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Abstract

Three-dimensional nonlinear simulations of collisional plasma turbulence
are presented to model the behavior of the edge region of tokamak discharges.
Previous work is extended by including electron temperature fluctuations Te.
The basic paradigm that turbulence and transport are controlled by resistive
ballooning modes in low temperature plasma and nonlinearly driven drift wave
turbulence in higher temperature regimes persists in the new system. Parallel
thermal conduction strongly suppresses the ability of the electron temperat-
ure gradient VT, to drive the turbulence and transport everywhere except
the very low temperature region edge of the resistive ballooning regime. As
a consequence, over most of the resistive ballooning regime only the density
gradient drives the turbulence and the temperature fluctuations are convected
as a passive scalar. In the drift wave regime only the density gradient acts to
drive the nonlinear instability and the temperature fluctuations have a relat-
ively strong stabilizing influence on the resulting turbulence. The stabilizing
effect of the temperature fluctuations in the drift wave regime is a consequence
of enhanced damping of density and potential fluctuations resulting from local
electron heating. Expressions for the anomalous particle and electron thermal
transport coefficients, D and e, are presented, which are independent of the
electron temperature gradient.
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1 Introduction

Turbulence and anomalous transport in the cold plasma edge of toroidal confinement
devices such as tokamaks and stellarators are usually investigated using models based
on two-fluid equations. A particularly simple drift-wave model was established by
Hasegawa and Wakatani [1, 2]. It describes density and potential fluctuations in slab
geometry with a homogeneous magnetic field. Drift waves in this model, however,
are stabilized if magnetic shear is included [3]. Hence the model was extended
by including effects of magnetic curvature leading to resistive ballooning instability
[4, 5, 6]. The qualitative structure of the turbulence in the drift-resistive ballooning
system is largely controlled by a single parameter o which is a measure of the strength
of the diamagnetic effects compared with ballooning. For small values of « resistive
ballooning dominates and the drift effects are weak. At high values of o where
diamagnetic effects are large, resistive ballooning modes are stabilized [5] and it was
expected that the strength of the turbulence would be greatly reduced. It was recently
shown [6, 7], however, that in the drift wave regime the turbulence remains robust
as a result of a nonlinear drive mechanism. The turbulence is sustained even in the
absense of linear instability. The curvature plays no role in this regime of nonlinearly
sustained turbulence. In the present work we further extend the model to include
electron temperature fluctuations as well as the electron temperature gradient as a
source of turbulence. The temperature gradient was the dominant drive of turbulence
in the two-dimensional sheared slab [8]. Thus, a key goal of this work is to explore
the relative roles of VT, and Vn in driving the turbulence in the drift wave regime.
An alternative approach based on similar equations is being followed by Scott [9].
The electron temperature dynamics do not quantitatively alter the basic picture
that there exist two characteristic classes of turbulence: resistive ballooning and
nonlinearly sustained drift wave turbulence. On a quantitative level, however, our
previous results are significantly altered and because of parallel thermal conduction
VT, drives the turbulence and transport in a significantly different way than the
density gradient. Deeply in the resistive ballooning regime drift effects and parallel
electron thermal conduction are relatively unimportant and V7, and Vn basically
add to drive the transport. Thus, transport levels can be calculated from previ-
ous work [6] by rescaling the equations to incorporate V7, into the diffusion rate.
As the diamagnetic parameter « is increased, parallel electron thermal conduction
very quickly significantly alters the dynamics of fluctuations of T, compared with
the fluctuations of n. As a result even before the diamagnetic effects suppress the
magnetic curvature drive, the temperature gradient becomes unimportant in driving
the turbulence unless VT, > Vn. In the drift wave regime parallel heat conduction
also suppresses the turbulence drive due to the electron temperature gradient, and
the anomalous diffusion coefficients D and y, are essentially independent of V7.
In this regime, however, the temperature fluctuations do not simply act as a passive
scalar. The density and potential fluctuations pump energy into the temperature
fluctuations, enhancing the dissipation in the system and thereby suppressing the
nonlinearly sustained turbulence. The suppression of turbulence by the dynamics of
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T, in the drift wave regime implies that transport levels will decrease very rapidly
with increasing temperature across the ballooning/drift-wave boundary. Since the
transition between L and H modes in tokamaks straddles this boundary, L mode
falling in the resistive ballooning regime and H mode falling in the drift-wave regime
6], the strong variation of the transport simply as a result of parameter changes
at the transition must be included in any complete theory of the formation of the
transport barrier.

