are plotted. In case
C the rotational transform value . = 5/5
(pink dots) appears at approximately half

the plasma radius.



mn

mn

case C case D

0.3 T T T T T T T T T T T T T T T 0.3 T T T T T T T T T T T T T T T

1(0,1)

0.2f 1 0.2 /

1(o.)

£ 0.1 .
] [aa] L ]
1(0,0) [ (0,0)
1(5.2) 0-01 1e2,0)
7@%@ 1(=1,0)
3(1,1) 1(1,1)
_0.1 L L L L ‘ L L L ‘ L L L ‘ L L L ‘ L L L ] _0.1 L L L L ‘ L L L ‘ L L L ‘ L L L ‘ L L L ]
00 0.2 0.4 06 08 1.0 00 0.2 0.4 06 08 1.0
Vs Vs
case K
0.3 [ T T T T T T T T T T T T T T T ]
O.Zj ]

1o

1(0,0)

1(3.2)

lenoy FIG. 12: Largest Fourier coefficients By n of
cases C, D and E for (3) = 0.04. The By ns

are plotted versus /s. Fourier coeflicients

5(1,1)

_0.1 [ Il Il Il ‘ Il Il Il ‘ Il Il Il ‘ Il Il Il ‘ Il Il Il ]
0.0 0.2 0.4 0.6 0.8 1.0

Vs 0) = 1 has been subtracted in plotting By .

smaller than 0.01 are not shown. Byg(s =

19



3 1.40

1.30 - b
2 1.20 7

a = 110

1 1.00 -

0.90 - 7
0 0.80 ! ! !
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

Vs Vs

FIG. 13: Comparison of the pressure FIG. 14: Comparison of the rotational
profiles p of cases C (x), D (+) and E transforms ¢ of cases C (x), D (+) and
(solid line) for (3) = 0.04. E (solid line) for () = 0.04.

The results of the comparisons of cases C, D and E for (#) = 0.04 are summed up in
Table IV, which contains the 3-value By on the magnetic axis, the rotational transform

tp on the magnetic axis, the aspect ratio A and the volume V inside the lcms.

TABLE IV: B-value 3y on the magnetic axis, rotational transform vy on the magnetic axis,

aspect ratio A and volume V' enclosed by the lcms for the magnetic field configurations

C, D and E with (3) = 0.04.

case Bo L0 A V [m?]
C 0.121 0.957 12.92 20.53
D 0.116 1.020 12.38 22.70
E 0.121 1.006 14.07 17.73
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4.2 MHD stability properties

The MHD stability properties of finite-3 equilibria ((8) = 0.04) are studied with
respect to the Mercier [26] and resistive interchange [27] criteria by means of the JMC
code [4, 14, 15].

case C case D
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O
) sistive interchange (A) criteria
({(B) = 0.04) versus /s of cases
10 ‘ ‘ ‘ C, D, and FE.
0.00 0.25 0.50 0.75 1.00
Vs

Figure 15 shows the Mercier (+) and resistive interchange (A) criteria of cases C,
D, and E. While for case C a finite region of formal instability prevails around /s = 0.6
(¢(0.6) = 5/5), cases D and E are stable.

be studied with respect to their neoclassical properties in the next section. In these

Therefore, only the cases D and E will

latter two cases only higher rational values occur, viz. ¢(0.69) = 15/14 for case D, and
t(0.75) = 15/14 and ¢(0.91) = 10/9 for case E. Since the free-boundary equilibrium
computations were made with m=0,1,2,...,14, n=-12.....0,...,12 Fourier coefficients, only
the resonances m/n=>5/5 of case C and m/n=10/9 of case E are at least formally resolved

by these calculations (for details see appendix).
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5. Neoclassical properties
5.1 Neoclassical transport

The structure of the magnetic field in terms of its Fourier components By, n as shown
in Fig. 12 governs the neoclassical properties. In the long mean free path (Imfp) regime
particles trapped in local ‘ripple” wells created by these Fourier harmonics determine
the neoclassical transport rate. For W7-X these local wells are of two types: the basic
non-axisymmetric structure of B (typically 1 < n < 3) and the modular ripple (typically
8 < n < 12). The latter is a consequence of the discrete nature of the individual coils
which produce the W7-X magnetic field. Figure 16 shows the modular ripple spectra of
cases D and E for (#) = 0.04. In both cases these components have been neglected in

the following calculations (see appendix) because of their very small values (< 0.4%).
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FIG. 16: Modular ripple coefficients of cases D and E versus \/s for (3) = 0.04. Not
shown, for clarity, are components with similar behaviour: B_1 10, Bo 0, B—1,11, D211,

B_1,12, Bi,12, B2,12 (case D) and B2 11, Bi,11, B2,10 (case E).
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case D case K

FIG. 17: Normalized transport coefficient D* versus normalized mean free path L* of
cases D and E at approximately half the plasma radius and () = 0.04. The equivalent
ripple is ¢ = 6.5% for case D and 6. = 2.2% for case E.

