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Abstract

We present three-dimensional (3D) nonlinear simulations of collisional
drift-wave turbulence. Results for the Hasegawa-Wakatani equations (without
magnetic shear) in 3D are compared to former two-dimensional (2D) simula-
tions. In contrast to the 2D system the 3D situation is completely dominated
by a nonlinear drive mechanism. The final state of the system is sensitive
to the configuration of the computational grid since the sheared flow devel-
ops at the longest scales of the system. When magnetic shear is included,
the system is linearly stable but the turbulence self-sustains by basically the
same nonlinear mechanism. Magnetic shear limits the size of the dominant
eddies, so the system evolves to a stationary turbulent state independent of
the computational box. Finally, we show that the level of turbulence in the
system with magnetic shear depends sensitively on the size of the effective

Larmor radius ps compared with the characteristic transverse scale length of
the eddies.
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1 Introduction

The large energy and particle losses observed in magnetically confined plasmas are
now generally attributed to small-scale electrostatic fluctuations. In the cool colli-
sional plasma edge these fluctuations are described by resistive drift wave models.
A particularly simple drift-wave model is that due to Hasegawa-Wakatani [1] which
neglects all effects of the magnetic geometry considering only the two fluctuating
quantities, density and potential, in a straight magnetic field. Since this model still
requires simulations in three-dimensional (3D) space, it is usually further reduced
to a two-dimensional (2D) system, which has been widely investigated by several
groups [2][3]. In particular the high resolution simulations of ref. [3] yield stationary
turbulence, which for sufficiently high Reynolds number is independent of the damp-
ing coeflicients. The inclusion of magnetic shear stabilizes the linearized equations.
Decaying turbulence in the resulting 2D system was studied by Scott [4].

In the following work we present 3D simulations in unsheared and sheared mag-
netic geometry. Effects due to magnetic curvature are neglected here but are re-
ported elsewhere (refs. [5] and [6]). The equations are introduced and briefly dis-
cussed in section 2, while section 3 gives an outline of the numerical methods. In
section 4, we show the results of simulations in the unsheared system. The most
important finding is the existence of a nonlinear drive which leads to a bursty be-
havior with maximum transport levels greatly exceeding that in the 2D system. The
turbulence continously grows until a strong poloidal shear-flow develops and com-
pletely suppresses the turbulence. In section 5 we discuss the 3D system in sheared
magnetic field. Although the system is linearly stable, the nonlinear mechanism
identified in the unsheared case maintains the system in a self-sustained turbulent
state. The fluctuation level and the transport strongly depend on the ratio of the
Larmor radius to the characteristic transverse eddy scale length, which is controlled
by the magnetic shear.

2 Equations

Since the detailed derivation of the nonlinear equations is reported elsewhere [1][5][6],
we only give a brief summary. The equations consist of the continuity equation
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where d/dt = 8/9t+1% -V, 70 = —cV¢ x B/B? and njj = —Vé+(T./e)Vlon and
|| and L indicate directions parallel and perpendicular to the local magnetic field,
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B = Bo[z—(z/L,)y]. Ls being the magnetic shear length. The ions are assumed to be
cold and the electron temperature is kept constant, The first term in the continuity
equation describes the change of density due to E x B convection and the second
term arises from the divergence of the ion polarization drift. The vorticity equation
balances currents due to ion and electron motion. The first term again arises from
the divergence of the ion polarization drift. Charge neutrality is maintained by a
parallel current which is connected to density and potential by Ohm’s law.