The paper is organized in the following way: In Section 2 we introduce the set of
equations, which is solved by the numerical method discussed in Section 3. In Section
4 we present our simulation results and discuss the impact of VT, and T, fluctuations

on the turbulence and transport. Finally the main results are summarized in Section
5.

2 Equations

The equations on which we base our simulations are an extension of the drift resistive
ballooning equations for density and potential fluctuations [4, 6]. Since the equations
have been discussed previously [10] in detail, we only briefly review the derivation.
The equations for the plasma density n, the potential ¢ and the parallel flow v) are
given by
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where p, = nT,, 1} = —cV¢ X E/B, d/dt = 8/8t + % -V and njy = —V)¢ +

(1/en)Vpe + (0.71/e) V| T, including the thermal force (factor 0.71) and with 7 the
Spitzer resistivity, b=B /B the direction of the magnetic field and £ = b- Vb the
field line curvature.

The jons are assumed to be cold and the electron temperature equation will be
specified below. The first term in the continuity equation (1) consists of the local
density change and the E x B convection, the second term arises from the divergence
of the Ex B velocity caused by the field line curvature, the third term is the divergence
of the ion polarization drift and the last term results from parallel ion flows. The
vorticity equation (2) is essentially the quasineutrality condition V .j = 0, where the
divergence of 7. arising from the ion polarization and electron diamagnetic drifts
(first and second term) is balanced by that of jj. Equation (3) connects the ion
parallel velocity to the parallel pressure gradient.




Previously these equations have been studied for constant 7,. Now we include
electron temperature fluctuations which follow the Braginskii-equation [11]

3 DT, 3 5c b T.o, .
2 Dt 2 VT +peV - U — KLVﬁTB - §EV * De (_E X VTe) — 0.71-8—‘7”3” =1
with @, = 7 + ¥j. + U4 the total electron velocity, vige = —c/(enB) b x Vp, and

D/DT = 8/dt + (7% + 7j,¢) - V. The fourth and fifth term are the thermal-gradient
heat fluxes, and the last term is the frictional heat flux. The continuity equation
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The fourth term yields
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Neglecting the nonlinear convection due to the parallel velocity and using V x (5/ B) &
(2/B) b x & (assuming j = 0) leads to the final equation for T
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(Note the different meaning of x, denoting the parallel heat conductivity, and &,
denoting the field line curvature.) The complete set of equations consists of Egs. (1),
(2), (3), and (4).

Since the parallel correlation length of the turbulent quantities is much larger
than the perpendicular one, we perform our simulations in a flux tube system with
field aligned coordinates [12] in which z lies along the local B and z, y are transverse
to B. The transformation to the usual toroidal coordinate system is defined by [6]

z=r,y=ald - (p—i)/q —apo/qa, 2= Rep. (5)

In this coordinate system the operators are given by

0
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where we have used the abbreviations § = (a/q) dg/dr, L, = 2mq, R, and 2o = R¢o.
The normalization of the equations is described in Refs. [4] and [6], and is based
on the ideal ballooning growth rate and a perpendicular scale length which arises from

balancing cross field ion dynamics and parallel electron dynamics. The characteristic
time and perpendicular space scales are
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Density and temperature are split into a background part n, T, and the fluctuations
#, T.. For the fluctuating quantities we obtain the scaling
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with ¢2 = T.o/mi, ps = ¢s/S% and L, = —n/(dn/dz). This leads to the dimension-
less equations for the normalized fluctuating quantities n, ¢, T., and v (note that
for convenience we denote the normalized quantities without tildes)
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and the additional viscosities Dy, D, and Dr. Lr, is defined in analogy to L,.
The parallel thermal conduction & varies with the effective charge Z.s of the ions
and therefore can be somewhat larger than given in Eq. (21). In Eq. (15) we drop
the explicit curvature term of Eq. (4), since it is small and of negligible influence
according to several runs which we performed with and without this term. Since
we find the parallel diffusion of T, to be the most important new effect introduced
by the T,-dynamics and to facilitate the comparison to our previous results (6], we
drop thermal force and frictional heat flux in Eq. (15) in some of our simulations.
Therefore we introduce the additional parameter &. Without thermal force & = 1,
with thermal force & = 1.71.
The anomalous particle diffusion rate is defined by

(fvr) = D> (22)

with (...) denoting an appropriate average over space (perpendicular to B) and time.
The heat conductivity is obtained by splitting the heat flux into a part caused by
density fluctuations and a part due to the temperature gradient
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we obtain the definition of y,
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In our normalized units Egs. (22) and (23) yield
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Multiplying Eq. (13) by ¢, Eq. (14) by n, Eq. (15) by T, and Eq. (16) by v and
integrating over all space yields the energy theorem

1d
2dt

on\? oT.\*> 9¢ 3
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which is used to monitor the accuracy of the time stepping algorithm.

