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Abstract

For drift waves and related instabilities conservation laws can play a crucial
role. In an ideal theory these conservation laws are guaranteed when a La-
grangian can be found from which the equations for the various quantities
result by Hamilton’s principle. Such a Lagrangian for plasmas in drift-fluid
approximation was obtained by a heuristic method in a recent paper by
Pfirsch and Correa-Restrepo. In the present paper the same Lagrangian is
derived from the exact multi-fluid Lagrangian via an iterative approxima-
tion procedure which resembles the standard method usually applied to the
equations of motion. That method, however, does not guarantee all the
conservation laws to hold.



1 Introduction

For drift waves and related instabilities conservation laws for momentum
or angular momentum and energy can play a crucial role. This is discussed
in a recent paper by Pfirsch and Correa-Restrepo [1) within the framework
of collisional multi-fluid theories. The central quantity in this discussion 1s
a Lagrangian for the ideal theory which describes the plasma as multi-drift-
fluids, i.e. fluids which obey equations of motion parallel to the magnetic
field and perform all kinds of drift motions perpendicular to B. Pfirsch and
Correa-Restrepo obtained this Lagrangian in a heuristic way via a “recipe”
from the Littlejohn-Wimmel Lagrangian for single particle motion in drift
approximation [2, 3]. Since this was not a derivation, one had to check
whether the thus obtained Lagrangian yielded the correct Euler-Lagrange
equations. Although heuristic considerations are often used in order to find a
Lagrangian, it is also interesting in the present case to obtain the Lagrangian
for drift-fluids as an approximation to the known exact Lagrangian of the
multi-fluid theory. This is done in the present paper. The method resembles
to a certain degree the standard iterative approximation procedure for the
equations of motion, but now applied to the Lagrangian. It exhibits, in
particular, the often small, but for the conservation laws to hold essential
differences of the two methods. Both methods are restricted to motions with
small dependence on time and distance, as compared with corresponding
gyro-frequencies and radii.

The starting point for the derivation is not directly the usual form of
the multi-fluid Lagrangian, but an equivalent one which corresponds to the
phase space Lagrangian for particles. T his form was already important for
the “recipe” in Ref.[1].

In section 2 the “phase space” Lagrangian for multi-fluid theories is pre-
sented, and its equivalence with the usual one proved. Section 3 contains
the iterative approximation scheme and the derivation of the drift-fluid La-
grangian together with a comparison with the standard method which is
usually applied to the equations of motion.




2 Phase space Lagrangian for multi-fluid plas-
mas

The phase space Lagrange density for a multi-fluid plasma is
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Here, v denotes the particle species. The “canonical momentum” is expressed
as m,q,(x, t)+<A(x,t) with the help of an independent vector field q,(x, ).
All other notations are standard. In Hamilton’s principle the constraints
on n, (mass conservation), p, (entropy conservation), and v, (kinematic
constraint) can be satisfied by expressing the variations of these quantities
by arbitrary displacements ¢, as
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The quantities q,, A and ® are to be varied independently. For isothermal
species, i.e. v, = 1, the thermal energy must be replaced by the free energy:

Pv
e L

— p,Inp, with ép, ==V -(p.C,) - (4)
Variation of q, in the action integral yields

a:(x; 1) =v.x;t) - (5)

When this is inserted in £,, Eq. (2), the usual form of the multi-fluid La-
grange density results, which proves the equivalence of the two forms of
Lagrangians.

It is important to note that Eq. (5) is only the result of Hamilton’s prin-
ciple, and that q, and v, are primarily independent quantities.



When the Lagrange density (2) is used in Hamilton’s principle, the Euler-
Lagrange equations corresponding to the variations done in terms of the
virtual displacements {, are
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With Eq. (5), the known equations of motion result. Variations of ® and A
yield the inhomogeneous Maxwell equations
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3 Iterative approximation scheme
This scheme will be based on the following representation of q,(x,t):

Q@ =VE+qb+4q.L,
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The variations with respect to q, are to be done now by varying g, and q, 1,
and one obtains again Eq. (5). The representation (8) guarantees that the
new quantity ¢, is of the order of drift velocities independent of the frame
of reference and scales therefore essentially as gyroradius over macroscopic
length.

The approximation scheme makes use of the fact that insertion of the
exact solutions for ¢, as functionals of the other variables in the Lagrangian
yields a Lagrangian in the variables v,,, qy|, 7, p», ®, A which is equivalent
to the original one. Equation (5) is then obtained only for the components
parallel to B. The components of Eq. (6) perpendicular to B yield v,
as functionals of the other variables, and the parallel components of this
equation are the equations for g,. If one uses an approximation for q,.,
one obtains correspondingly approximate equations for v,; and g,. The
iterative approximation scheme is then the following procedure:

Let qu‘_L be the approximation to g, resulting in the s-th iteration step.

When used in Eq. (6) one obtains new solutions v,(ffl) for v, as functionals
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of the other variables and ql(jl“) for g,). The still existing parallel component



of equation (5) is modified in general because of the possible occurrence of
gy in (’:15,3}_ It yields
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where 6U£T|+1) results from this modification. It will be zero for the approxi-

mation considered below. The new c“lfffl) is defined by

Vi =gl =ve+aT (10)
As mentioned above .. scales essentially as gyroradius over macroscopic
length. An expansion, essentially in this smallness parameter, requires there-
fore
a% =o0. (11)
This makes the approximate iteration scheme almost the same procedure as
the usual one for the equations of motion. It would be exactly the same if
v, on the left hand side of Eq. (6) were approximated by q,.
Insertion of Eq. (11) in the Lagrange density (2) yields the first-order
Lagrange density
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This is exactly the Lagrangian found in Ref.[1] by a heuristic method. It has,
in particular, the property that 5U£TI) in Eq.(9) vanishes.

An important feature of this drift-fluid Lagrangian is the following: The
representations (8) introduce new dependences on the potentials A and ®.
The variations of the potentials related to these new dependences have, how-
ever, no effect, since these variations are multiplied by the Euler-Lagrange
equations or derivatives of them corresponding to the q,-variations, which
means multiplication by zero. The same is true when the exact solutions
for §,. as functionals of the other variables are inserted. With approximate
4,1, however, the additional variations of A and ® yield nonvanishing con-
tributions to the inhomogeneous Maxwell equations which do not occurr in
the standard approximation scheme for the equations of motion. They rep-
resent some, usually small, polarization charge and current densities and an
additional magnetization current density. These are necessary for the conser-
vation laws to hold also for the approximate theory and correct to a certain
degree the incomplete description in terms of drift motions.
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