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Abstract

The non-local effect of ICRH on the singularities of the e.m. field of a tokamak (Vlasov)
plasma is investigated and compared with the effect of the finite Larmor radius. The
parameter region where one of the two dominates is derived. In order to obtain these
results, first the location of the singularities (when the thermal velocity is zero) and the
form of the field in their neighbourhood are derived.

Introduction

The aim of this paper is to study the effect of ICRH on the singularities of the e.m.
field of a tokamak (Vlasov) plasma. The singularities have two causes:

— Particles can be in resonance, somewhere in the plasma, with the external magnetic
field, causing the displacement current, and hence the dielectric tensor, to diverge
at zero temperature.

— The solutions of the partial differential (Maxwell) equations can be singular (at zero
temperature) for some finite value of the coefficients, i.e. also if the displacement
current is finite.

The singularities disappear when v; # 0 through the effect of the finite Larmor radius,
and because a resonance in the plasma, as in ICRH, modifies the dielectric tensor far
from the resonance region as well. The study of the second effect requires a new approach
to determining the singularities at zero temperature. The electric field is not written as
a series with a given first singular term, but is determined in a two-dimensional strip
(toroidal periodicity being assumed) by requiring that the components of the electric
field parallel and perpendicular to the curve (not yet known) on which the solution
is singular satisfy some inequalities (Section 1). The form of the singularities is then
obtained by solving the equations (Section 2). The effect of ICRH is considered in
Section 3 and then compared with the effect of the finite Larmor radius in Section 4.
Finally, the direction of the energy flux in the neighbourhood of the resonance region
(without and with the effect of ICRH) is deduced in Section 5.



1. The equations

The problem is simplified by approximating the toroidal plasma by a straight cylinder
in the z direction and postulating that all quantities be periodic in z, with period
9xR. The toroidal effects considered are those due to the magnetic field B, = Bo(l -
(r/R)cosf) and By = Bor/qR. The surface where the gyrofrequency €; of the ion
species to be heated is equal to the frequency w of the ICRH waves is denoted by
6 = 6,(r). The value of the magnetic field encountered by a particle at a point (r,0)
is approximated by the value at the gyrocentres. Moreover, trapped or quasi-trapped
particles are neglected since it is assumed that r < R (see Cattanei & Croci, 1977).
For the part of dielectric tensor ¢;; due to the particles with gyrofrequency different
from €;, and for the contribution of the ions to be heated to the displacement current
4= (the component that rotates as the electrons) it is assumed that the thermal velocity
is zero. The electric displacement is then written in the form (with (r,0,2) = (1,2,3)
for simplicity of notation)

By = enknr + €12F — (21ri/w)j+ §
Dz = 621E1 + Engz - (21!'/0))j+ 3 (1)

The displacement current j* (the component that rotates as the ions) is connected
with the electric field (via the Vlasov equation) by an integral operator, where the
electric field appears (as a consequence of the approximation described before) in the
form E;(8 + vs,r(v, s)) (v=wv;/vy; s =uvt'/qR is the normalized time along the
characteristics and v; is the thermal velocity of the ions). It is then assumed that
s < 1, which is equivalent to the assumption that the resistivity, although not local, is
independent of the value of the field at a poloidal distance comparable to r; since for
¢ =1/Q; onehas s=p/gR K1 (p=wv/S), the integration interval over s can
be chosen so that (although s < 1) the ions gyrate many times in the time interval
considered. Since, moreover, the most important contribution to the integral over v is
due to the interval v <1, it is reasonable to write E; in the operator that defines j*
in the form

E;(0 +vs,r(-)) = E;(0,7) + vs B9 E;(0,7) + O(p%(v,s)) O’E;[or?.
This yields the following expression for j* (see Croci, 1995):
jt = —(qRw?;/167%/%v,) (GE* + (85, G) 89E*) + O (p?(v,5)) 9*E*/0r?, (2)

where G is a function of (r,0,n;) as defined in the paper cited; different approxima-
tions of it can also be found there. It is convenient to introduce the quantities

€ = i (qRw?; /87 %wu,)G ¢ = (qRw2;/87/?wu;)dG [On .

Equation (2) can thus be written in the form
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jt = eE* + € 9gEt + O(ep?)*E [0r2.