To improve spatial resolution in the case of a sheared magnetic field we trans-
form to a twisted slab coordinate system with z-aligned magnetic field lines (6].
Splitting the density into profile ng and fluctuation 7 components and using the
normalizations
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with L) not yet specified and the perpendicular scale length given by
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(ps = ¢s/, €2 = Te[m;) the drift-wave equations are given by
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The viscosity operators D™ and D? will be specified later. Multiplying eq. (5) by @

and eq. (6) by n and integrating over all space leads to the total rate of change of
the turbulent energy

d1 oo n\ s __[[n09 8,V oiepr_np, &

L

The turbulent transport is given by
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with (...) denoting an average over all space. As a consequence of the normalization
given 1n egs. (3) and (4), the anomalous diffusion coefficient formally obeys the
scaling

CTE LJ._
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In the presence of magnetic shear the natural parallel scale length is simply L =
2w Ls so that V? simplifies to
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The coupling of parallel and perpendicular dynamics transforms this parallel scale
length to the natural transverse scale length L, defined in eq. (4). A second trans-
verse scale length is ps, the effective Larmor radius. The drift-wave equations with
magnetic shear therefore depend on the parameter p;, the ratio of these two scale
lengths. In the absence of magnetic shear p; is the only transverse scale so that we
can choose L; = p, to define the natural parallel scale length,

oL, T. \V/?
L||=( ) ;

CsMMele;

which is obtained by solving eq. (4) for Lj. In this normalization the anomalous
diffusion coefficient (eq. 10) obeys the usual Gyro-Bohm scaling,
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and V3 in eq. (7) reduces to the standard form in the absence of magnetic shear,

L, — o0. p, in egs. (6) and (8) is replaced by unity. The resulting equations were

first derived by Hasegawa and Wakatani [1].

3 Numerical Methods

For the numerical simulations two different schemes were used. In the unsheared
geometry periodic boundary conditions may be applied in all three dimensions.
Therefore we transform all quantities into k-space and use a pseudo-spectral ap-
proach (see also ref. [7]). The nonlinearities are evaluated in real space with dealias-
ing according to the 2/3 rule and incorporated into the time stepper according to an
Adams-Bashforth scheme. The viscosities are computed exactly, allowing high order
diffusion operators without any stability or accuracy constraints. The remaining lin-
ear terms are solved implicitly to maintain numerical stability which is of particular
importance for the parallel diffusions terms Vﬁ(qb —n). The energy equation (8) is
used to check the accuracy of the time-stepping scheme.




The sheared case is more complicated: The operator V2 (eq. 7) contains the
variable z, which breaks the periodicity in the z direction and prohibits the Fourier
representation in this direction. Furthermore the larger the value of z in this operator
the more modes are required to resolve the relevant structures. To circumvent
this problem we split the computational domain into several boxes in the parallel
direction and relate z to the center of the local box. Within each box n and ¢ are
advanced implicitly in real space and afterwards the boxes are explicitly matched
together leading to a quasi-periodic system in parallel direction. The numerical
scheme including the matching procedure is described in detail in ref. [6], hence we
repeat here only the main features. In the perpendicular plane we Fourier transform
n and ¢ using periodic boundary conditions, which avoid profile flattening effects
and allow us to follow the system into a stationary state. The nonlinearities are
evaluated in real space, in most simulations with dealiasing. To advance n and ¢
in time the nonlinearities are implemented according to a leapfrog algorithm. The
diffusion operators are solved exactly and all remaining (linear) terms are solved
implicitly using a block tridiagonal solver for the z-direction.

4 Simulations without Magnetic Shear

4.1 2D Test Run

In the unsheared case we solve egs. (5) and (6) with the modifications described
previously. The linear properties of this system are well known (in particular the
fact that it is linearly unstable); a detailed discussion may be found in ref. [3]. To
cut the spectrum at high mode numbers we use the hyperviscosities D™ = vVin
and D? = v'V8 ¢. For reference we apply our code to the well studied 2D problem,
which is obtained by replacing the operator —8%/8z* by a constant C called the
adiabaticity parameter. This means the parallel dissipation terms are evaluated at
a fixed k. # 0. Note however that for the nonlinearities we assume k. = 0 since
there is no direct nonlinear interaction between modes with the same k. # 0. Thus,
these equations do not model any physical system. The equations
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are solved with the box dimensions L, = L, = 36, the mode numbers N; = N, = 48
(complex modes corresponding to 96 collocation points) and the viscosity parameter
v = 10-4. In Table 1 we list the average saturation levels of energy density and
turbulent flux for C = 0.1, C = 1, and C = 5. The aggreement with the values
reported in refs. [2] and [3] is good in particular if the different viscosities and the
lower resolution are taken into account.




