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Abstract

A nonlinear drift wave equation is derived for a hot plasma confined by a
strong magnetic field, the temperature gradient being perpendicular to the
magnetic field and unidirectional. This equation which is obtained through

a long wave-length approximation, is the two-dimensional Korteweg-deVries
equation. It can be transformed approximately in the two-dimensional modi-
fied Korteweg-deVries equation via the Miura transformation. A bi-Hamiltonian
formulation of the drift wave equation is given, which implies its complete in-
tegrability. This derivation of the nonlinear drift wave equation gives a strong
support to k-spectrum calculations published previously by the author.



0.1 Imntroduction

In a series of papers (see [1] and references therein), the author was led to
consider two-dimensional extensions of the Korteweg-de Vries (KdV) and
modified KdV (mKdV) equations, in order to explain the observed k-spectra
of drift waves. It will be shown in this paper that these models are not purely
»ad hoc” but can be derived from two-fluid plasma theory using long wave-
length scalings and some other appropriate assumptions. The plan of the
paper is as follows. Section 2 contains the essentials of the derivation from
the two-fluid plasma equations. Section 3 is devoted to the passage from the
2-D KdV equation to the 2-D mKdV model. A bi-Hamiltonian formulation
of the 2-D KdV equation is given in section 4. Some concluding remarks can
be found in section 3.

0.2 Derivation from the two-fluid model

The equations of motion of a two-fluid plasma (see e.g. [1]) are given by

n;m,‘(a—t‘ +v;-Vv;) = eni(E+v;xB)—-Vp;, (0.1)
neme(a—gf +ve-Vve) = —en(E+vexB)—Vpe.. (0.2)

Consider the application of system (1,2) to a low pressure plasma im-
mersed in a strong magnetic B pointing in the z-direction. Assume quasi-
neutral electrostatic perturbations with electrons isothermal along the mag-
netic field. Neglect in a first approximation the inertia of ions and electrons
and solve (1,2) for v;, v, and n.. This situation augmented with continu-
ity and Maxwell equations is well represented by the following system of
equations.
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where n. and n; are the electron and ion densities, v, and v; are the elec-
tron and ion macroscopic velocities, T, is the electron temperature, ¢ is the
electrostatic potential, x is the coordinate perpendicular to the slab and y is
the coordinate perpendicular to both x and z, ng is the unperturbed density,
e is the charge of the proton, and k is the Boltzmann constant.

At this point it is important to identify the constraints which insure
the correctness of the electrostatic approximation [2]. This problem is very
involved, in general, but can be circumvented here by taking p. = f(n),
which is an acceptable assumption.

Equations (3) and (4) solve the equations of motions (1,2) for neglected
inertia. The parallel motion of the ions is small in view of their large mass.
The continuity equations for ions and electrons are expressed by equations
(5) and (6), while the electrons behave along z according to a Boltzmann
distribution given by equation (7). Quasineutrality, easily restored by the
electrons along the field lines, is ensured by equation (8).

Elimination of v; and n; from equation (5) using equations (3) and (8)
leads to the following equation for ¢ :

Bd AN

i__¢_(”_+_i?.)_qb:0
kT ot n T kT 0y

The subscripts as well as the explicit indication of x-dependence have been

dropped in equation (10). The prime denotes the derivative with respect to
X

(0.10)

Equation (10) is essentially the inviscid Burgers equation in which x ap-
pears as a parameter. It is the simplest model of a nonlinear drift wave
equation [3]. The nonlinearity is due to the temperature gradient of the
electrons, which is present in any confined hot plasma, and is called "scalar
nonlinearity” in the literature. In regions of flat temperature profiles, equa-
tion (10) becomes linear. In this case, however, higher-order terms due to



ion inertia produce a so-called ”vector nonlinearity”, which is, in essence,
two-dimensional and first appeared in Ref. [4].

The solutions of the inviscid Burgers equation are known to develop in-
finitely steep gradients at finite times, which can be prevented by adding
some of the neglected physical terms such as ion inertia or gyroviscosity,
thus limiting attention to nondissipative effects.