The second term is correct if |¢ 9aE1| < |eET|, a condition that is verified by the
solutions to be derived, as will be seen in Section 4.

The approximations of G are given inside the zone delimited by (6—6,)? = (|sin@,|)~!
(with a = gr/p) - the resonance zone — and outside it. Outside the resonance zone
one has

G ~ —i(n%/n,) Z((cos§ — cosbr)a/n;) — —i(n'/?/n;) Z(a®/n,),
where Z is the Plasma Dispersion Function. If the condition n,<a®© is verified,
outside the resonance zone one has

71/2 i
Ni— ([ 1+ —2= ] .
Gl a® ( +2a292)

Thus € is imaginary, and is zero for n, =0 (besides the obvious v; = 0); € is real.
The solution will first be derived for n, $a®©; a discussion of this condition follows in
Section 4.

In the resonance zone one has

71/2T(1/4) 7l/2n,

s 4(a|sin,|)/2 * alsinb,|’

Thus here ¢ is imaginary and € is real.

An essential approximation used in Sections 2 and 3 is that the term proportional to
p? in jT is neglected in relation to the term proportional to €. The explicit form of
the solution then allows one to determine (in Section 4) the interval of the parameters
where the approximation is verified, in particular the interval of n,.

Since the coupling of E3 with FEj . is neglected although k, # 0, the Maxwell
equations are

B]_ = -—ﬂ,zEg 5 Bg = anl 5 Bg = i(c/rw) (af(TEg) = agEl) )
Dy —n?E, = —i(¢/rw)8gB3, D;—n2E; =i(c/w)d,Bs. (3)

With equations (1) and (2) the Maxwell equations become (with the notation A, =
c/Tw)
054
a6 ’
. o O d . O
(621 = ’LE)E]_ — i€ %El + (622 - ng + E)E2 + € %Eg = ET)\O —8?3- . (4)

The curve along which the electric field is singular when one has v; = 0 is denoted by

0 . . i O .
(€11 — nf +¢€)E; + 4 EEEI + (€12 + EG)Ez + i€ -3_9E2 = —1iA,

T =1,(#), where 7, is real. It is assumed that in its neighbourhood the field depends
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on 7 as T — 7,(6), so that the Maxwell equations (3) have the following form (the
index /6 denotes the derivative with respect to the 6 dependence other than that
arising from r — 7,(6); the prime denotes either the derivative with respect to =, or
the derivative with respect to # when this is the only variable, as in 7,) :

Dy —n2Ey = i) (r, By — Bajg) (5a)

Dy —n2FE; = ir),Bj. (5b)
The magnetic field is given by
—?:B;g//\o = T;Ei + TaEé -+ E2 — E1/9 .

It is convenient to replace equation (5a) by a linear combination of equations (5a) and
(5b), so that the following equivalent system is obtained:

r(Dy — n2Ey) — 1 (D2 + n2Ey) = —irAoBs/g
Dy —n2E; =ir),Bj. (6)
Equations (4) thus become (with A = (e11 — n? +€)rA2 and B = (e12 +1€)7A3)
(rA+71.B)E; + (—rLA+1B)E;y + (r +irl)e 8 E* = —(i/Xo) Baye ,

—BE, + AE; — i€ 0sE* = (i/ ) B3 . (7)

It is useful to introduce the projections of the electric field on the tangent and on the
perpendicular to the curve r =r,(6), that is (with d2=172+77):

doFl = T!OEI 2 TOEZ ) doF2 = TOEI - 'r’oE2 )
with the inverses
doFEn =T’0F1+’I‘OF2, doEy =1, F} —T:JFQ.

The magnetic field is thus given by
—iB3dy/Ao = d2F! + 1o Fy — 1L Fy — do((rhFy + 10 F2) /do) 4 - (8)
System (7) becomes
d2(BF, + AF, + €'r,(F] — iF3)) = [dgF{ + 1Py — 1, Fy — do((roF1 + Ton)/dO)e] i
(Ar — Br!)Fy — (Ar) + Br)Fa + i€'ry (v}, + iro) (F] — iF3) =
= [€F 4+ 1oy — 1B — do (s + ToF) o)) - (9)
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It is obvious that a solution of system (9) can be singular only if ¢’ =0, i.e. if v; and/or
n, are equal to zero (the singular point being X = 0 ). However, when ¢ is different
from zero but is sufficiently small, in the plane (X,€') there will be a region that does
not contain the singular point X = 0, where the solution has the same form (in some
asymptotic sense) as the solution for € = 0. The characterization of the solution we
are seeking — which is crucial point to the problem — should distinguish between the
two cases and also reproduce properties of the solution without # dependence (and, for

that reason, also without ¢'). It is then required that the solution satisfy the following
inequalities:

for € =0: Fj/r,F; =0, Fi/F;—0;
for € #0: |Fj/r.Fj|<l, |Fi/F|<1. (10)