To unravel he relative roles of Vn and V7T, in driving turbulence and transport,
it is useful to compare the basic Eqns. (13)-(16) to those studied previously in
the constant 7, system. In particular, if the thermal conduction and thermal force
(@ = 1.0) are neglected, the T, and n equations can be combined into a single
equation for the electron pressure p = n + T,

de {E,I(V'J_qé)2 +n? + ng + Uﬁ} = (27)
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dt = Dnvin + DTvﬁ_Te, (28)

Equation (28) corresponds to the n-equation in the n/¢-system with T. = const 6]
and may be transformed to it by rescaling the entire set of equations to a normaliza-
tion based on the pressure scale length L, = L,,/(1+7) rather than the density scale
length L, (except for the factor 5/3 in front of the usually small parallel compression
term). The normalized diffusion rate then becomes

Dy = (27rQa)2ngei§: (29)
P

and the energy flux (pv,) replaces the particle flux (nv,) in the n/¢-system. We
find that the thermal force actually influences the system only very weakly so that
different roles of VT, and Vn in driving the turbulence described by Eqns. (13)-
(16) arise from the presence of the parallel conduction in the electron temperature
equation. The coefficient of the parallel thermal conduction will therefore play a key
role in the discussion of the simulation results which follows.

3 Numerical Algorithm

The numerical algorithm which we use for the present simulations is an extension of
the pseudo-spectral scheme described in Ref. [6] for the n/¢-system. The equations
(13-16) are treated in k-space in the poloidal plane and in configuration space along
the magnetic field since due to magnetic shear periodic boundary-conditions may not
be used in parallel direction. To make optimal use of the numerical resolution the
V2 operator [Eq. (18)] should be as isotropic as possible which requires the quantity
z — 25 to be close to zero. Hence we split the flux-tube into several boxes in parallel
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direction with z defined locally in each box and match the boxes together explicitly
as described in more detail in Ref. [6]. The convolutions due to the nonlinearities are
evaluated by transforming to configuration space. Perpendicular damping terms are
solved exactly by a conversion to exponential factors [6]. In the equations for ¢, n,
and 7, all terms except the Vﬁ-terms are discretised in time according to a leapfrog
scheme. The remaining parallel diffusion terms must be treated implicitly to avoid
a severe time step restriction leading to the following set of linear equations:

—k2¢ + AtVih =b?,
n+ AtenaVﬁh — 8
2 (A
T. + 34t (GeacVih — i VIT.) =7,

with

Of  fir1 = 2fi+ fix
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and 7 labeling the collocation points along z. Combining these equations leads to a
block tridiagonal system for h and T:

Vﬁfz

2
_k2h+ At [1 i (1 4 éﬁ%) kienaz] Vih — 2 Atk ad ViT, = b + Kla(t" + &),

2 il
T, + 30t (GenaVih - K ViTe) =0T

This set of equations for h and T, is solved by a tridiagonal LU-decomposition for
9 x 2 matrices. Afterwards n and ¢ are computed straightforward since h is already
known. The parallel velocity v is advanced as described in Ref. [6]. In addition to
the viscous terms already introduced we use a kS-hyperviscosity in the poloidal plane

8 02\’
2 Bl
x 10 (63:2 + E)y?)

for all quantities, an additional hyperviscosity 1x 1078 V§ for v, and a small parallel

viscosity
2

0
1. R
5x 10 552

for n, ¢, and v to damp modes at the edge of the resolved spectrum.

4 Simulation Results

In our previous work [6] we found that the turbulence of the n/¢-system with
T, = const is characterized by two distinct regimes determined by the diamag-
netic parameter o. For low a (~ 0.5) the resistive ballooning growth rate is large
and the dynamics of drift waves only weakly affect the resulting turbulence and
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| a=042 | a=126 |

T, torus outside || 0.076 & 0.016 | 0.021 = 0.004
', torus inside 0.020 + 0.006 | 0.011 £ 0.002
Tz, torus outside | 0.084 +0.016 | 0.040 £ 0.008
['z,, torus inside 0.040 £ 0.012 | 0.030 £ 0.006

Table 1: Transport at outside/inside midplane.

