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Abstract

In a first part nonlinear stability of dissipative magnetized parallel
flows is studied using Lyapunov methods. For 2-dimensional perturba-
tions perpendicular to the direction of the flow, a Lyapunov functional
is constructed explicitly by two slightly different methods. This in-
sures the nonlinear unconditional stability of the system. Though the
extension of this nonlinear work to 3-dimensional perturbations seems
impossible at present, a conjecture concerning linear stability of mag-
netized Couette flows is stated, whose proof may become a mathe-
matical challenge. In the second part the addition of parallel flows
to ideal static equilibria is investigated. It turns out that Palumbo’s
"isodynamic” equilibrium plays a special role in this problem.

1 Introduction

The nonlinear stability of dissipative magnetohydrodynamic (MHD) flows
has been investigated by the author in previous work (see for example Refs.
[1.2.3]). In Ref. [1] a general sufficieni condition is derived for incompressible
flows. It leads to unconditional stability if the Reynolds numbers are less than
typically 272, Some stability results for decaying force free fields and for 2-
dimensional equilibria without flow are reviewed in Ref. [2]. A generalization




of the stability condition to Trkal MHD flows. which are a combination of
decaving Beltrami flows and force free fields. is obtained in Ref. [3].

The purpose of this paper is twofold. First, we consider 2-dimensional
dissipative flows parallel to a vacuum magnetic field and investigate their
nonlinear stability with respect to 2-dimensional perturbations perpendicular
to the magnetic field. This is the subject of sections 2 to 4. Second, conditions
for the existence of ideal MHD equilibria with parallel flows are derived in
section 3.

2 Lyapunov functional

The MHD equations for an incompressible fluid with mass density equal to
unity are

%tiquv-vv = JxB—VP+puAV, (1)
B

_% = —-VxVxB+7VxJ, (2)

JB ,

TXE = —E. (3)
VxB = 17, (4)
V-V = 0, (5)

v-B = 0, (6)

where V and B are the velocity and the magnetic fields, E is the electric
field. J is the current and P, n and p are the pressure , the resistivity and
the viscosity respectively. Let us now split the variables occurring in the
previous equations in a zero order solution and a finite perturbation. for
instance. V. = Vg + v etc.. The zero order solution obeys '

Vo -VVe = —VPg+ pAVg =0, (7)
Eo = 1J0=0, ' (8)

By = eBy=ct, (9)

Vo = ey, (10)

e;- VA = €,-VF =0, (11)




where e, is the unit vector in the z direction. while A, Py. Vy depend upon x
and y only. The equations for the finite perturbations v.b,j. p are given by

d
& Vo -Vv+v-VVi+v-Vv=jxB4+jxb—Vp+pAy, (12)

ot
db : g
_E_J_Vx(voXb—i—vXBg-FVXb]:'I}\_X‘]. (13)
b
V = ——
X e ETR (14)
¥ b =3 15
V.-v=0, (16)
Veb= (17)

Take the scalar product of equation (12) with v and integrate over the
volume of the fluid contained in a cylinder oriented along z.

Odff /n v(v- V0+—)—fv Vo xVxv=
\/‘:V'(jX(B()-Fb ++fsn-vp—,ufsnii.rx\_’xv—,ufr\“’xv),(lS)

where V is the volume of the cylinder and 5 is its boundary, n being the
normal to S. Note that the incompressiblity conditions (16) and (17) have
been used to convert some of the volume integrals.

The same procedure is applied to equation (13) by taking the scalar prod-
uct with b to obtain

?dt/v ]Sn-bx(voxb+vx(Bo+b))=
. -2 -
[§ (Voxb+vx(Bo+b) = [n-bxj—n [ i (19)

Let us now assume that the perturbations are 2-dimensional i.e. v and b
are perpendicular to e, and do not depend upon z. This implies that ¥V x v
and ¥V x b lie in the z direction. It follows that the surface integrals vanish
if v.= b = 0 at the boundary of the section of the cylinder with the plane
perpendicular to z. It follows also that the volume integrals containing V
vanish. Adding then equations (18) and (19). one obtains

é% (vi+b?) = /{\—Vv —?]/_] (20)




It is obvious that the integral on the left hand side of equation (20)
is a Lvapunov functional. This proves that magnetized parallel flows are
nonlinearly stable with respect to 2-dimensional perturbations.