The dependence on # that does not derive from r—r, isconsidered as — comparatively
— weak; accordingly, the inequalities to be satisfied are less stringent:

|Fj| < |Fj/6] < |Fj| for every wvy. (11)

A first consequence of these inequalities is that the condition for the validity of equation
(2) becomes

|e'r! F}| < |eF3|. (12)
Moreover, Bz (given by equation (8)) is approximated by
—Z-Bg,do/)\o ~ dgF{ — T’oF2 = do('r‘,_-,Fz/do)/g .

A more far-reaching consequence follows from the condition |Bsg| < |doB3| applied
to system (9), since then it must hold that

do|BF, + AF3| < |(Aro — Br')Fy — (Ar', + Bro)Fy|.

This inequality, together with |Fj/F2| — 0, yields A =0 as the necessary condition
for the existence of singularities. The first equation of system (9) is now derived with
respect to X and then subtracted from the second, derived with respect to 6. This new
equation is used instead of the first equation of system (9). Thus, in the neighbourhood

of A =0, where A ~ XA’ (and with |Fi| < |F3|), one obtains the system of
equations

G ((BR) + (AR) + dro(Ff —iFy)) = (BrFy — ic'ry(rg, + iro) (F] — iF3)) 4,
BrFy + i€ (rl + iro) (Fy — iF3) = d2Fy — 1L F) — do(roF3/do), - (13)
A further simplification yields
d2((BF,) + (AFy) —i'r,Fy) = r(BFy) g,
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BrEF, + €1l (r! +iro)Fy = d2Fy — 1, Fj — do(roF3/do), - (14)

In order to discuss this system, it is convenient to write the second of equations (14) in

the form

rBFy +€rl(r) + o) Py =

= d2((1/B)(BF)" +2(1/B) (BF)' + (1/B)"(BF1)) — roFy — do(roF2/do) /s -

By means of the first of equations (14) one finally obtains
—ie'(r! JA"YFY' + (X + 2ie'r,(B'/BA")) Fy + a1 Fy—

—(B/d2A")(X Fy/g)’ + asFye + asFa +asF1 =0, (15)
where
ay ~ 2 — (Bro/d2A")((dy/do) + (Bya/ B) = 215/7o) »
ay = 2ro(B'[d3A')
a3 = r,B2/d2A' — 2(B'/B) — (B/d2A")((Bys/B) + o(B/s/B) — 2ro(B'Bys/ B?)) ,
as = —(B/A")(1/B)".

The approximations in these coefficients consist in having neglected a term proportional
to X in a;, and a term proportional to ¢ in as. It is convenient to introduce the
quantity

iv=2—a; — (Bro/d2A")((d,/do) + (Bys/B) — 2(r}h/75))

which is real outside the resonance zone because B is imaginary there, and is equal to
zero when there is no 6 dependence.




2. The case €' =0

In this section equation (15) is discussed without the non local effect of ICRH, that is
without €'; equation (15) thus becomes

XFj +a1F; — (B/dA") (X Fyyo) + a2Fyp + 0ol + asFy = 0. (16)

A consequence of equations (10) and (11) is that the term proportional to Fy is neg-
ligible, so that equation (16) becomes a second order differential equation for Fy. As
the coefficient of the second derivative is X, a solution is singular at X = 0. An
approximation of this solution is easily obtained when inequalities (10) and (11) are
satisfied, because then the first two terms of equation (16) dominate over the others,
and (with the definition Fy = Fp, + Fo1 + ...) one has Fy, = X —1+%  (the inessen-
tial multiplication factor is set equal to unity). The corresponding expression for Fi,
follows from the first of equations (14):

d2BFy, = —d2AFp, + ([TBF30dX) 5.