C 0.1 1 5
E/(L:L,) |17.9+28 6.1+05 12.6+0.8
r 21404 08+01 0.18+0.03

Table 1: results of 2D simulations

4.2 3D Simulation Results

The 3D simulations without magnetic shear are based directly on eqgs. (5) and (6).
again with modifications as discussed previously. We use the same hyperviscosities
as for the 2D test case. Qur reference run was performed with the box dimensions
L. = L, = 36, L, = 38, the mode numbers N, = N, = 48, N, = 24, and the
dissipation constant v = 107*. This spectrum of k. modes corresponds to a lowest
non zero C of 0.03 and a maximum of 4. The time evolution of the space averaged
energy density and the space averaged flux are shown in Fig. 1.

The linear phase for ¢ < 70 corresponds to a set of several 2D runs with C values
according to the different k.-planes, since the nonlinear interaction is negligible
during this phase and the modes may be considered independent. In the subsequent
initial nonlinear phase the fluctuations continue to grow. For ¢ < 230 the energy
and transport levels are still of an order of magnitude that allows an interpretation
as the sum of the different 2D C-contributions. This is also seen in the plots of
n and ¢ in Fig. 2. At t = 154 n and ¢ show a lot of small scale structure in z,
which is consistent with linear theory which predicts that the growth rate peaks
at high k. for the parameters of the present simulations. The pattern in the plane
perpendicular to the magnetic field is also comparable to the plots obtained in 2D
[3]. If we further proceed in time, large eddies are formed in ¢ with k. = 0 as the
dominant mode. According to egs. (5) and (6) the vorticity V7 ¢ is not influenced
by n in this hydrodynamic situation, hence the density is convected passively by the
flow. The flow itself shows the characteristics of the Euler equation. In particular
the k, = 0 eddies are unstable to generation of a shear-flow following the vortex
peeling mechanism described in ref. [8]. This eventually leads to a radial shear
flow as seen at ¢ = 245 in Fig. 2. Since this flow directly extracts energy from
the background density profile, we simultaneously observe a large burst of energy
and transport, exceeding the value expected from the 2D runs by at least one order
of magnitude. These bursts occur several times, increasing the energy stored in
the turbulent eddies (see Fig. 3 at t = 286), until there is a rapid development of
poloidal shear-flow (¢ = 361), again following the vortex peeling mechanism. In this
phase the flow energy is mostly stored in k. = 0 modes convecting the density only
as a passiv scalar. The instability mechanisms are completely suppressed leading
to approximately zero transport. In ref. [7] we extended the equations to model
magnetic pumping as a damping mechanism for the poloidal shear-flow. This leads
to an intermittent behavior where turbulent and shear-flow states alternate.
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Figure 1: Time evolution of energy density and flux
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t =245, ¢

Figure 2: Evolution of n and ¢: White corresponds to positive and black to neg-

ative density or potential, respectively. The magnetic field points into the vertical
direction and the density profile increases towards the left.
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Figure 3: Continuation of Fig. 2




The observation that strong increases of the turbulent energy coincide with radial
shear-flows suggests the following interpretation. The k. = 0 modes of ¢ convect
the density as a passiv scalar. This leads to an algebraic growth of k. = 0 modes of
n according to

on_ oo 5
ot dy

where we have neglected the nonlinearity and the viscous damping. Since within
the k., = 0 modes there is no coupling from n to ¢, the energy which is injected into
the density must be transferred nonlinearly to k, # 0 modes to allow a drive of the
vorticity and hence to complete the nonlinear mechanism. Physically this may be
understood as the growth of drift-wave eddies (due to the linear instability) located
at the steep poloidal gradients of n which are generated from the radial profile by
the radial shear flow. These drift-wave eddies tend to enhance the radial shear-flow
by vortex-peeling (see ref. [8] and Fig. 4). An analytic model of this mechanism
is derived in ref. [9], where it is also demonstrated that this nonlinear instability
dominates the linear drive in the 3D Hasegawa-Wakatani model.

