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Abstract

The expression for the free energy of arbitrary perturbations of general
Vlasov-Maxwell equilibria derived by Morrison and Pfirsch is transformed
and put in a concise form, which is subsequently evaluated for arbitrary
equilibria which have one ignorable coordinate, e.g. axisymmetric and heli-
cal equilibria, in the case of internal perturbations, i.e. perturbations which
vanish outside the plasma, and on its boundary. In order to generate the elec-
tric currents necessary for equilibrium in the presence of pressure gradients,
the equilibrium distribution function of at least one particle species must be
anisotropic. As a consequence, these equilibria always allow negative-energy
perturbations, without requiring a large spatial variation of the perturbation
across the equilibrium magnetic field.

PACS number(s): 52.35.Mw




I. INTRODUCTION

The existence of negative-energy perturbations in an otherwise stable, col-
lisionless plasma could lead to instabilities in the presence of dissipation, or
it could lead to nonlinear instabilities (and thus cause anomalous transport)
through nonlinear coupling with perturbations of positive energy [1, 2, 3, 4].
Therefore, it is of paramount importance to investigate under what condi-
tions a given plasma equilibrium configuration admits negative-energy per-
turbations. Considering arbitrary perturbations of general V lasov-Maxwell
equilibria, Morrison and Pfirsch [5, 6] derived expressions for the second
variation of the free energy and concluded that negative-energy modes ex-
ist in any Maxwell-Vlasov equilibrium whenever the unperturbed distribu-
tion function f{°) of any particle species v deviates from monotonicity in v?
and/or isotropy in the vicinity of a single point, i.e. whenever the condition

(v-k) (k- Qgil)) > 0 holds (in the frame of reference of minimum equilib-

rium energy) for any particle species v for some position vector X and velocity
v and for some local wave vector k. The proof of this result was based on in-
finitely strongly localized perturbations, which correspond to |k| = co. This
raises the question of the degree of localization actually required for negative-
energy modes to exist in a certain equilibrium. Studying Maxwell-Vlasov
plasma configurations in which the equilibrium quantities depend only on
one spatial coordinate, Correa-Restrepo and Pfirsch [7, 8, 9] showed that
negative-energy modes exist for any deviation of the equilibrium distribution
function of any of the species from monotonicity and/or isotropy, without hav-
ing to impose any restricting conditions on the perpendicular wave number
k) ,i.e. without requiring large k; . Detailed investigations of negative-energy
perturbations in plane and circularly symmetric plasmas have also been done
within the framework of Maxwell-drift kinetic theory by Throumoulopoulos
and Pfirsch [10, 11]. Within the framework of Maxwell-Vlasov theory, the
results obtained for one-dimensional configurations were later shown to be
valid also for a class of equilibria which depended not only on one, but on
two spatial coordinates. The equilibria considered were, however, restricted
in the sense that they had only ¢ toroidal ” equilibrium currents, i.e., cur-
rents flowing in the direction of the ignorable coordinate, e.g. the toroidal
angle ¢ in axisymmetry, and were thus of the B, =1 type [12].

In the present paper, the results obtained for Bp = 1 equilibria are ex-
tended to the considerably more interesting case of general symmetric equi-




libria with one ignorable coordinate, e.g. axisymmetric tokamaks and helical
configurations, which have both “ toroidal ” and “ poloidal ” currents. These
investigations make extensive use of the Poisson bracket formalism.

In order to generate the currents necessary for a general axisymmetric
or helical equilibrium in the presence of pressure gradients, the equilibrium
distribution function of at least one particle species must depend not only
on the particle energy H,, but also on the canonical momentum P,3 in the
toroidal direction, which is the momentum canonically conjugated to the
ignorable coordinate (e.g. the toroidal angle ¢ in a tokamak), and on at least
one of the other two independent constants of the motion. Because of this, the
configurations always allow negative-energy perturbations. It is shown that
large spatial variations (i.e. short wavelengths) of the perturbations across
the equilibrium magnetic field are not required, a feature which could enhance
the importance of this kind of perturbations in helical and axisymmetric
configurations.