With the explicit form of F3, one obtains:
Fio ~ —(A'/B)X Fyp — i(ro/d2) (X V) o= (—(A'/B) +1o(¢/ /dov) In X) X™ . (17)

It is easy to check that Fy, and Fj, satisfy inequalities (10) and (11), as they should.
The equation for Fj; is

XF) +a,Fp = (B/dgA')(Xon/a)’ — agFy,/0 — az3Fao — asFio. (18)
Here, too, the term proportional to Fi, is negligible; the solution of equation (18) is
Fly = —iv/ (—(B/d2A") + (ivB/d2A' + a2)/2In X) X " In X — as X 1. (19)

(It follows from equation (19) that Fz; contains the term X% /iv; when v =0, for
example because there is no 6 dependence, one has lim, =X w /iy = In X.) Note that
| Fo1] < |F2o|, as it should.

A general characteristic of the solution derived is that the projection of the field on the
perpendicular to the curve 7 =r,(0), Fa2, diverges for X =0. The projection on the
curve T =ro(f), Fi, canremain finite (this happens when there isno 6 dependence,
as the first of equations (9) already shows); however, it is always singular in X =0
since it contains terms of the kind X In X.




3. The case €' #0

The non-local effect of ICRH on the singularities is now taken into account by con-
sidering € # 0; however, the term proportional to p? derived in the first section is
neglected. The interval of n, where this is allowed is determined in the next section.
In this section the interval considered is m, £ a©, so that outside the resonance zone €
(and hence 7,(6)) is real, whereas it is imaginary (and hence 7,(f) is complex) inside
it. The quantities r,, A’ and B (and hence the coefficients an of equation (15))
depend on e and not on ¢; thus r,, A’ and iB are real and do not depend either
on wv; or on n, outside the resonance zone (as in the case ¢’ = 0), whereas inside it
they depend on them and are complex.

Since the term proportional to Fj can again be neglected, (15) is a differential equa-
tion for F, without singular solutions. The solution is written in the form Fy, =
Fyp + Fa1 + ..., as in the preceding section; F, is determined by the first three terms
of equation (15), which for brevity is written in the form

easFyy + (X + €'ag)Fy, + a1F5, = 0. (20)

(Note that outside the resonance zone €'as and €'ag are real.) With
F}, = exp (—(X + ¢'ag)?/4€%ad)) h

equation (20) becomes

20, —1 (X +€ag)?
K" - '=0. 21
+ ( 2€¢/as 4¢"?a? 4 (21)

With the definitions
2k=a;—1/2 and z= (X + e'ag)/(e'as)'/?,
equation (21) transforms into the following confluent hypergeometric equation:

il +(2k — 22 /)R =0 (22)
dz? z o

Thus h is a linear combination of the functions
z'l/ZWik’_lﬂ( + 22 /2),

where Wy, is a Whittaker function. The part of the solution that yields the singular
solution in the limit € = 0 is given by the bottom sign. Indeed, outside the strip
defined by X < |e'a5|1/ 2 the asymptotic expansion of W_g _1/4 gives for F;, the
dominant term proportional to ¢ 'k(X + €'ag)~2t". Hence, the required part of the

solution is (the inessential multiplication factor independent of ¢’ is set equal to unity)
Fl, = ()52 2 exp (=22 /4) Wep—yja(—22/2) . (23)
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The function defined by equation (23) is not singular in the strip previously introduced.
In fact, known properties of the Whittaker functions allow Fj, to be represented by a
power series of 22 valid for all finite values of z, whose coefficients b, depend on k

and m, and therefore (in our case) only on aj :
Flo o (€)e(1 4+ 0122 + b2z +...) = € —14+iv/2)f(2?).

The function Fy, = X~*% outside the strip (and with X < 0) is obtained by
choosing

Fyp = () -1/ f F(2) dz. (24)

In order to obtain F3, for X > 0 and always outside the strip, it is convenient to
write equation (24) in the form

F

Fyp = (¢)-1+/2 f F(2) dz+ ] F(e2)dz | . (25)

o0

Preceding remarks lead to the conclusion that the first integral in equation (25) does
not depend on ¢, whereas the second is z~'*t*. Thus, outside the strip the first term
is negligible with respect to the second, and the same result as for ¢ = 0 is obtained.
The form of F,, in the strip — where the effect of €' is not negligible — follows from
equation (24):

0
By = (6:)(—1+iu)/2 (:/ f(ZZ) dzt+z1 . (26)

It thus follows that Fb, oc (€')(=1+%)/2 gince the integral does not depend on €, as
already stated. This result together with Fj o< (¢/)~1+#/2 shows that condition (11)
is satisfied.