To confirm this model and to check the importance of the spectral transfer in k.,
we measure the k.-distribution of the different terms in the energy theorem

1d . . d 0?

55((VL¢)2+”12)) = (‘ﬁ(”E'VLVi@)—(R(UE'VJ.H))*(ng;'?H((¢"n)@(¢—n))
(14)

with g = —V ¢ x Z (the viscous terms have been dropped). The spatial averages

correspond to a sum over all modes in Fourier-space:

(f9) =X i 9t (15)
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The total sum over k, is zero for the two nonlinear contributions, but if the different
k.-modes are evaluated separately they measure the nonlinear source/sink rate in
k.. Hence we compute

z fEi:kngLnkz + z fr:.l.r_kngJ.;—kz 3 kz -_,é 0 (16)
Ey N
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ky

In Fig. 5 source/sink rates are plotted after averaging over several time slices be-
tween ¢t = 185 and ¢ = 276. In the source term —nd¢/dy the k., = 0 modes play the
dominante role (see plot (a)). The injected energy is transferred by the convective
term to larger k, modes where the coupling to ¢ takes place, mediated by the re-
sistive term Vﬁ(gﬁv —n) (see plot (b)). The convective term in the vorticity equation
shifts the energy down to lower k.. The total drive provided by the two terms is
strongly localized at k, = 0, where the radial shear flow mode is localized which
causes the large source in —nd¢/dy.
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Figure 4: Schematic illustration of the nonlinear instability mechanism
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Figure 5: Energy source/sink spectra; (a): —nd¢/dy (solid line) and —n(vg - V. n)
(dotted line); (b): ¢(vg-V.iV2d)+ qbVﬁ(qS— n) (solid line), (v - V V3 @) (dotted
line) and ¢Viji(¢ — n)) (dashed line)

An important issue is the stability of the radial and poloidal shear flows (Kelvin-
Helmholtz instability). The shear flows which we observe are always localized at the
smallest k, or k, mode, respectively. In a computational box with periodic boundary
conditions and L, = L, both poloidal and radial shear flows are stable. If L, > L,
a poloidal shear flow is unstable and flips into the radial direction. In the same way
a poloidal shear flow may be stabilized by L, > L,. To study this effect we perform
a simulation with L, = 1.25- L,. The poloidal shear flow does not occur and hence
the total energy in the system continues to grow without limit. This shows that the
behavior of the unsheared 3D Hasegawa-Wakatani system is strongly affected by the
box size, since there is no mechanism to stop the inverse cascade of the vorticity
before it reaches the largest possible wavelength defined by the box size. This issue
will be discussed further after studying the case with magnetic shear.

The last issue we want to discuss is the difference between the 3D and the 2D
system. In the unsheared 2D system the nonlinear instability was never observed
(in contrast to the sheared system [4] where a spectrum of kj modes is present).
This becomes clear when eqn. (13) is translated into the 2D situation

on 0o
T __53;+C(¢ n). (18)
The density is not only coupled to the radial velocity but via C also to the potential.
In the same way ¢ is also coupled to the density by the parallel diffusion term. In this
situation the algebraic growth observed in 3D does not occur. Hence the 2D system
can not reproduce the behavior of the 3D system, where the transfer processes in
the k. spectrum play the dominant role.