In Sec. II, the expression for the free energy 6°H available upon arbitrary
perturbations of general Maxwell-Vlasov equilibria derived by Morrison and
Pfirsch [5] is transformed and put in a concise form. Sec. III describes the
geometry and the properties of the equilibrium distribution functions of the
configurations. The expression for the free energy is then evaluated in Sec.
IV for general symmetric equilibria. Considering internal perturbations, i.e.
those which vanish outside the plasma, and on its boundary, the minimizing
perturbations are obtained in Sec. V, where the expression for the minimized
energy is also obtained. This expression is then discussed in Sec. VI. The
results are summarized in Sec. VII.

In Appendix A, useful relations concerning the Poisson brackets which are
needed for the calculations are derived. Finally, in Appendix B, solutions of
the Euler equation derived in Sec. V are found.

II. PERTURBATION ENERGY FOR GEN-
ERAL MAXWELL-VLASOV EQUILIB-
RIA

The expression for the free energy §>H available upon arbitrary pertur-
bations of general Maxwell-Vlasov equilibria derived by Morrison and Pfirsch
[5, 6] assumes a particularly simple form when it is evaluated for the case



that the initial perturbation dBi=¢, = VX 6§A =, of the magnetic field van-
ishes. 8A.—¢, = 0 can be chosen independently of the generating functions
G, for the particle position and velocity perturbation (see Ref.[6]) because
Maxwell’s equations allow for the production of a displacement current that
makes a given particle-field configuration consistent. Also, for the perturba-
tions considered here, it is possible to show that the initial particle electric
current density perturbation, 8ji=t,, can be made at least arbitrarily small.
According to Ref. [9], Eq. (9), one then obtains

Pad 9G, 8fO oG
2 - | G (). LA o L L
2 Z[ { (@Gy) (F B ov ox )}

2m,,
+§7;/d.7:5E . (1)

Here, x and v are space and velocity coordinates, respectively. O (x,v) is
the equilibrium distribution function for particles of species v, which have
mass m, and electric charge e,. G,(x, V) is the arbitrary generating function
for the perturbations dx and dv of the particle position and velocity, respec-
tively [5]. 6E2/(87) is the perturbation in the electric field energy density,

and d, = [di _is the equilibrium Vlasov operator, i.e.
t lalong unperturbed orbits

0 d
d=v- 2 4a0. 2% 5
¥ ox ta ov '’ (2)
where )
al® = _.;L (E(O) 4 V_f_(i) . (3)
" c

with E@ = —v®© and BO = VxA© the time-independent equilibrium
electric and magnetic fields, respectively, and

aflo e aflo)
(0) fode . g ol o iB)eriadel L 4
F, ax = myc x av (4)
The Lagrangian L, of a particle of species v is
L= 25+ ZAO) v - 8 (x), (5)

from which the momentum canonically conjugated to x follows:

BL,, v 5
Py = 5= = MV + %A(O) ; (6)
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Taking into account the relations derived in Appendix A, Egs. (A9) and
(A12), and making use of Poisson brackets, which for any two functions

fi (x, v=cE - "“::CA(O)(X)) and f (x,v = ---) are defined by the equation
cwBfelofal- 1 8f] L 8fs =
[flafZ]“ 6){ ! ap x ap & 8}( . ’ (’)

one can write

dG,
duGu = [ i ] o [GuaHv] ) (8)
di along unperturbed orbits
where H, is the unperturbed Hamiltonian, i.e.
1 e A (x| (0)
i [pu _ S (x)] +e,00(x) . (9)
2m, c :

the expression for the perturbation energy, Eq. (1) can then be written as

3.3
62H o Z/ dz:::;lap [Gy,Hu] [f,SO))GV] + Si?r--/d3;1? 6E2 : (].D)

Here, x,p, instead of x,v, are now taken as the independent variables.
Eq. (10) is esentially Eq. (13) of Ref. [6] evaluated for perturbation with
JA(x,t=0)=0.