A first attempt [5] to take such terms into account was to consider the
case of cold ions and concentrate on the first inertial term in equation (1).
On the assumption of solutions with weak x-dependence, the correction due
to ion inertia is obtained by iteration of equation (1), inserting in the inertial
term the approximate solution given by equation (3) for zero ion pressure.

This leads to
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Let us insert v from equation (11) in equation (5), using equations (7) and
(8) to obtain
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Equation (12) becomes identical to equation (6) of Ref. [5] if ¢ is replaced
by —¢, and if solutions of the form ¢(y — ut) are sought. The discussion of
such solutions led to the existence of drift solitons [5] and other nonlinear
waves.

In the long wave-length approximation, the dispersive term of equation
(12) can be simplified by replacing the time derivative through X% 2 Fyr-

. . eBn Oy
thermore, the nonlinear part of the dispersive term can be neglected for small
values of ¢. In the frame travelling at the drift velocity vy = ’;2’:;, equation

(12) becomes the KdV equation. Finally, if we remove the assumption of
weak x dependence for ¢ and neglect again the nonlinear contributions in
the dispersive term, equations (11,12) become
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The coefficients of equation (14) have usually an x-dependence which is
much weaker as the x-dependence of ¢. This is why those coefficients will
be considered constant throughout the paper. For appropriate boundary
conditions e.g. vanishing of ¢ at large values of x,y, or periodic in y and
vanishing for large x, equation (14) can be written in the form

ddH
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where the Hamiltonian H is
g= j [A¢® + B(V¢)*dady, (0.16)

and A and B are appropriate constants. Equation (14) is the 2-D KdV
equation for drift waves. It represents the lowest approximation to those
waves in confined hot plasmas. Its modified form has been used in [1] to
obtain 2-D k-spectra which agree with observations on large tokamaks. In the
next section, the passage to the modified KdV equation will be investigated.
Note that a 3-D KdV equation has been obtained by a similar procedure in
the context of ion acoustic waves propagating along the magnetic field 6]
See also Ref. [7].

0.3 Modified 2-D KdV equation

As explained in [1], the Hamiltonian (16) of equation (14) is not bounded.
To overcome this difficulty in the 1-D case, Miura transformation [8] has
been used to obtain the 1-D mKdV equation which has a simple bounded
Hamiltonian, the 1-D Ginzburg-Landau [9] Hamiltonian. It will be shown
in this section that a 2-D equation of the kind of (14) can be transformed
by Miura transformation in almost the 2-D mKdV equation up to quadratic
dispersive terms which can be neglected on the same physical grounds as in
section 2. Let us use the "standard” form of equation (14)
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Miura transformation u = v? 4 v, leads to
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The last term of equation (18) is a dispersive quadratic term and can be
neglected. If we want v and the square bracket to vanish at infinity, we have
to equate the square bracket to zero, to obtain the 2-D mKdV equation. This
equation can be written in the form
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where
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Hamiltonian (20) was precisely the starting point for the calculation of
the 2-D space correlation function and the 2-D spectra of Ref. [1]. This
Hamiltonian is not only an ”ad hoc” reasonable assumption, but is now
derived from the two-fluid theory of plasmas.

Let us note that Hamiltonian (20) is "massless” since the quadratic term
in v? is missing. However, by adding and substracting this quadratic term in
(20), one can define an "effective mass” which helps to justify the assumed
exponential behaviour of the correlation function of Ref. [1]. The larger the
»effective mass” is, the nearer to 7 = /2% +y? = 0 will the exponential
behaviour be true. The mild divergence at r = 0 will presumably not be
suppressed in this way, but a residual viscosity and a dispersion with fifth
order derivatives will do it.