5 Simulations with magnetic Shear

Magnetic shear not only stabilizes the linear instability in the Hasegawa-Wakatani
system, but also has, combined with viscous damping, a major impact on the dissi-
pation of large scale radial flows. An eddy with a large radial flow is not located on a
single flux surface but extends over a finite radial domain. As the eddy spreads along
the local magnetic field it becomes distorted since the orientation of the magnetic
field varies with radial location. As a consequence an eddy which is radially extended
at one location twists in the poloidal plane and becomes compressed in the radial
direction and stretched in the poloidal direction as it maps down a field line. The
resulting increase of the perpendicular gradients causes increased viscous damping.
Mathematically this is implied in the explicit z-dependence of the V-operator (eq.
7). As a consequence, the eddies become localized in parallel direction in contrast to
the infinitely long eddies which are possible in the unsheared case. Hence we expect
a strong influence of viscous damping on the generation of the radial flows which
were responsible for driving the nonlinear instability in the unsheared system. Using
a V8 hyperviscosity as in the unsheared case the eddies are strongly damped only
if gradients are very steep. In this case we expect radial convective cells to extend a
long distance along the magnetic field. If we use ordinary viscosities £V as in ref.
[6] with g of realistic order of magnitude for ion-ion collisional damping, the eddies
become damped even at moderate gradients. The Reynolds stress generation mech-
anism for the radial flows is also impacted by magnetic shear: the vortex-peeling
mechanism [8] requires extended eddies which are oriented parallel to each other.
This is possible if eddies are centered on the same flux surface and remain parallel
as they map along the magnetic field. Hence poloidal shear flow which is generated
by such an array of vortices can be generated relatively easily. In contrast, eddies
which are stacked radially remain parallel only over a finite distance along the mag-
netic field. Hence the radial sheared flow which arises from such an array of vortices
should be driven much more weakly than in the unsheared situation.

5.1 Comparison to the unsheared Case

Although most of our simulations with magnetic shear were performed with a more
complete set of equations including the parallel ion velocity and with different damp-
ing operators, we first discuss a simulation very similar to the unsheared situation.
We solve equations (5) and (6), but with the scaling L, = ps (hence p; =1 and v
as in eq. (7)) discussed previously to facilitate the comparison with the unsheared
case. We use the box dimensions L, = 22.9, L, = 24.0, L, = 26.8, and the finite
shear parameter Lj/L, = 0.7. The hyperviscosities were vVe ¢ and vVn with
v = 1.0 x 107, and the resolution was 48 x 48 modes in the perpendicular plane
and 96 grid points along the magnetic field (The computational domain is described
in detail in ref. [6]).

As is well known, magnetic shear stabilizes the drift-wave system. Hence in
order to study nonlinear effects we have to start from a state of sufficiently high
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¢ (k, # n (k, # 0)
Figure 6: Poloidal cross-sections of @ and n at one location. In the lower plots the
shear-flow modes ky = 0 have been deleted.

amplitude. We choose a fully developed turbulent state generated by a resistive
ballooning-instability (see refs. [5] and [6]). The most surprising result is the fact
that the turbulence is driven nonlinearly (see refs. [9] and [6]). In the run we discuss
here the turbulent energy remains at a level of 4.8 4+ 0.8 and the average flux is
0.25 £ 0.07. These levels are one to two orders of magnitude below the results in
the unsheared run. As discussed previously, the Reynolds-stress induced formation
of radial shear flows should be much weaker in a system with magnetic shear and
we never observe a situation comparable to Fig. 2 at ¢ = 245. The formation of
poloidal shear flows is, however, possible since due to the localization of the viscous
damping at high mode numbers eddies are only weakly damped. We observe during
the whole run a moderate poloidal shear flow, which is clearly seen in Fig. 6 . The
stabilizing influence, however, seems to be very weak: the fluctuation-amplitudes
are roughly the same as in a run discussed below with V3-type viscous damping
where no poloidal shear flow was obtained. Nevertheless the transport in the current
run is even 40% larger than in the simulation without shear flow. In the lower two
plots of Fig. 6 potential and density are shown after removing the k, = 0 shear-flow
modes. Note the similarity between ¢ and n in contrast to the run without magnetic
shear where the passively convected density showed a lot of fine-scale structure in
the poloidal plane (Fig. 2). Contour plots of the perpendicular correlation functions
of n and ¢ (Fig. 7 ) show that the size of the dominant structures is well separated
from the box-size (this was checked also by a run with doubled box-size) in contrast
to the unsheared situation where shear flows and eddies always tend to reach the
system size. Finally Fig. 8 shows the energy source/sink spectra in k.. Compared
to Fig. 5 the source is spread over a larger range of modes, because the radial shear-
flow at k. = 0 does not occur in the situation with magnetic shear. The different