III. EQUILIBRIUM

In generalized coordinates ¢;, 7 = 1,...3, symmetric configurations are
now considered which do not depend on g3, but only on ¢; and ¢;. Examples
of these are axisymmetric equilibria, which do not depend on the toroidal
angle o, and helically symmetric equilibria, which, in cylindrical coordinates
r,,z, depend only on r and u = me + lz, but not explicitly on =z, with
m and [ arbitrary integer and real numbers, respectively. The equilibrium
magnetic field B(® = VX A(® can then be expressed in the general form

BO® — vx (AEO)(‘Ihq?)Vq")

_ 1 foAPox _aaQox (04D 9AP) ox|
B J(q1,q2) d0q2 Oq g1 0¢a dq 0q | Ogs '
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vher
where o - Ix BXX% B 1 (12)
o afh 9¢: g3 Var-V@xXVgs -
Since the equilibrium fields E© = —V®© and B®) = VXA are time-
independent, the particle energy
H, = %v2+eu¢>(°)
: (0) (0) .
= o Py -—~—A +e,® (13)

is a constant of the motion, and since g3 is an ignorable coordinate, also the
corresponding canonical momentum

e
Pz = pua = myvz + ?VA:(ao) (01, 42) ()

is a constant of the motion (calligraphic letters are used here to denote
constants of the particle motion). In the five-dimensional space (q1,qz, i),
i =1,...3, the general equilibrium solution of Vlasov’s equation

d O (g1, a2, p5) = [f0H] =0 (15)

is
f‘SU) i fﬁo) ('HV"PV&}CNSKW) (16)
where K,; and K,; are two further constants of the particle motion which
are also gs-independent. K,; and K,; are not explicitly known here, but it
is assumed that they appear explicitly in the expression for f} (°) in order to
be able to construct general axisymmetric or helical equilibria. Exclusion of
either K,q or K.z, or both, from the expression for £ leads to special sym-
metric equilibria. One interesting example of these are the #, = 1 tokamaks,
for which
O = fOH, Pa) - (17)

Introducing a local Cartesian coordinate system with unit basis vectors ey, es,
such that ez = g—;/|§7’;|, the velocity v at point x can be decomposed into

my

three orthogonal components v.1, ve2, ves and, therefore, H, = == RINCES
ax

e, 90, Py = [m,ve + A0 - e |22

not contribute to the mean velocity (v), of species v since FO(H,, Pua) is

]. The components v, and v., do

€3,




an even function of v, and ve. This yields (v), = e3 ;}- S dvv afl®, and
the current density is

O =S en vy, =e Ye, f ~ PovafO(Ha Poa) - (13)

Therefore, for that class of equilibria there is a current only in the direction
corresponding to the ignorable coordinate (the toroidal angle ¢ in axissym-
metry) and the equilibria are of the 8, = 1 type [12].

IV. PERTURBATION ENERGY FOR GEN-
ERAL SYMMETRIC EQUILIBRIA

Here, all physical quantities are periodic in the coordinate g3 with, say,
period 27 in axial symmetry or 27/ L. in helical symmetry. Since the equilib-
rium does not depend on gs, single modes corresponding to this coordinate
can be considered. An appropriate ansatz for the generating function G, of
the perturbations is then

1 . :
G, (x,p) — 3lIJV (QI,Q'Z,P;‘) {e'(ksqa+f‘u(91.92‘m)) 4 C.C.} , (]_g)

i =1,...3, where ¥, and T, are arbitrary real functions such that G, is a
single-valued function of ¢, ¢; and of the pls. With this ansatz, one obtains

G, oG oG,
8‘1’ [‘I,U}H]_}_ [FV1 Hy] + aq

[79,6.] = q, [.fé“’,\lf,,] +a—1ﬂ: [f.E“’,F.,] +aa%[ ), @D

[GW HV] [q3,H,,] (20)

ggy — é— {ei(k393+r‘u) _|_ C.C.} : (22)
9G, ok aG oG
= — ’(LSQS'FFV) _ —i(kags+Tw) v Lo v 9
5T \If {e e } s e =hgr - (23)