3 Another proof

The solutions of equations (16) and (17) are given in the 2-dimensional case
by
v = e, x VU, (:
b = e.x VW (-

l\./ | )

1)
2)
Insert relations (21) and (22) in system (12)-(17) to obtain after crossing
with e.

Vi %e x V((VU)?) + (e. x VU)AU = (e, x VIW)AW +
e: x Vp+uV(AU), - ' (23)
VW +V(e, - VU x VW) = nV(AW). (24)

Take the scalar product of equation (23) with VU and of equation (24)
with VW to obtain

%g(vm? - éw-' ce. x V((VU?) = AW(VU-e. x VIV)+
VU -e, x Vp+uVU-V(AU), (25)
%g(VH 24+ VW - -V(e, - VU x VW) = gpVW .V(AW). (26)

Integrating over x and y and assuming VI' = VW = 0 at the boundary of
the fluid region, one finds

S L TUP) + (9w = [ (AUP = [(aWP 0

2 dt

Equation (27) is equivalent to equation (20) and displays the same Lya-

punov functional. Again this proves that the system is unconditionally stable
with respect to 2-dimensional perturbations.




4 Discussion and Conjecture

This first part shows that the presence of a constant vacuum magnetic field
does not deteriorate the stability of parallel flows. The proofs given are not
restricted to small perturbations, they are valid even for unconditional per-
turbations. The 2-dimensionality of the perturbations is, however, a severe
restriction. which is presumably very difficult to overcome. The magnitude of
this difficulty can be seen from the case of Couette flows, which are a special
I-dimensional parallel flow. It is a big challenge, indeed. to prove even their
linear stability with respect to 3-dimensional perturbations. though it is the
general belief [4] that they are linearly stable for all Reynolds numbers.

This last remark and the main result of this first part of the paper lead us
to postulate a statement on linear stability of Couette flows : If the Couette
flow is linearly stable with respect to 3-dimensional perturbations and for all
Reynolds numbers, the magnetized Couette flow will also be linearly stable
with respect to 3-dimensional perturbations and for all Reynolds numbers.
This can be understood from the fact that a vacuum magnetic field is ex-
pected to constrain the system without adding a new free energy reservoir.
It may be. however, difficult to prove this conjecture.

Let us now proceed to the second part of the paper.

5 Ideal MHD equilibria with parallel flows

In contrast with the first part of the paper we use now the equations for ideal
MHD equilibria with flows

pV+VV = IxB—VP (28)
VxB = J, (29)
V.V o= 0, (30)

VB = 0, (31)

where p is the space-dependent mass density. System (28)-(31) can be ob-
tained from equations Equations (1), (4)-(6), if the time derivatives are can-
celled and if the mass density p is inserted in front of V. Assume a parallel
flow given by

V = AB. (32)



Then, it follows from equation (30) and (31)
B-VpA)=0 (33)

or

pA = f(2). (34)
where ¥ labels the magnetic surfaces. Insert now V from equation (32) into
equation (28) to obtain

1
pl5V(XB?) — AB x (AW x B+ VA x B)| = (VxB) xB-VP  (35)
or )\2
pl5VB +A(B - VNB]+ VP = (1~ pA?)(V xB)xB.  (36)

Assuming the ideal gas law for the pressure P = apT', where the temperature
T is taken as function of ¥ or T = T'(%), take the scalar product of equation
(36) with B to obtain

ATH?
2

B-V( +aTlogp)=0 (37)

or

A?B?

+aTlogp = F(¥). (38)

Note that the assumption 7' = T(¢) is best fulfilled in hot plasmas.

An important simplification of equation (36) is obtained by making a fur-
ther assumption on the ¥ functional dependence of either p or A. Equations
(34) and (38) lead then to a ¥» dependence of P and B?, so that equation
(36) becomes

(V xB) x B=VH(%), (39)

where H(v) is a function constructed with P(v), f(¥), F(¥) and T(v).
Equation (39) is formally equivalent to the equation for static equilibria,
well known in MHD. Combined with the ¥ dependence of B?, equation (39)
has only one solution: the Palumbo solution [5]. It is proved in this section
that this solution can contain incompressible parallel flows.

Palumbo’s equilibrium is known to be unstable with respect to Mercier
localized modes [6] in the static case. Though no general stability criterion
exist for the extended solution with finite flow, it is easy to prove instability
by expanding in the strength of the flow. following Ref. [7].
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