14




Figure 7: Autocorrelation function. in the perpendicular plane after removing the
k, = 0 modes. (a) &, (b) n
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Figure 8: Energy source/sink spectra: (a): —ndo/dy (solid line), —n(vg - Vn)
(dotted line), and —nVi(¢é —n) (dashed line); (b): &(v - VL V19) (solid line). and
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values for k. = 0 may be non-zero also for the V) term.




magnitude of the source/sink spectra reflects the lower overall energy and transport
level of the current simulation. The energy injected into n cascades partially to
larger k., partially it is dissipated by the parallel diffusion term and transferred into
¢ at the same k., at which it is injected. For the potential the situation is quite
similar to Fig. 5. The resistive term drives the system at high k. in a mode number
range which contributes little to the drive term —nd¢/dy. The energy cascades to
low k., modes corresponding to the usual inverse cascade. There it is damped by
the parallel resistive term, but nevertheless the kinetic energy in this low k. mode
range causes the drive of the system as shown by the plot of —nd¢/dy. The energy
flow in general shows that despite the absense of large scale radial shear-flows the
nonlinear drive mechanism is basically the same as in the unsheared case.

In summary the simulation with magnetic shear shows the dominance of the non-
linear mechanism which is able to maintain the linearly stable system in a turbulent
state. On the other hand the results also indicate very clearly that although the
drive mechanism is the same, it is impossible to predict the properties of the sheared
system based on simulations without magnetic shear. Unlike in the unsheared sys-
tem, the Kelvin-Helmholtz stability of the largest scale radial flows does not control
the dynamics of the sheared system because of the computational domain in the
twisted coordinates (see ref. [6]). In the unsheared system with L, > L., the radial
flow of the lowest order k, convective cell is Kelvin-Helmholtz stable and there is
therefore no saturation of the nonlinear instability. With magnetic shear such a long
wavelength radial flow is only oriented in the radial direction at a single value of
z. As the disturbance projects along B, it twists in the poloidal plane, becoming
squashed in the radial direction and stretched in the poloidal direction. In this re-
gion the flow is now locally Kelvin-Helmholtz unstable and can cause the breakup
of the flow. The singular behavior of the unsheared system is therefore absent.

5.2 Influence of the Parameter p;

We now explore the influence of p; on the turbulence and transport (using the
original scaling of eqs. (5) and (6)). For this parameter scan we used a more general
set of equations which include the parallel ion velocity (see also refs. [5] and [6]; since
the computations are very expensive, we did not repeat them without the parallel
velocity.)

d
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where v = L,/(27L.ps) is the normalized sound speed. In the dissipation terms
we use ordinary diffusion operators ¥V3 and the parallel damping hT with v =

1.5 x 1072 and & = 1.0 x 1073,
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We performed several simulations with p? ranging from 0.054 to 0.162. The
box dimensions were L, = 5.3, L, = 5.6, L, = 3.0 with 48 x 48 modes in the
perpendicular plane and 96 collocation points along z. To check if the eddy-size
is influenced by the box-size we also performed runs with doubled box-size in the
perpendicular plane and obtained essentially the same results as in the present
system. According to the mechanism discussed in the unsheared case, we expect the
strongest nonlinear drive if n is convected by the E x é—velocity without constraints.
Since the p2-term in the continuity equation (6) interferes with this free convection,
the efficiency of the nonlinear mechanism should be reduced by increasing ps. This
is exactly observed in the simulations: increasing p? by a factor of 2 reduces the
transport by a factor of 4 (Fig. 9). The same tendency is found for the fluctuation
amplitudes (Fig. 10) where a decay of a factor of 2 is in perfect agreement to the
reduction of the flux by a factor of 4. To investigate this drop of the turbulence and
the approach to a stable situation in more detail we check the energy transfer (Fig.
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non-zero at k., = 0.