transport. As « increases and approaches 1.5 the curvature plays essentially no role
and the drift wave dynamics dominates. The absense of a strong curvature drive in
this regime is consistent with linear theory [5]. However, a surprising result is that
fluctuations and transport are not strongly reduced in this drift wave regime in spite
of the fact that there are no linearly unstable modes (3]. The turbulence is driven
by a nonlinear drive rather than a linear drive mechanism [6, 7]. A simple physical
model of this nonlinear instability has been presented [7]. We find that the general
classification of the turbulence into two regimes is also an accurate description of the
more complex system with electron temperature fluctuations. We therefore use the
diamagnetic parameter « as a guide in discussing the impact of T, dynamics on the
turbulence.

4.1 Ballooning Regime

We start our discussion of the system including T in the ballooning regime where
the diamagnetic parameter « is small. The normalized electron parallel thermal
conduction x is proportional to a? as shown in Eqn. (21). Thus, when « is very
small, thermal conduction can be neglected and the turbulence and transport are
simply driven by the total pressure gradient ~ 1+ 7. as discussed at the end of
Section 2. The scaling law for transport in this regime is then given by the transport
rate in Eqn. (29), with the thermal and particle fluxes linked through 7ne, I'r, = nel'n.
Since the nature of the turbulence in this regime is basically unchanged from the
previous system without the electron temperature fluctuations [6], we do not discuss
this case further.

Even at relatively small values of o the thermal conduction can no longer be
neglected. We present detailed results for o = 0.42 with e, =0.04, 7. =1, 8§ =1,
e = 0.25, v = 0.028, and k; = 0.07, including the thermal force & = 1.71. The
resolution was 48 x 48 complex modes in the perpendicular plane and 96 collocation
points along the magnetic field. The box dimensions are L,=68,L,=171, L, =3,
and the viscous damping parameters are Dy = D, = Dr = 4 X 1073, In Fig. 1 we
show poloidal cross sections at different locations along B (the plots for & = 1.26
will be discussed below). We obtain radial streams at the unfavourable curvature
location z = 1 which break up nonlinearly and form mushroom-like density and
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To 2= .0 s =1.25

Figure 1: Structure of ¢, n, and T, for « = 0.42 and o = 1.26 at different locations
along the magnetic field. The plots show poloidal cross sections at saturation, with
z = 0.5 corresponding to favourable curvature and z = 1.0 to unfavourable curvature.
White indicates high and black low values. The poloidal angle increases upwards
and density and temperature gradients point to the left.
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Figure 2: Parallel correlation length for n (solid line), Te (dotted line), ¢ (dashed
line) and h (long dashes); (a) a = 0.42, (b) a =1.26
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Figure 3: Fluctuation amplitudes of n (solid line), T, (dotted line), and ¢ (dashed
line) as a function of the parallel coordinate; (a) o = 0.42, (b) & =1.26

temperature blobs very similar to the case without T, [6]. Due to the magnetic
shear these radial streams become more and more inclined with respect to the radial
direction when approaching the favourable curvature region at z = 0.5/1.5. This
leads to a pattern of intersecting lines on the inside of the torus (2 = 0.5), which was
also reported earlier. Figure 2 shows the parallel correlation lengths of n, ¢, T., and
h. The correlation lengths of n and ¢ are the same within the statistical errors. The
electron temperature fluctuations are smoothed by parallel heat conduction leading
to a significantly longer correlation length.

The average turbulent fluxes are summarized in Table 1. In our normalized
units T, and I'y, are essentially equal at the outside of the torus. Due to the larger
parallel correlation length of T the inside/outside asymmetry of 'z, is smaller than
the asymmetry of I'y,.
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Figure 4: Probability distribution ¢/n (a,f), ¢/T. (b,g), n/T. (c,h), v./n (d,i), and
vr/Te (ek) for @ = 0.42 (a,b,c,d,e) and a = 1.26 (f,g,h,i,k)
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[ 7=05 | 7=10 [ n.=20 without 7, |
T, outside | 0.077 + 0.014 | 0.076 £ 0.016 | 0.078 + 0.018 | 0.070 £ 0.015
T, inside | 0.023 % 0.006 | 0.020 = 0.006 | 0.021 & 0.005 | 0.035 = 0.010
T'r., outside || 0.038 & 0.008 | 0.084 + 0.016 | 0.208 & 0.036 —
Tz, inside | 0.019 & 0.004 | 0.040 +0.012 | 0.090 £ 0.018 —

Table 2: Transport at outside/inside midplane at different values of 7.