Inserting Eqs. (20)—(23) in Eq. (10) and integrating with respect to ¢3 between
q3o and gao + 27/ k3 yields

J(g, @)
H = LA\ H2) T 3 [ _ (0)
PH =2 ] 23 deqldqzdp{ [0, H,) [T, £

0l 1) [0, O]} + o [ o dE?. (24)
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where
gy = kaqz + L, (a1, ff-zaIJi) (25)

and the Poisson bracket [gy, fﬁo)] is given explicitly by

f (0)
aK-:ul

o
OK.2

9ro)  9fO
1O | o

9
a1, TP, S

[ vy f(o)] [gua Hu] ‘I‘ [gva ul] + [gm ICJJZ]

V. EXTREMIZATION OF THE
PERTURBATION ENERGY

As pointed out in Sec. IL. , the equilibrium Vlasov operator d,, given ex-
plicitly by Eq. (2), means diferentiation with respect to time along the unper-
turbed orbits (see also Appendix A). Then, for any two functions f12(gi, Di)s
i =1,...3 the following relations are valid:

W1l = S = Uil = [ B0+ [, %] . e

Owing to the lack of knowledge concerning the explicit form of the two
constants of the motion K,; and K,2, complete minimalization of §2H, Eq.
(24), with respect to T, is not possible. Partial minimalization, however,
can be accomplished if one imposes an appropriate constraint. This is done
here by minimizing §?H under the subsidiary condition that the functional
82 H . onstraint Temains unchanged, with

52Hconstraint = E/ QI’ q2 d(h dq‘lds {l:[li [gu-; Hrl]

2m3
af £
v :)'\
l[gV’KVl] aK:ul + [g'/! ]8](:1,2 r ("‘b)

Accordingly, we minimize the auxiliary functional 802H,,x, defined by the
relation

((SQH)&UN = 52H + )\(62H)constraint ) (29)

where X is a Lagrange multiplier. The variation of (62 H )aux with respect to

.8
00, (62 H )aus = (82 H)aux(Ty + 6T,) — (6? H )aux(T)

L d
i




Zf oq:;;ng _dqldqz Ep[-1}] {[g,,,H.,] [6T... £9)] |

+[6T,, 2, [gu, )]

afo G
=g, Hu) [[6F,,,IC,,1] + [6[‘,,,&3,,2] 3K J

arlo (0)
000 1) [l S+ k FE | (30

which, using the definition of the Poisson brackets, Eq. (7) and, in particular,
Eq. (27), can be transformed to

5]"..- 6 H aut Zf QI,qz dq dq ds

2m3

d ) af© Aff?) K| |, Of® K.,
X{%'! 51“,,‘1:,,(4,,%)[ ox |7 oKk ox || T oK., ox
P
) ) afo aflo 9K, af©® oK., | 1]
_ax l (SFUlIJV (dygi/) [ ap i & /\ 3Kju1 ap - aK:yg ap xd

(0)
—dv[ [‘Sruwi[[gwfﬁ“’]"\[[g“’ Kl aic,1+[g"’ ""’]SIJ; z”H

(0) ()
+6T, [ d, [11;3 9., 1] = A2 [[gy, K1) 8£ — + [0, Koo 8i 2”

+[02(dgn) , £

(0) (0)
A[[ 2 (dvg) K gfg + (U2 (dgr) , Koo giﬁ” } . (31)

Here, 6T, is taken to vanish outside the plasma, and on its boundary (i.e.
internal perturbations are considered). Because of this, the term which is
a divergence in x does not contribute. The term which is a divergence
in p vanishes upon integration because f(® — 0 for p — oco. For the

same reasons, the contribution of term d, (5F,,1113 [gu,f!ﬂo)]) also vanishes,
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as can be seen by taking into account the 1'elations d; (51" w2 [Ju fw)})