11 ). For p? = 0.054 approximately half of the energy injected into the density-
fluctuations is transferred nonlinearly to higher k., which leads to a peaking of the
resistive sink at significantly higher mode-numbers. Correspondingly the resistive
source in the vorticity equation is located at moderatly high k. and requires a
nonlinear transfer to the low-k. eddies. If p? is increased to 0.162 this picture
changes significantly. The nonlinear transfer in the continuity equation becomes
negligible. Hence almost all fluctuation energy is dissipated at the same scale where
it is injected. The same result is found in the vorticity equation: the nonlinear
transfer is negligible compared to the resistive drive. Since except for k., = 0 all
nonlinear interactions between different perpendicular modes are associated with
a nonlinear interaction in k., the negligible energy transfer in k. is equivalent to a
negligible overall nonlinear interaction including any flow enhancement by Reynolds-
stress. The observed stabilization of the system is caused by the relative reduction
of the nonlinear terms compared to the linear terms. The fluctuation-amplitude
becomes sufficiently low for p? a 0.15 that the nonlinear interaction is negligible
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Figure 12: Autocorrelation function in the perpendicular plane; pZ = 0.054: (a) @,
(b) n; 52 = 0.162: (c) & (d) n

and the system is stabilized as described by a linear analysis of the equations.

The last issue is the intrinsic size of the turbulence in the perpendicular plane:
do the eddies scale with g, and therefore vary in size as p; is changed or is their
transverse scale controlled by the magnetic shear as given in (4) and therefore remain
fixed in size as p, is changed. As is seen in Fig. 12 the perpendicular scale length
is unchanged although p? is increased by a factor of 3. Thus, magnetic shear and
not g, controls the transverse scale of the turbulence. The correlation length in the
parallel direction is increased with larger p; (Fig. 13 ). This reflects the fact that
p2 plays the role of a parallel diffusion in the continuity equation (6). It affects in
particular the small k. drift waves, hence an increase of p, leads to a reduction of
the nonlinear drive.

6 Conclusions
The most important feature of the 3D drift-wave system is its nonlinear drive, which

is tightly coupled to a nonlinear interaction between different k.-modes. This leads
to a behavior of the 3D Hasegawa-Wakatani system, which is completely differ-
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Figure 13: Autocorrelation function in parallel direction: (a) p? = 0.054, (b) p? =
0.162; n (solid line), ¢ (dotted line), and ¢ — n (dashed line)

ent from predictions based on 2D simulations. The radial shear-flows in the un-
sheared simulations lead to transport bursts with an anomalous diffusion rate of
D,, = 10? x Dgp being orders of magnitude larger than observed in experiment.
This feature of the unsheared system may be attributed to the lack of a mechanism
which could stop the inverse cascade of the kinetic energy and keep the turbulent
eddies from reaching the box size. As a consequence poloidal or radial shear flows
are formed at the lowest possible k. The stability of these shear flows to a Kelvin-
Helmholtz mechanism is tightly coupled to the box dimensions and the boundary
conditions applied. Hence the behavior of the system strongly depends on artificial
box size effects. Including magnetic shear into the equations solves this problem.
The alignment of the turbulent eddies along B requires a different orientation at
different flux surfaces and leads to a limitation of the eddy size. Equivalently the
different orientation of the eddies at different radial location weakens the Reynolds
stress-induced generation of radial shear-flows. As a consequence the simulations
show a stationary nonlinearly driven turbulent state, where the size of the domi-
nant structures is independent on the box size. The resulting transport is of the
experimentally observed magnitude (see ref. [6]). Changing the remaining free para-
meter p2 has a strong impact on the turbulence level and at sufficiently large values
stabilizes the nonlinear drive by reducing the fluctuation amplitudes and hence the
strength of the nonlinear interaction compared to the linear dissipation terms.
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