The time averaged fluctuation amplitudes are shown in Fig. 3. The density
fluctuations are more strongly peaked on the outside of the torus than ¢ and T,
fluctuations, reflecting the influence of the parallel heat conduction on T,. Note that
the fluctuation amplitude of n is significantly larger than the one of T., despite the
fact, that the fluxes are the same I', = I'r,. A better understanding of this behavior
can be gained by looking at the probability distribution functions (Fig. 4). While n
and ¢ are more strongly correlated than T, and ¢ (Fig. 4 a,b), the opposite is true
for their correlations with v, (Fig. 4 d,e), which leads to a larger transport level of
T, for a given fluctuation amplitude. The reason for the relatively strong correlation
between T, and v, will be discussed further below.

To estimate the relative importance of density and temperature gradients in driv-
ing the transport, we vary ne. Since I'n and I'z, are of the same magnitude (Table
1) and for 7, = 1 the drive due to 'z, in the energy theorem [Eq. (27)] is larger
by a factor 3/2 than the one due to I'y, one might argue that temperature gradient
and fluctuations provide a more important source of turbulence than the density
gradient. We find, however, that, on the contrary, particle and energy diffusion rate
react only weakly, if at all, to a change of m.. The turbulence level is determined
by the density gradient and the electron temperature is convected passively without
strongly influencing the turbulent E' x B flows.

In Table 2 we summarize particle and heat fluxes from runs with 7. = 0.5/1.0/2.0
and all other parameters basically as in the run discussed in Section 4.1 (The para-
meters change slightly, since the computations were carried out in a different nor-
malization). The particle flux is practically independent of 7, and on the outside
of the torus is almost the same level as in the system without T,-dynamics (values
taken from Ref. [6]). Note, however, that the inside/outside asymmetry is enhanced
in the present system with the T,-dynamics since the transport on the inside of the
torus is considerably reduced. The anomalous heat flux is essentially proportional
to m.. As 7. increases by a factor of four from 0.5 to 2.0, the heat flux I'r, increases
by a factor of 5.5. The linear relation between the heat flux and 7. results from a
corresponding linear relation between T, and 7. This can be seen clearly in Fig. 5
where we plot the probability distribution between T, and v, for . = 0.5/1.0/2.0.
The fluctuation of v, is essentially unchanged over this range of 7 while T, increases
by essentially a factor of 4.
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Figure 5: Probability distribution v, /T, at different values of 7,

The results in Table 2 and Fig. 5 imply that T, acts like a passive scalar where
the potential and density fluctuations are independent of the dynamics of T, and
the temperature fluctuations result from the convection of the ambient temperature
gradient. The insensitivity of n and ¢ to 7. and T, is a consequence of x; in the
equation for T, which acts to both reduce the level of thermal fluctuations and the
parallel gradient of these fluctuations. To lowest order the T, equation [Eqn. (15)]

reduces to
a7, d¢ 2 0°T,

i ey T 3N

In this equation the stiring of T, by the flows is balanced by parallel and perpendicular
conduction. Since the equation is linear in the 7, and the drive term 7.0¢/dy is
proportional to 7., T, is also proportional to 7,. The relatively strong correlation
between T, and v, = 8¢/0y also follows from Eqn. (30). To lowest order, thermal
conduction balances the convection across the ambient temperature gradient [v,7.
term in Eqn. (30)] so that T, ~ n.v,. This effect becomes even more pronounced at
higher x|, and results in a very strong linkage between T, and v;.

= DTViTe. (30)

4.1.1 Transport scaling in the ballooning regime

Ultimately, it is important to deduce from simulations such those presented here a
transport coefficient for both particle and energy flux. The difficulty, of course, is
that the system of equations describing the turbulence has a substantial number of
parameters. Fortunately, consistent with our previous work [6], in the ballooning
regime the fluctuations and particle transport are insensitive to parameters such as
€, and the ion sound wave parameter . The present simulations demonstrate that
because of parallel thermal conduction the diffusion rates of both particles and elec-
tron energy are insensitive to V7, if « falls in the range 0.3 —0.8. On the other hand,
the magnetic shear can significantly impact the level of transport. The particle flux
in the ballooning regime typically decreases as the shear parameter 5 deviates from
unity [13]. Despite this caviat, we estimate the scaling of the anomalous transport
in the common experimentally directly accessible quantities. The normalization of
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our system and simulations suggest the following relations for the particle diffusion
coefficient D and the heat conductivity xe,

D =0.08 - Dy, Xe = 0.09: Dy (torus outside), (31)
D =0.02- Dy, xe =0.04- D, (torus inside), (32)

with the scaling coefficient Dy defined in Eq. (26). We emphasize that this estim-
ate is based on a small number of numerical simulations in a limited range of the
parameter space. It is only valid if x| is sufficient to suppress the influence of VT,
on the turbulence and it does not describe the influence of magnetic shear. These
expressions should be regarded only as a first guess, which cannot replace an actual
simulation for a given set of experimental parameters.