4. Discussion of the preceding results

The purpose of the paper is to investigate the non-local effect of ICRH on the sin-
gularities of the e.m. field. For comparison, first the situation without this effect was
considered. Outside the resonance zone and with n, =0 (i.e. ¢ =0) the region where
one singular term dominates over the others is the strip defined by | X| < |d2A’ /4B?r,|.
The dominant singular term of the component perpendicular to the curve 7 =7,(0) of
the electric field is X 1%, with

v = (Brc,/dgA’)((dL/do) + (B'/B) — rg/ro) )

Both components F; and Fp diverge on T,(0), except when there is no 6 depen-
dence; in this case F; remains finite on 7,(6) (although being singular).

If outside the resonance zone ¢ # 0, and with the term proportional to p? being
neglected, the solution (for n,<a®) is the same as for ¢ = 0 (with X replaced
by X + €’ag) in the region |€'as|'/? < |X| < |d2A’/4B%r,|. In the remaining strip
|X| < |¢'as|'/?, Fj, can be represented by a power series of 2?2 = (X +€ag)?/(as)
with coefficients independent of ¢, and valid for all finite values of z. Therefore Fa,
is regular in the strip.

It is now determined when disregarding the term proportional to p? is correct, that is,
when p2|eFfL| < |€'r!F5,|. It is again convenient to distinguish the regions outside and
inside the strip. Outside it one should have |X/r| > lep?/€'r?, since Fy,[/Fy, ~ X.
On the other hand, on the border of the strip one has |X/r| = |¢'/ €|}/2. The solution
outside the strip obtained in Section 3 is thus correct if

|6p2/ef?.2 o 161/6‘1/2 .
This condition is equivalent to
(a@)?(p/r)*? < n, < a®. (27)

There is therefore an interval of n, where the solution that disregards the term pro-
portional to p? is correct if ¢|®©] < (r/ p)/3, which is always verified; a consequence
of this inequality is that the allowed n, interval becomes wider when 6 approaches
the resonance zone.

Inside the strip and for the allowed =, interval, the solution of Section 3 is correct for
|X/r| > |ep?/e'r?. For smaller |X| the term proportional to p? cannot be neglected;
its effect is similar to that of € in that it makes the solution regular.

In the resonance zone, v is complex as a consequence of € being imaginary; a further
consequence is that 7, is complex too, and thus X cannot be equal to zero.

It has already been shown that the field components satisfy (as they should) the inequal-
ities that were used to deduce and solve the differential equation (15). It remains to be

checked whether the the inequality necessary for the validity of equation (2), namely
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|€’ T’oFQfo| < lEF2o| 3

is satisfied. Outside the strip (|e'r,/A’|}/2,X), where Fyo = X ~!*%  this is obvi-
ously true. Inside the strip the verification follows from equation (26), which gives
(€7, Fo/ Faol = O(eV/2).

For a final appreciation of the non-local effect of ICRH on the field singularities one
should consider that only waves with n, <1 can propagate in the vacuum between the
coils and plasma. But since the effect of ¢/ dominates over the effect of p? only for
n, > (¢©)2(r/p)?/3, the non local effect of ICRH is limited to the very narrow region
in the neighbourhood of the resonance zone (1/a) < ©% < 1/(¢?a)*?® and to a very
narrow interval of n,.

The last conclusion is of course not valid where the field is not singular; indeed, the

effect of € (which is generally neglected) dominates over the effect of p? when
(ep?/€'r?)(rE'/E) = (¢©)*(rE'/E)/n, <1,
and this condition can be verified by the ICRH field for all 8.