[JI“,\I!Q [gu, f(O)} ] L(gp U2 [g‘ f(u)] aH.,] i [5[» 2 [JM f(o)] JH,_]_:

ax
In a similar way, it can be shown that the term
d, [AJF,,\I!E [[g,,, K] 32— ax : L+ (90, K1) 52 I ]] does not contribute (for this to

be valid, the functions d,g, = [g,,H,] and [g,,, fﬁo)] must be single-valued.
This is the case for the solutions found in Appendix B). Therefore

(M = 3 f q"‘h '—zq dg; &®p (3T,

. a1 ) (0)
* {du [II!E [Q’w flgm] = Alpi [[g"’ ul] f + [ng'V?] a}jC H
12

+[92 (dgn), £0]

(0) (0)
A[[ 2 (i) K gj;ol +[92(dvg) Koo g};]} L (32)

Since éI', is arbitrary in the internal region, the condition for the vanishing

of &1, (62 H )auy i

9fO 950
d, [lI!? [0, 9] - w2 [[g,,,;\,,,l] et g Kol 5%“

T [\Ilg (dugv) ?f:SO)]

4 fLo) [
X [[lI;?; (dugll) 1Ku1] 3£ e [\1‘2 (dygy K:,,Q ()]CHZJ =0. (33)

As pointed out in Appendix B, it is not necessary to find the most general
solution of this equation. It suffices to find solutions which are general enough
to show that it is possible to make 62 H negative in all cases of interest. With
the expressions for [g,,#,] and [gy, f,fo)] found in Appendix B, the perturbed

energy, Eq. (24) becomes

J o £
— _ Z/ (q11q2 @ ld d3plpl2 fu
2m3 k3 OH,
afl‘-‘) 8[(0) ;.)fé’o)
P2 K, K 0 4
XCva Cua ‘l‘ AS f(o) + Cub (01) + Cuc 3‘f.(,0) . (34)
aH, 6?{ IH,
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The electric field energy term s%r [ d®x§ E? has been dropped for the minimum
of 82 H since the perturbed charge density can be made zero by an appropriate
choice of the signs of ¥,,, which do not influence Eq.(34), and by making use
of the freedom to choose §A.;,, since this quantity is arbitrary. That the
initial perturbed charge density can be made to vanish follows as in Refs.
[7, 8, 9] (in a similar way, it can be shown that the initial current density
perturbation dj;—¢, can be made at least arbitrarily small).

As explained in Appendix B, C,, is a completely arbitrary function of
the constants of the motion H,, P,3 and flﬂo) for particles which do not have
periodic orbits. For the exceptional case of particles with periodic orbits, Cyq
is given by C,, = %n,,g, where 7, is the period of the motion and n,o 1s a
completely arbitrary positive or negative integer.

The wave number corresponding to the symmetry direction, k3, is com-
pletely arbitrary, and C,; and C,. are arbitrary functions of the constants of
the motion H,, P.a3, K,1 and K,,.

VI. DISCUSSION

For the general symmetric equilibria considered here, it is easy to make
the expression for the perturbation energy 6?H negative by exploiting the
fact that the functions ¥, (H,, P.3,K.1,K,2) and the constants of the motion
Cua(Hu, puS: fﬁo)), cub(Hu, Pu.?:s }CVI y }CV2)3 cuc(Hya PUS) }Cul, K:VQ), a'nd EL]SO kBa
can be arbitrarily chosen.

ast” . 2 :

If &&= > 0 for some H,o, P30, Kuios Kuzo, 02H can easily be made
negative. It suffices to localize ¥, to the region in H,, P.,3, K,1 and K,
where %%o} > 0. Outside this region, ¥, vanishes. All other ¥, are made
equal to zero. One can then, for instance, choose ks, C,p and C,. equal to zero.
82H is then negative for all C,, # 0. Or, if k3 # 0 is chosen, an appropriate
choice of C,, makes §2H negative, and so forth.