4.2 Nonlinearly Driven Regime

In the system without electron temperature fluctuations, the resistive ballooning
growth-rate is weakened by the diamagnetic effects which become strong when « is
large [5). In this regime the turbulence remains strong and is driven by a nonlinear
instability [6, 7]. In this section we show that the electron temperature fluctuations
do not alter this result although they substantially weaken the nonlinear instability.

We discuss a run with all parameters as in the reference run of Section 4.1 except
« =126, L, = 9.1, and L, = 9.5. In the poloidal cross sections (Fig. 1) the radial
streams, which are observed in the ballooning dominated regime, disappear and are
replaced by almost completely isotropic structures. The particle flux (Table 1) is
reduced by a factor of four compared to the ballooning regime and the heat flux
by a factor of two. This level of flux is also approximately a factor of four below
that calculated earlier in the system without temperature fluctuations. Thus, the
fluctuations of 7., have a stabilizing influence on the turbulence in the drift wave
regime. Due to the dominant nonlinear drive, which is independent of the curvature,
the inside/outside asymmetry is weak. Similarly, we observe little difference in the
structure of the turbulence on the inside of the torus compared with that on the
outside (see Fig. 1) and the fluctuation amplitudes (Fig. 3) are insensitive to the
toroidal location. In contrast to the ballooning regime, where density fluctuations
dominate, electron temperature and density fluctuations are of the same magnitude.
Since the correlation between T, and v, is stronger than the correlation between n
and v, (Fig. 4), as already observed in the ballooning regime, the dimensionless heat
flux I'z, is larger by a factor of two than the particle lux [,,. The parallel correlation
lengths of the turbulent quantities are plotted in Fig. 2. The correlation length of
¢ is significantly shorter than in the ballooning regime, while that of h is increased
(but is still shorter than the parallel box size).
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D/ Dy Xe/Do
€n | Me ik outside | inside outside inside
0.02 | 2.0 || 0.025 || 0.059 £ 0.007 | 0.038 £ 0.008 |[ 0.115 % 0.011 | 0.087 =+ 0.008
0.02 ] 1.0 || 0.027 || 0.047 £ 0.006 | 0.030 + 0.003 || 0.081 % 0.007 | 0.062 =+ 0.006
0.03 | 0.5 || 0.045 || 0.030 £ 0.003 | 0.016 + 0.003 || 0.039 = 0.004 | 0.024 =+ 0.004
0.04 | 1.0 || 0.054 || 0.015 £ 0.003 | 0.008 % 0.002 || 0.029 = 0.006 | 0.022 + 0.004
0.06 | 2.0 || 0.071 || 0.011 & 0.002 | .0015 £ .0003 || 0.018 = 0.003 | 0.003 =+ 0.001
0.06 | 1.0 || 0.082 || 0.006 & 0.002 | 0.002 = 0.001 || 0.010 = 0.001 | 0.006 % 0.001

Table 3: Transport at o =~ 1.25 and different values of 7, and p?

4.2.1 Effect of ., ¢,, and K|

We now want to explore the impact of 7, on the turbulence and transport. To do
this it is useful to alter the normalization of the equations to reflect the scaling of the
nonlinear drift-wave dynamics rather than that of the resistive ballooning dynamics,
which plays no role in this parameter regime. The new transport scaling can be
calculated by normalizing the parallel scale length to the magnetic shear length and
the time scale to the drift wave time [6, 7, 14]. The transverse length scale then follows
from the vorticity equation. The new time and space scales are simply L, ~ 1/,
Ly ~a'3/8%3 and t ~ L, /a. The resulting rescaled equations are as follows:

d%h

d
L9194 28 pwts, )
dn 08¢ _,0%h
a + '55 — pfa—zj = DnVin, (34)
dl, 08¢ 2.,(.0%h BT,
'E + nea—i - gpi (05622 + 1.6 552 ) = DTViTE, (35)

where for simplicity we have not displayed the curvature or parallel flow terms,
h=¢—n—aT,, p? = e,(ad)*/*, and k) in Eq. (35) has been written in terms of j,.
The anomalous diffusion rate in this drift wave regime is then