Figure 17 shows the normalized transport coefficient D* versus the normalized mean
free path L* of cases D and E computed with Monte Carlo methods [16,17]. The
normalized mean free path is defined as L* = A/L¢, where A is the mean free path and
L is half the connection length. The normalized transport coefficient D* is introduced
by D* = D/D,, with D, = plateau value. The dependence of D* on L* in the Imfp
regime corresponds to an equivalent ripple d, of 6.5% for case D and 2.2% for case E.
The high ripple of case D results from the large Fourier harmonic Bp 1, which determines
the mirror field, in combination with the other Fourier components which are present
here. A reduction of this component as done in case E, leads to a reduction of the
equivalent ripple. So, only case E with an equivalent ripple of 2.2% fulfils the optimization
criterion of small neoclassical transport in the Imfp regime. The other two neoclassical
optimization criteria - small bootstrap current in the Imfp regime and good collisionless

a-particle confinement - will, therefore, here only be investigated for case E.
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5.2 Bootstrap current

Besides the classical MHD-equilibrium finite-3 effect on the rotational transform,
also the bootstrap current influences the rotational transform profile. It has therefore to
be sufficiently small to avoid large influences on the vacuum rotational transform which

may lead to critical low-order ¢ = n/m values in the case of low shear.

In order to determine the bootstrap current of case E again a Monte Carlo simulation
technique is used, that is, an ensemble of monoenergetic simulation particles is pushed in
time (drift orbit tracing and pitch angle scattering). This procedure leads to an averaged
parallel current, namely the bootstrap current (v;) (for details see [18] and references

quoted therein).

4 .
f(n) | [%]
3 i

O

n

FIG. 18: Monoenergetic Monte Carlo distribution averaged over the plasma radius as
a function of the pitch angle for case E () = 0.04. Dimensionless parameters for this

simulation are the ratio of the plasma radius a to the gyro radius p, (), = % =102, and
the ratio of the mean free path A to half the connection length Lo = wR/¢, L* = A/Lc =
10°.

Figure 18 shows the monoenergetic Monte Carlo distribution averaged over the
plasma radius as a function of the pitch angle n = v, /v for case E. The very small
asymmetry of the distribution function indicates a rather small bootstrap current, () =
—0.3%. The equivalent tokamak bootstrap current [19] is (n)ox = —% = —5.2%,

that is 2 — 0.06.
<77>Tok
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5.3 Collisionless a-particle confinement

The W7-X device attempts to combine small equivalent ripple, vanishing bootstrap
current and sufficiently good collisionless a-particle confinement; the latter by creating
poloidally closed [J-contours at finite 3, with J the second adiabatic invariant, J =

For computing the collisionless a-particle confinement guiding centre orbits of a
sample of a-particles are started at a given aspect ratio A with random values of 8, ¢
and the pitch angle n = v, /v. From this sample a sample of particles which ever get
reflected is obtained and the long time collisionless orbits of these are then followed (for

more details see [20]).

IOO T T T T T

Lost | [%]
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FIG. 19: «-particle losses as a function of the collisionless time of flight for case E
(B) = 0.04. 35% of the particles get reflected (dashed line) and only 5% of them get lost

within the slowing-down time of & 0.1s.

Figure 19 shows the a-particle losses as a function of the collisionless time of flight.
From a sample of particles (100%) 35% of the particles get reflected and only 5% of
them get lost. That is, case E with (3) = 0.04 obviously exhibits a good collisionless

a-particle confinement within the slowing-down time of ~ 0.1s.
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6. Summary and outlook

Magnetic fields and finite-3 equilibria of five coil current distributions (A: standard
case, B: high-¢ case, C: high-¢, high-mirror case, D and E: high-¢, high-mirror, low-
shear cases) produced by the coil set HS5V10T have been investigated with respect to
their MHD and neoclassical properties. For this purpose, an iteration procedure based
on several numerical codes has been used. As a result, case E was found to fulfil all
optimization criteria. Thus, the coil set HS5V10T is suitable for the attainment of a
stable, high-¢, high-mirror, low-shear, high-3 plasma equilibrium.

The iteration procedure is a useful tool to compute coil current distributions which
will serve as an input in order to realize experimentally specific magnetic field config-

urations. A survey of coil currents representing interesting configurations within the

flexibility space of W7-X will be useful.
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Appendix: numerical parameters

The codes summarized in Fig. 2 use numerous numerical parameters which are given in

this appendix.

e INPUT:

The coil currents of the 50 modular and 20 auxiliary coils, which are normalized to a
major radius Ry = 5.5 m are represented by central, infinitely thin filaments. These
filaments are discretized in 96 straight filaments in case of the modular coils and 48

straight filaments in case of the auxiliary coils.

¢ GOURDON CODE:

The vacuum magnetic field is determined on a grid. The cylindrical grid box covers
the relevant region inside the first wall. It is centred around Ry = 5.5 m, Zg =0 m
with a side length of AR = 2.5 m and AZ = 2.8 m. The box is divided into
200 toroidal grid points per period, 101 radial grid points and 101 grid points in Z-

direction. This discretization corresponds to a cell size of 0.035 m x 0.025 m x 0.028 m.