This section gives a strong support to the tools used in the calculations
of the spectrum S(k) found in Ref. [10] and explained in [1]. We reproduce
here the result obtained there:

S(k) = i (0.21)
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0.4 Bi-Hamiltonian formulation of 2-D KdV
equation

The nonlinear drift wave equation derived in this paper is the 2-D KdV
equation (14). It has the Hamiltonian formulation (15,16). Like in the 1-D
case the second Hamitonianian is easy to extend to the 2-D equation. In the




1-D case, the second formulation is given by
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Since the second dimension x in equation (14) appears only in the linear
dispersive operator, it suffices to add that third derivative to the previous
” cosymplectic” operator of the 1-D case. Indeed, it is known (see [11}) that
a linear antisymmetric operator added to the ”cosymplectic” operator of a
given generalized Poisson bracket will not change the property of the new
bracket to fulfil Jacobi identity. This means that the second Hamiltonian
formulation is given by
& a? d SH _
w = [u, Hg) = _(a_y5+w —4u5§—2uy)—5uﬁ, (0.24)

with Hg = 1 [u’dzdy.

The bi-Hamiltonian property has important implications as proved in
[12]. In particular, it means that equation (14) has an infinity of constants of
motion and is probably completely integrable. Moreover, a whole hierarchy
of higher order equations can be constructed by recurrence [12].

The bi-Hamiltonian property of equation (14) does not imply the same
property for the 2-D mKdV equation of section 3. Indeed, the Miura trans-
formation fails to transform in an exact way the 2-D KdV into the 2-D mKdV
equation. In order to obtain the 2-D mKdV equation, we had to neglect the
quadratic dispersive terms on physical grounds. A modification of the Miura
transformation does not seem to be successful either.

0.5 Concluding remarks

The derivation of tractable nonlinear wave equations out of complex sys-
tems of physical equations is important for the modelling and interpretation
of phenomenological observations. Such derivations specialize on particular
scalings which determine the kind of nonlinear equation to be applied in
specific cases.




For drift waves in a hot confined plasma the nonlinearity due to a strong
equilibrium temperature gradient [3] is dominant. The dispersion, however,
is essentially linear and two-dimensional around the magnetic field. Scalar
nonlinearity, long wave-length scaling and linear third derivative dispersion
are the main ingredients of the derivation of equation (14) of this paper. It
is not surprising anymore that this equation is the 2-D KdV equation or its
modified form as guessed before by the author [10]. Note that in another
context [6] the equation for nonlinear ion acoustic waves along the magnetic
field was derived in a similar way, which led to the 3-D KdV equation.

The bi-Hamiltonian property proved in section 4 for the 2-D KdV equa-
tion can easily be extended to the 3-D KdV equation of Ref. [6] since the
derivative with respect to the third variable does not enter the nonlinear part
of the equation.

The derivation given in this paper for the nonlinear drift wave equation
gives much more confidence to the calculations of the k-spectrum published
in [10, 1], and reproduced here in equation (21). Note that the agreement of
(21) with ovservations on large tokamaks is quite satisfactory.




Bibliography

[1] H. Tasso, Nuovo Cimento 111 B, 343 (1996).

[2] D. Pfirsch, Private communication.

[3] H. Tasso, Phys. Lett. A 24, 618 (1967).

[4] A. Hasegawa and K. Mima, Phys. Fluids 21, 87 (1978).

[5] V.N. Oraevsky, H. Tasso, and H. Wobig, Plasma Physics and Controlled
Nuclear Fusion Research (International Atomic Energy Agency, Vienna,
1969), p. 671.

[6] V.E. Zakharov and E.A. Kuznetsov, Sov. Phys. JETP 39, 285 (1974).

[7] V.1 Petviashvili and O.A. Pokhotelov, Solitary Waves in Plasmas and
in the Atmosphere (Gordon and Breach, Philadelphia, 1992), p. 44.

(8] R.M. Miura, J. Math. Phys. 9, 1202 (1968).
[9] V.L. Ginzburg, and L.D. Landau, Zh. Eksp. Teor. Fiz.
[10] H. Tasso, Nuovo Cimento 109 B, 207 (1994).

[11] H. Tasso, Dinamica dei Continui Fluidi e dei Gas Ionizzati (Press of
Universita degli Studi di Trieste, 1982), p. 303.

[12] B. Fuchssteiner and A.S. Fokas, Physica 4D, 47 (1981).