4/3

~

D = DO ' f(ﬁi!”e), J:”)0 = DU (36)

o
SA—:Z/E.
In simulations presented earlier without fluctuations in T, it was shown that the
particle transport is a very strongly decreasing function of ps (6, 14]. We explore
whether this general trend persists in the presence of T, fluctuations and whether
Ne impacts the fluxes. The transport results normalized to the transport rate D
are summarized in Table 3. The simulations were carried out for values of « in
the vicinity of 1.25 with various values of me and €, at fixed ). The variation of
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Figure 6: Anomalous particle diffusion coefficient D/Dy (a) and anomalous heat
conductivity x./Dp (b) versus p?

¢, and o translates directly into a variation of the normalized variable p; as shown
in the table. Because both p, and 7. vary in the data of Table 3, it is difficult to
separate the influence of these two variables. In Fig. 6 we therefore plot D /Do and
Xe/Do versus p?. Since the inside/outside asymmetry is weak, the fluxes in these
figures are averaged over the entire simulation domain. Consistent with our prev1ous
work [6, 7, 14], we observe a strong drop of the transport with increasing pE. At
sufficiently large values of 2, the nonlinear instability is quenched and the residual
transport is ballooning driven. Evidence for this result is the re-establishment of the
inside/outside asymmetry in flux for large p? in Table 3.

An important point for understanding the role of 7 is that all of the data for both
D and Y. fall on a single curve. This implies that the transport rates do not depend
strongly on 7, at least for 7, in the range given in Table 3. If they did, Fig. 6 would
display significant scatter. The electron temperature gradient is therefore only a
weak driver of the turbulence. In a series of simulations at a fixed pressure gradient,
the amplitude of the fluctuations decreases with increasing 7. until 7, exceeds 4 and
then becomes approximately constant. Thus, for n > 4 the density gradient Vn
is sufficiently small that the V7,-drive dominates that due to Vn in spite of the
stabilizing influence of .

To understand why 7, drives the turbulence only weakly it is first necessary to
discuss the relative roles of j, and x| in damping fluctuations. If all of the drive
terms in Eqns. (33)-(35) are neglected, the turbulence will decay as a result of the
parallel diffusion until 7, = h = 0 and n = ¢. Over a longer time scale the sound
wave dynamics damp n and ¢. Thus, the damping of 7, fluctuations is fundamentally
a faster process than the damping of n and ¢. The function h typically damps on the
same time scale as 7. In this simple system the parallel thermal conduction plays the
key role in forcing T, — 0. In the absense of thermal conduction all three fluctuating
quantities can remain nonzero with h — 0. The inability of VT, to strongly drive
the turbulence in comparison to the density gradient is therefore a consequence of
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IR I'n | T, |
0 0.24 +0.03 | 0.180 £ 0.020
0.07 | 0.017 £+ 0.004 | 0.040 £+ 0.008

Table 4: Influence of parallel heat conduction onto the nonlinear drive mechanism.
The parameters are the same as in Section 4.2 except for k). The curvature terms are

switched off (C = 0) to remove the residual ballooning instability and the thermal
force is neglected (& = 1).

k||, which strongly suppresses the thermal fluctuations. In contrast, s forces n ~ ¢
but allows both to remain finite so that the nonlinearities of the system can force a
phase difference between the two and therefore drive the transport.

The impact of k| on the transport was investigated in two simulations with
identical parameters but with & = 0.0/0.07. The results are presented in Table 4.
To remove the residual ballooning drive the curvature terms were discarded. The
particle diffusion rate increases by a factor of three to four over the value obtained
from the system with T, = const as a result of the enhanced drive due to VT,. Thus
VT, strongly drives the turbulence in the absense of thermal conduction. Switching
Kk to 0.07 reduces I'n by a factor 15, leading to a transport level approximately
four times below the one obtained for T, = const. The parallel conduction therefore
essentially eliminates the 7. drive of the nonlinear instability. Further increases
on the parallel conduction by up a factor of four produce almost no change in the
transport rates.