If %'%r:l < 0 for some H,o0, P30, Kuio, Ki20, as is always the case, one

n . . g 5 ¢(0)
localizes around these values in the way just explained. If k3 # 0 and %—”W #+

ol
0, then, choosing, for instance, C,p= C,. = 0 and C,, [Cuﬂ + ke,%—jl « 4

asl%)
) OH
- (0) o £(0 5 £(0)
2 2 o . — . 9fy — Ify =M =
yields 6*H < 0. If,however, k3 = 0 or zp— =0, but 5¢— and gz~ are not

both zero, then, choosing appropriate values for C,, and C,. yields 6?H < 0.
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(©) ©) (0) - ¢(0) .- :
If %ZT < 0 and g{;’w g){:’ul = g{:’yg = 0 for some H,0, Pu3o» Kuios Ku2o

and all v, then the distribution functions f{?) are isotropic and monotonically
decreasing in this region of phase space, and it is not possible to make §2H
negative by localizing the U,’s around these values. This is in agreement
with previous results [7, 8, 9, 12, 13] . For the configurations considered here,
however, this can be the case only in some regions of phase space because
nonvanishing gradients with respect to P,3, K,; and K,, are necessary in
order to produce the electric currents needed for equilibrim in the presence

of pressure gradients.

VII. SUMMARY

The general expression for the perturbation energy of Maxwell-Vlasov
equilibria was evaluated for symmetric configurations which have one ignor-
able variable (e.g. the toroidal angle ¢ in a tokamak or u = my + kz in a
helically symmetric configuration). Explicit dependence of the equilibrium
distribution functions not only on the conserved particle energy H,,, but also
on the conserved momentum P,; and on the two further constants of the
motion K,; and K, is essential for generating the electric currents necessary
for equilibrium in the presence of pressure gradients. Owing to this depen-
dence, the equilibrium distribution function of at least one particle species is
anisotropic in v space.

Perturbations of negative energy (62H < 0) are easily obtained for any
local deviation from monotonicity (i.e. if If %-1‘%) > 0 for some H,q, P.30.

K10, Ky20) of the distribution function of any of the particle species . But

. (0) oy ; .
also if aaj;‘é < 0, it is possible to make §* H negative because of the necessary

anisotropy of the distribution function of at least one particle species (ex-
plicit dependence on P,3, K,1 and K,;). No conditions are imposed on the
wave numbers. In particular, large spacial gradients of the perturbations,
and corresponding large perpendicular wave numbers are not required. This
enhances the relevance of these modes, which could be related to nonlinear in-
stabilities and corresponding anomalous transport in tokamks and helically
symmetric equilibria. In order to obtain these results, it was sufficient to
consider perturbations which are initially eletric neutral, and which satisfy

JBI’.:to = O.
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APPENDIX A: PARTIAL DERIVATIVES AND
POISSON BRACKETS

Let ¢i(x), ¢ = 1,...3 be generalized coordinates with covariant basis
X : . 0g; : :
0 and contravariant basis a—q' = V¢;. The corresponding covariant and
ai X

contravariant velocity components are, respectively,

ax ; .
- vi(x,v)=v- £ and v'(x,v)=v-Vg=4¢q, (A1)
qi
and correspondingly for the components of the canonical momentum p, =
m,v + %A(O),

Pi=P- % =m,v; + %Afo)(x) , (A2)
pP=p-Vg=mo' + e—u;'—l(o)’-(x) ; (A3)
c
This yields the relations
3p,' 8v.- €, BA(.O) ap,' 8}( api
S — v — Fic, ' 3 = —_— N - == V ) ‘L\":l-
ox |, " ox c Ox op|, Oa ap |, & (A4)
From the expression for p,, the following results are obtained
58(‘1:1, =m, 58_(;,, , (A5)
0G| _ o 0G,| _ 090G, L& dA - 0G,
ox |, T dq|, = Ox c | Ox ap |,
Ty v A-(O) ru
_ oG e d ‘ aG (A6)
0x I e ox av |,
These relations yield
af”| aG.| afP| aG.| _ i afO| aG,| 9f®| aG,
Ix |, Ov |, é)vxaxv_l” dx |, Op |, Op | Ox|,
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& o, .| 9G] [OA® Of0|] _ 0f”| [0A® agG,
mpe ¥ | oy Lda  ov|, v dqi  Ov
) [af,sm 0G,|  afO| aaG, }
= m, | T
ox b ap |, dp |, Ix :
e, dA @ G, afe
+m,,cvqi. [ Jg; : [ v |, 8 ov x” ‘

