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Abstract

This exercise should be the first attempt at understanding effects
due to the singularity of the "inertial” operator in the general for-
mulation of the linearized stability problem in dissipative magneto-
hydrodynamics. The analysis shows that the stability conditions are
qualitatively similar to the case of nonsingular operators, but suggest
more optimism quantitatively. The 2 X 2 matrices in this exercise do
not reflect, however, the huge problems related to a continuous fluid.

A general formulation of the linearized dissipative magnetohydrodynamic
stability problem appeared in previous work [1, 2] of the author. The stability
criterion obtained from this formulation is given to a good approximation by
an Hermitian form [2, 3]. For real situations, however, overstability and Hopf
bifurcation are not excluded and are discussed in [4, 5]. The simple examples
treated there do not possess the singular character inherent to the "inertial”
operator of the general formulation [1]. In fact, in [4, 5] the "inertial” operator
is taken proportional to the identity. A recent mathematical discussion [6)
led to the exercise analysed in this paper.

An interesting feature of the general formulation is that it can be designed
to describe an ideal or dissipative plasma surrounded by a vacuum and a
rotating resistive wall as proposed in [7]. This case is an approximation
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to the more realistic situation of a moderately rotating plasma and a fixed
resistive wall.
Let us recall the main equations representing the general formulation [1].
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NV + P¥ 4+ Q¥ =0, (2)
where N, P and Q are given by, respectively,
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The first two matrix operators in equation (2) are symmetric and positive
while operator Q is obviously not selfadjoint. The notations as well as the
derivation can be found in [1] but it is not necessary to enter those details
to understand the purpose of the forthcoming exercise. What is important
to notice is that the operator N used in the examples of [4, 5] is not singular
while the operator N appearing in the inertial” term of equation (2) is. The
question is whether the conclusions of [4, 5] are affected by this singular-
ity. It will be shown in the following exercise that those conclusions remain
qualitatively valid.

Our exercise will consist of a particular choice of a 2 x 2 matrix system
represented by a specification of ¥, N, P, and Q as follows
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NU 4+ P¥ 4+ QU =0, (4)
where N, P and Q are given by, respectively,

n 0
N:(oo)’
7 0
P=(0 m)’
_ | @ =F
Q—(f (12)'

In analogy with the physical problem n, p; and p, are positive. The
approximate Hermitean condition mentioned above [1, 2, 3]

and
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with @, the symmetric part of Q, is fulfilled if ¢; and g, are chosen positive
as in [4, 5]. In fact, condition (5) is sufficient for stability with respect to
purely growing modes [1]. In another context [7], condition (5) corresponds
to the stabilization of the "kink” mode or plasma mode by a moving resistive
wall. We know from [4, 5] that an overstability can still occur, and from [7]
that the "wall” mode can be unstable unless the dissipation is strong enough.
This is what we would like to analyse for equations (3) and (4). Make the
ansatz ¥ = 1)e*! in equation (4) to obtain the characteristic polynomial

npaw® + (ngz + pip2)w’ + (p1az + p2qr)w + f2 + @12 = 0. (6)

Equation (6) is cubic and could be solved explicitly. Since all the coeffi-
cients are positive, it is easier to exploit the relationships between roots and
coefficients to check for stability. The three relations are
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where wi, wy and wa are the roots of equation (6).

As expected from the Hermitian condition (5) any real root of equation
(6) has to be negative which means stability. Only complex roots could
become unstable. Since we cannot have more than two complex roots, let us
assume that w; is the negative real root and set

w = a+ Zﬁ, (10)
wy, = a—10. (11)
Equations (7)-(9) become
O bty = — B BE, (12)
np2
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Eliminating a® 4+ 3% in equations (13) and (14), we have
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Insert ws from equation (12) into the righthand side of equation (15) to obtain

ngz + +
20:’(]. +np2(.{)§) — f? + q1q2 . ( q2 p1p2)(p1q2 pqu). (16)
np2
Instability occurs if a can be made positive, which is possible if
np2 f* > np1g; + pip2(P1g2 + P2q1)- (17)

Let us now consider several limiting cases in condition (17)

f = 0 Condition (17) is never verified and the system is stable. In fact,
equation (4) reduces to two decoupled scalar equations and the char-
acteristic polynomial becomes

(nw? + prw + q1)(paw + @2) = 0, (18)




from which the roots can be easily extracted
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All roots are stable.

n = 0 Condition (17) is never verified and the system is stable. In this case
equation (6) reduces to a quadratic equation with stable roots.

f large Condition (17) can be verified and the system is unstable.
n large Condition (17) is verified and the system is unstable if

P
2> g=. (22)
D2

This exercise shows that, once the purely growing modes have been sta-
bilized by fulfilling condition (5), the overstable modes and the related Hopf
bifurcations behave qualitatively in agreement with [4, 5] though the "iner-
tial” operator is singular. Physically, it means that a strong viscosity in a
real plasma may stabilize the overstabilities due to the antisymmetric part
of the Q operator (f in the exercise) and the "inertial” operator (n in the
exercise), once the "kink” and "tearing” modes have been stabilized by a
proper current distribution or by a moving wall (7] (positive ¢; and g in the
exercise).

The singular "inertial” operator leads, however, to more optimistic quan-
titative stability results than the nonsingular one as we can see from the case
n large and condition (22) : A large n alone does not produce overstability
as in [4, 5], it must be accompanied by a sufficiently large f.
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