A possible explanation for the reduction of the transport below the level in the
system without 7, fluctuations is simply that in the absense of a drive due to 7, the
T, fluctuations act as a sink on the fluctuations of n and ¢ which drive the nonlinear
instability. The coupling occurs through the term proportional to h in Eqn. (35).
The n and ¢ drive T}, leading to an energy loss of n and ¢. This enhanced damping
only disappears in the limit x| — oco. To make this more explicit we assume that
k eliminates the 7, drive in Eqn. (35). A crude estimate of the effective dissipation
through the temperature equation can then be obtained by writing an equation for
p = n+ &T, by multiplying Eqn. (35) by & and adding the result to Eqn. (34). The

result is Y

D 2 un

— 4+ — —(1+ =« —_— = Q

gt oy~ (T3P = 3
where h = ¢ — p and for simplicity the perpendicular transport terms have been
neglected. If the parallel thermal conduction on the right side of this equation is
neglected then this equation coupled with the vorticity equation are identical to
the T, = const-system but with the p? parallel damping multiplied by a factor of
1+ 242%/3. Because of the rapid decrease of the flux with increasing p?, the increase
in the effective value of 52 is sufficient to explain the drop in the transport rate with

5% 32, 070,

(37)
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Figure 7: Parallel correlation length for n (solid line), T, (dotted line), and h (long
dashes); o = 1.26, e, = 0.02/0.04/0.06 (the lower line corresponds to the lower
€n-value)

the addition of the T, dynamics.

Finally, we briefly discuss the essential physics behind the rapid drop in the
transport rates with increasing 2. An increase in p2 boosts the parallel dissipation
and forces h = ¢ — n — 0 [see the parallel diffusion term in Eqn. (34)] so that the
turbulence is more adiabatic and cannot extract energy from the ambient gradients.
At the same time the turbulence is forced to longer parallel scale lengths where the
drift waves which drive the nonlinear instability become very weak (2, 6, 7, 14]. For
the runs with e, = 0.02/0.04/0.06 and 7, = 1 discussed in Section 4.2.1 the parallel
correlation length is plotted in Fig. 7. The drop of the transport level (Table 3) is
accompanied by an increase of the parallel correlation length, which results from the
increased parallel diffusion.

4.2.2 Transport Scaling in the Nonlinearly Driven Regime

As previously for the ballooning regime we estimate the scaling of the anomalous
transport. Assuming a relation D/Dg ~ p} we obtain
D -

"‘_:3'10_5'103

B (38)

This transport rate can be reexpressed in terms of the traditional Gyro-Bohm dif-
fusion rate by noting

CTe Ps A A
= ——=— = Dyps. 39
D¢ BL. 0Ps (39)
In dimensional units
1/3

A Ps = (QWLS)2P§Vei

IO B P e Bl
Ps LJ_, L |: QQeLn (40)




where I, is the characteristic scale length of the turbulence. The particle diffusion
rate then becomes
D=3-10"% Dgpp;°. (41)

The electron heat conductivity x. obeys a similar scaling law. However, we have to
renew the cautionary discussion of Section 4.1.1 concerning the range of validity and
accuracy of these scaling relations.

5 Conclusions

The inclusion of electon temperature fluctuations T. does not change the basic
paradigm described earlier (6] that the turbulence in the edge of tokamaks is con-
trolled by a diamagnetic parameter . For small a turbulence is driven by resistive
ballooning modes and for large « it is driven by a nonlinear drift wave instability.
This diamagnetic parameter is defined as

pscstﬂ
0=
LnLO

(42)

where the characteristic time and space scales, to and Lo, of the turbulence in the
resistive ballooning regime are given by °

1/2
= (22" 2 (43)
2 Cs
_ 2 44
Lo zwq“( 20, ) Ln) ()

In the present paper we have developed an understanding of the role of the electron
temperature gradient V7, and temperature fluctuations T, in controlling fluctuations
and transport. Parallel electron thermal conduction strongly suppresses the effect-
iveness of VT, in driving the turbulence. Only at the very low temperature edge
of the resistive ballooning regime does the VT, drive survive. Elsewhere in the bal-
looning regime the VT, and T, fluctuations have essentially no effect. The electron
temperature effectively acts like a passive scalar which is convected by the poten-
tial fluctuations which are driven by the density gradient. In the high a nonlinear
drift wave regime parallel thermal conduction again prevents VT, from driving the
turbulence. In this regime, however, the temperature fluctuations do not act as a
passive scalar. The dissipation of density and potential fluctuations is enhanced by
coupling to the 7, fluctuations. As a consequence, the nonlinear drift wave instability
is strongly weakened compared with the system without temperature fluctuations.
Anomalous transport coefficients for the density and electron thermal energy, D and
Xe, are presented in both the resistive ballooning and drift wave regimes and are
independent of the electron temperature gradient.
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