For field line tracing a step size of 0.022 m has been chosen. It guarantees a high
numerical accuracy. The number of toroidal transits, for which the field lines are
traced, varies between at least 15 for inner closed magnetic surfaces and 250 transits
for determining the position of the lems for finite-3 fields. The position of the lems
is determined with an accuracy < 0.001 m at the midplane of the bean-shaped cross-

section in outward direction.

A field line which is used in the DESCUR code to approximate the lems by a set of
Fourier coefficients is traced for 75 transits and the coordinates along the field line
are computed at 64 cross-sections per period.

e DESCUR CODE:

The Fourier approximations of the last closed magnetic surfaces are made for m + 1
poloidal modes (m = 14) and 2n + 1 toroidal modes (n = 12). For this purpose,
300 coordinate points of the corresponding field line in poloidal direction and 64

coordinate points per period in toroidal direction are used.

¢ VMEC/NEMEC CODE:

These codes are energy minimizing fixed/free boundary codes assuming nested flux

surfaces. The cylindrical coordinates R(s,u,v), Z(s,u,v) and ¢(v) (the cylindrical
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angle ¢(v) should not be confused with the magnetic coordinate ¢) are expanded in
Fourier series [11,12]:

My Ny

R(s,u,v) = Z f“(s)mn cos 27 (mu — nv),

m=0n=—ny

My Ny
Z(s,u,v) = Z (8 )y p Sin 27 (Mu — 1),
m=0n=—ny
2
B =50

Here, s is the normalized radial flux coordinate from s = 0 (axis) to s = 1 (plasma
boundary), u (poloidal) and v (toroidal) are angle-like variables (0 < w,v < 1) and
N, gives the number of periods (N, = 5). For the calculations m, 4+ 1 poloidal
modes (my = 14) and 2ny + 1 toroidal modes (ny = 12) are used. The Fourier series
are computed on a mesh of My = 60 (poloidal direction) times Ny = 36 (toroidal
direction) times Ng = 129 (radial direction, number of nested flux surfaces) points,
that is, My = 4my and Ny = 3ny.

e MFBE CODE:

The magnetic fields of the finite-3 equilibria are determined on the same grid as used
by the GOURDON code described above (for details see [13]). The vacuum field By
outside the plasma boundary is given by

1 1

B.(r) = Bo(r) + = Jon VG(r, ') (B - df') — yp /E)R o(r")\V(V'G(r, ') - df’),

with G(r,v') = ﬁ Green’s function and ®(r) potential. The positions r’ are
in the boundary OR, while r represents a position outside the plasma boundary.
In order to obtain a high numerical accuracy it is necessary to adapt the number
of integration points in this equation for each grid point to its distance from the
plasma boundary. Since this distance may be very small for some grid points a
non-equidistant integration mesh is used. To this end, the smallest distance of each
individual grid point from the plasma boundary and its projection (ug,vg) onto the
boundary is determined. Around this point (ug,vo) the interval of integration is set
to a value which is much smaller than the distance of the grid point (& 1/100 of the
distance). Further away from this point the interval of integration is increased step
by step to an upper limit which corresponds to the equidistant integration mesh size
used far away from the grid point, that is 50 integration points in poloidal direction
and 100 integration points per period in toroidal direction. This corresponds to a
integration step size of ~ 0.07 m in both directions. For distances of grid points
smaller than a very small fraction (< 2-107%) of the plasma radius, the magnetic

field is extrapolated from the field inside the plasma boundary.
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e JMC CODE:

The Fourier representation of the magnetic field in magnetic coordinates is made for

m + 1 poloidal modes (m = 15) and 2n + 1 toroidal modes (n = 12). From these

Bm ns those which are larger than 8 - 10~%* are chosen.

TABLE Al: Fourier components By ,, of cases D

larger than 8 - 10™* (marked by crosses).

and E ((3) = 0.04) which are

case D case E
n\m 0 1 n\m 0 1 2 3 4 5
12 X 12
11 X 11 X X
10 X 10 X X
9 X 9 X
8 X 8 X
7 7
6 X X 6 X
5 X 5 X X
4 X 4 X X X
3 X X 3 X X X X X
2 X X 2 X X X X X X
1 X X 1 X X X X X X
0 X X 0 X X X X
-1 X -1 X X X
-2 X -2 X X X
-3 X -3 X X
-4 X -4 X
-5 -5 X
-6 -6 X
-7 -7 X
-8 X -8
-9 X -9 X X
-10 X -10 X
-11 X -11
-12 X -12
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e GUIDING CENTRE CODES:

For computing the equivalent ripple, the bootstrap current and the collisionless a-
particle confinement only By, ns larger than 5 - 1073 are used. They are listed in
Table A2. The step size for tracing the guiding centres is &~ 1/20 of the period
length.

TABLE A2: Fourier components By, n of cases D and E ({8) = 0.04) which are

larger than 5 - 1073 (marked by crosses).

case D case E
n\m 0 1 2 3 n\m 0 1 2 3
4 4 X
3 X X X 3 X X
2 X X 2 X X X
1 X X 1 X X
0 X X X 0 X X X
1 -1 X
2 X X 2 X
3 3
4 4
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