Taking into account the generally valid relation ¥V x A(®) = V¢; x 32};,0] and
the definition of the Poisson brackets

99| aG,

© ol af
[f" ’G"] 0x |, Op

dp

G,
L Ox "

X

one then obtains

aféu) 3Gu 3f£0) 5GV _ (0) €y (0) af,£ ) aGu
ax |, v |, av | ax|, ™ 7 Gl B v |, ov
(A9)

The unperturbed Hamiltonian for particles of species v is

LMy oany o g =L [ _ &A@ ]2 of
H, Td + ¢,0%(x) e~ Py AY(x)| +e2%(x) (A10)
and, therefore
aH, 0H, 09
8v 3 =my,v ax 1 = Cu_—'ax 5 (All)

With Egs. (2), (3) and (All) (with the appropriate substitutions made)
taken into account, the time derivative of G, along unperturbed orbits, d,G,,
can be written as

J

(A7)

G et oG, & 090 v xBO®] 5G,
vy =V e  Ox . c ov |,
1 [0G,| OH, 0H,| 0G, By it | O, JH,
m, | Ox |, Ov < ox |, Ov |, myc av |, av |,
= [G,,H,) . (Al12)
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APPENDIX B: SOLUTION OF EULER’S
EQUATION

The minimization of the perturbation energy §* H with respect to T, (q1, 2, pi),
i = 1,---3, yields Euler’s equation, Eq. (33). In terms of the function
g, = kags + [',(q1, g2, pi), this equation can be written as

d, {2‘1'3 90, £O] + g, |22, £ — 2202 [{g.,JCVl] gT(D: + (90, Ko2] gﬁm]
afi arl
G [[@3’,@1] s + (¥ Kl EE";]} = [gvd (2) . 2]
+A [[g.,d,, (v2), K] %ﬁ—ol) + [gvd, (92) Koo gﬁ—oﬂ =0, (B1)
where, again
dugu — [di;jl — [gu,Hu] . (BQ)

Here, the subscript a.u.o. means that the derivatives are taken along the
unperturbed orbits of the particle motion in x — p space. U,, which is the
amplitude of the generating function G,, is an arbitrary, real, single-valued
function. Based on previous experience [7, 8, 9, 12], we choose test functions
¥, which depend exclusively on constants of the motion,

lI,u — ll’u (HU) Pu.'iy K:Ulv ’Cu2) ) (Ba)
and Eq. (B1) reduces to

afL afl
a}CUl + [gu, K:VZ] a’Cy?jl
av2 9fl® 9w 9fo "
K1 0K, 0K,z BIC,,1” R

d, {2@5 [91/1 f}ro)} — 2)‘\1,5 [[gw,cvll

v []- - /\] [Kula K:u2] [ (B»I-)

Therefore, the sum of all terms inside the brackets must be a constant of the
motion. In this expression, the only term which depends explicitly on ¢3 is
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gv = ksgz + T',, but not [g,,, f,ﬁo)] or [g,,K,i],i = 1,2. Then, for general ks,
¥, and [K,;,K,], this expression can be a constant of the motion only if

A=1 (B5)
and Eq. (B4) reduces to

d f (0)
apuB

f‘°

+ [d,,g,,,p ] =0. (B6)

(g, Hu]

It is not necessary to find the general solution to this equation. It suffices to
find solutions which are general enough to show that it is possible to make
§2H negative in all cases of interest. With the ansatz

ugu [gu, ] — Cua (Hva pu?n f,SU) (?{V; PVS) Kula KV?)) ) (BT)