5. Direction of the energy flux
The direction of the energy flux is determined by the ratio of the components of the
Poynting vector:

D=< S, >/< S1>— -—(ElB; + EIB3)/(E2.B§ + E;B3)
In the neighbourhood of the curve r = r,(f) the singular solution yields the approxi-
mation —iBady/A, & d2F] — rLFy — do(roF2/ds) /g; thus Dy becomes

[(T;Fl + T0F2)(d3F{* —riFf — da(Ton*/do)/e] I

D= — * '
* T T (CoF — TR (@3FY — i Ff — do(roF /o) a) 1

(28)

Equation (28) is discussed only where ¢ is real (that is, outside the resonance zone),

and without the term proportional to p?. The first step is to use the first of equations
(14) to obtain

) d?
~iBydo/Ao = ~ 2 (AR) + (d24'/B)(2 ~ 1) Fy + X Fyjg — d3(B'/B)Fy,  (29)

or (since the term proportional to Fj is negligible)
—iB3d, /s = —(dgA’/B) (XFQ + (a1 — 1)F) + X Fyq. (30)

In the strip |¢'7)/A’|}/? <« |X| the dominant term of F, makes the first term of
the RHS of equation (30) equal to zero; it is therefore convenient to use equation (16)
(without the term proportional to Fj,) written in the form

(XF5) + (a1 — 1)}y — (B/d2A") (X Faoss) = —azF20/6 — a3Fa0. (31)
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An integration of equation (31) gives
X F4(ay—1)Fo— (B/d2A") (X Faop9) = —az(v'/v)(i/v+1n X)X +i(as/v)X™. (32)

With this result equation (30) yields
—iByde/Me = (2A'/B) (a2(v' /v)(i/v + 0 X) — i(as/v)) X* . (33)

The contribution of F, to the Poynting vector is obtained by multiplying the RHS
of equation (33) by X~17% and taking the imaginary part of the product. Since B
(and therefore ap) is imaginary, the result for v #0 is

(2ro(B/B)(/ 1) - (d2A'[ B))(as:/v)) X, (34)

with a3; = -(Br/dgA’) ((B/g/B) + TO(B’/H/B) = 2TO(B'B/9/BZ)). The limit v =0
(independence of 6) is obtained by taking the limit of equation (34) before forming the
product; one thus obtains

~(d2A'/BpazgrX 'In X, (35)

with aap = roB?/d2A’ — 2(B'/B). If the region considered contains X = 0 (ie. if
n, = 0) the energy flux diverges for X = 0, but its integral over X is finite, as it
should be.

The contribution of F; to the Poynting vector is easily obtained by using equation (170
the result (not given here) confirms the expectation that the ratio of the contributions
of F; and of F, iszeroat X =0. For X — 0 the numerator of the RHS of equation
(28) is therefore —7,/r, times the denominator and one has ! Dg/r, = 1; the energy
flux thus becomes parallel to the curve 7 = ro(f). It is easy to derive the correction of

the energy flux direction where X # 0 by using the expressions given in the paper.

Inside the strip |X| < |¢'r/A'|Y/? the inequality |Fi| < |F3| is still valid, and the
energy flux is parallel to the curve r = To(f) at X = 0. In this region, however, the
energy flux tends to a finite value at X =0.
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Conclusion

In order to study the effect of ICRH on the singularities of the e.m. field of a toka-
mak (Vlasov) plasma, first we derived the position and form of the singularities (at
zero temperature). For this purpose the electric field was determined in the relevant
two-dimensional strip (with the assumption of toroidal periodicity) by introducing the
components of the electric field parallel and perpendicular to the curve on which the
solution is singular, and by requiring that these components satisfy some inequalities.
The effect of ICRH was first deduced without the effect of the finite Larmor radius;
from a comparison of the two it is concluded that the non-local effect of ICRH on the
field singularities is limited to a very narrow region about the resonance zone and to
a very narrow interval of n,. On the other hand, the non-local effect of ICRH domi-
nates where the field is not singular (and should not be neglected, as is generally done).
Finally, the direction of the energy flux in the neighbourhood of the resonance region
(without and with the effect of ICRH) was deduced. It becomes parallel to the curve
where the field is singular for v, = 0 when it is exactly on it; this is true not only when
the field is singular, but also when the non-local ICRH effect is taken into account.

Obviously, the energy flux diverges in the first case and is finite in the second one.

REFERENCES

Cattanei, G. & Croci, R., 1977 Nucl. Fusion 17, 239
Croci, R., 1995 IPP 6/331

13