Eq. (B6) is satisfied. C,, is a completely arbitrary function of H,, P,a
and f,EO) (Huy Pua, K1, Ko2) for particles which do not have periodic orbits.
Explicitly, Eq. (B7) means

dr', .
[ dt } + ksq:a [Ch, QZ:Pi] = cva [HV!pUS) fiEO) (Hm PUS) }Cul,lcuz)] s (BS)

an expression which allows, in principle, to determine T',, and thus g,, by
integration along the unperturbed orbits under the constraint that the result-
ing generating function for the particle position and velocity perturbation,
Gu(x,p), be single-valued. This is similar to the case treated in Ref. [9],
appendix D. For the exceptional case of particles with periodic orbits, C,, is
obtained by integrating Eq. (B8) along the closed orbit in x — p space, and
is the given by

2T T .
Co = T [m,,o n 51?(""39'3)] , (B9)

where 7, is the period of the motion, the angles are the corresponding mean

values along the unperturbed orbits and m,q is a completely arbitrary posi-

tive or negative integer. For these periodic orbits, [g3(to + 7..) — ga(to)] ks/(27)
is some integer number, which we call m,,,,. Therefore

2 27
Coa = = [7nv0 < 7711;:33] = _'Inu() . (B10)
Ty Ty

Since m,g is a completely arbitrary integer, so is also n,.
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For the evaluation of the perturbation energy, Eq. (24), not only d,g, =
(9, H.] is needed, but also [g,,, j(o)] The function g, itself, however, is not

needed. Though this function is not a constant of the motion, [g,,.f,(,o]] is
such a constant since

({90, F2]  #] = du [0, £P)] = [dugin 1] = 0. (B11)
Furthermore, one has

aflo of 5 B0 aflo
(0) o v » Ju X gy
[gll b .fy ] [gV’ HU] a%v + [gll 3 T’Vg] apua + [g.ll 2 K"Vl] amul + [gi'f: VZ] ak-u)

) d lSG) 5 aﬁEO)
+ [gys le] a_f’\;:'_l + [gva}\fu?] ‘a_K': .

9fO  9f
L 14
va aH + 3 8?3,,3

The l.h.s. and the first two terms of the r.h.s. of this equation are con-
(0)
stants of the motion. Therefore, the sum of the last two terms [g,, K,1] 5){,"—1

=.C

(B12)

2@
+ [guy Kya) 2= 55—, must also be a constant of the motion. Explicitly, one has

du [gua )Cul] — [dugu-; K:yl] = [Cua (%V,Pufi, st)) :K:VI]

= [Hvalcull + [PU3'_| vl]

[ ("),icul] (0) (B13)

[H,,K,1] vanishes because K,; is a constant of the motion, [P,3,K,] van-

ishes since K,; does not depend on g3, and [f,E ),]Cyl] — K1, K.2] K‘(’O).
Therefore 3. 5O
du [gus }Cul] = [,Cul 3 K:u2] =2 f (B14)

a5 K,

Integration of this equation along unpertur bed orbits between times ¢y and
t yields

Gy a1
[gu-,- ]Cvl] = Cub (Hu, PyBa K:vlajch) [’CulalCUZ] 0 f (t tD) . (Bls)
( )a]C
In a similar way, one obtains
9C,q Of©
[ UaK: ] Cuc (Huapu31K:vla}Cu2) + [}\-—ula}cﬂ] (0) a;;: (t - llo) (Blﬁ)
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and, therefore

o/ o1 _ ., Of
[gusKjul] m + [gng:u2] C'?T,,g = Cub a’CHI

o
) aK:u‘). l

e, (B17)
Thus, although [g,,K,1] and [g,,K,,] are constants of the motion only if
[Ku1,Ku2] = 0, or if f{%) does not depend on K,; or K1, respectively, the
combination of these two terms which appears in §2H is a constant of the

motion even if [K,1,K,2] # 0. The constants of the motion C,; and C,. can
be arbritrarily chosen.

e
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