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Abstract

Most toroidal flux coordinate systems tacitly assume a nested flux surface structure.
However, in a diverted torus the presence of a separatrix breaks this structure and the
usual toroidal flux coordinates can not be used directly. In this paper we present a
method to calculate the metric coefficients, necessary for MHD equilibrium and sta-
bility computations, in an axisymmetric divertor tokamak configuration. A “classical”
flux coordinate system, amended by a “cast function”, has been used. Thus, the un-
known moments - the solution of the equilibrium equation - are determined by the
difference between the real flux surfaces and those described by the cast function only.
With this procedure, the necessary number of moments to describe the flux surfaces
in a quite complicated separatrix configuration is small enough to make computations
time-efficient. As an example of our approach, the separatrix of a particular equilib-
rium configuration of the ASDEX-Upgrade tokamak has been considered and, for a
given surface dependence of the toroidal plasma current density, some metric coeffi-
cients and the rotational transform have been computed considering the cast function
only.

KEY WORDS MHD equilibrium and stability; tokamak; magnetic divertor; flux
coordinates




I. INTRODUCTION

X points occur in a wide variety of plasma confinement devices. In order to con-
trol impurities, diverted toroidal configurations - the object of our investigation - use solid
conductors to draw off field lines from the outside of the plasma, leading them to a neu-
tralizer divertor plate. A typical configuration with a separatrix and X points, presented in
Fig. 1. results from two parallel current distributions, the first given by the current density
Ji distributed up to the separatrix and the second by the current I;. The separatrix surface
“separates” the surfaces which enclose one current distribution from those which enclose
both. The X line, resulting from the statement that the transverse components of B vanish.
represents the meeting place of the two branches of the separatrix.
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Figure 1: Parallel current distribution producing a magnetic separatrix.

Most toroidal flux coordinate systems'~? implicitly assume a nested flux surface struc-
ture. However. in a diverted torus the presence of a separatrix breaks this structure and the
usual toroidal flux coordinates can not be used directly.

Different papers have considered the separatrix problem. In Ref. 3 a method for
determining the region of ergodic field lines about the separatrix magnetic surface is given.
A generalization of this method, with a two-wire divertor model, is presented in Refs. 4-5.
More recently, accurate and efficient calculations of the axisymmetric equilibrium up to the
separatrix have been performed in Ref. 6, using a combination of the boundary layer ex-
pansion near the separatrix and a spectral method in the core with matching at a virtual
boundary, while in Ref. 7 a coordinate system that is well behaved in the X point region is
presented.

Our approach consists of introducing a “cast function” which describes the separatrix
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exactly ( i.e. with a prescribed accuracy) while the internal flux surface contours are rep-
resented approximately by this cast function. The moments to be determined. in order to
describe the MHD plasma equilibrium, are related now to the difference between the real
flux surface contours and the contours described by the cast function only.

The adopted system of flux coordinates, the momentum equilibrium differential equa-
tion and the method of using cast functions for the calculation of the metric coefficients are
presented in Sec. II. A separatrix configuration of a particular equilibrium at the ASDEX-
Upgrade tokamak. with the relevant data (given in Appendix) obtained by the equilibrium
interpretation code DIVA® has been considered. In Sec. III, as an exemplification of our
approach, some metric coefficients, necessary for equilibrium and stability calculations. are
computed for a given distribution of the toroidal current density J(a) using the cast function
only.

The next two Sections present in some detail two models of cast functions to be used.
Thus, in Sec. 1V the cast function f4 has been deduced starting from physical considera-
tions related to a plasma current density distribution with solid divertor conductors. This
function leading to the solving of a transcendental equation (minimization algorithms are
necessary ), the identification of its parameters in order to describe a real separatrix curve
can not be realized directly by using a classical least-squares method. With this in view, in
Sec. V, a more flexible cast function fg, leading to a non-transcendental equation, has been
drawn from geometrical considerations only.

Finally, a brief discussion of the method is given in Sec. VI.

The relevant parameters of the separatrix obtained at the 5000th shot of the ASDEX-
Upgrade tokamak can be found in Appendix.

II. THE CAST FUNCTIONS METHOD

Considering now the system of coordinates (a,w.() with a an index of the magnetic
surfaces, w € [0,27] a poloidal anglelike coordinate and ¢ € [0,27] a toroidal anglelike
coordinate and considering also the local coordinate system (Fig. 1), it is possible to represent
the coordinate transformation through Fourier series in w :

r = p(a,w)cosw (1)

y = p(a,w)sinw

oC

p*la,w) = a® + Real l: > 5meim‘“] (

m=-co,m#0
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where §,,(a) are the complex moments (é,, = 6~ , the star designating the complex conjugate
moments ) and. by definition.

a’ = : (3)




where @ is the toroidal flux, while By is the toroidal magnetic field at the magnetic axis
(a = 0); therefore, a has the signification of an equivalent radius. As the moments are
complex variables, no assumption that the flux surfaces possess up-down symmetry has to
be made.

Starting from the pressure equilibrium equation and the Maxwell equations. written
for an axisymmetric configuration, and using this representation of magnetic surfaces we
obtain the following system of complex differential momentum equations®

¥t (3+2ﬂ)}—’5—(m2—1)}—’;‘:—2”—'§ (4)
L) a a pa
where Y, = 6,,/a, up = 1/q is the rotational transform. W,, = Wy, (a, u(a), gi(a,w),p'(a).
Bo, R, 611#m) is a nonlinear functional, p is the scalar plasma pressure and g;; are the metric
coefficients ; prime indicates derivation with respect to a.

By solving equation (4) with the boundary conditions given at the magnetic axis (a = 0)

and at the plasma boundary (a = 1)

om(0) =0 (5)

Ot 1) = griieti;

one obtains the é,,(a) dependence over the full plasma region and thus the full equilibrium
description of the considered plasma.

It is known that for a separatrix-like function, the expansion in series, based on any
set of orthogonal functions, converges slowly near the X point, so it is difficult to separate
the high order terms. The p(a = 1,w) function, owing a discontinuity of the derivation,
the Fourier coefficients are decreasing proportionally with m~2. An accurate description of
the separatrix corner would require a large number of harmenics. Thus, for the separatrix
obtained from the shot no. 5000 at 1.550 seconds of ASDEX-Upgrade® and described by
12 complex moments, one obtains a maximum relative error in p, at the X point, of 7.3 %,
while with 24 moments and 60 moments respectively, one obtains an error of 3.2 % and 0.8 %
respectively (Fig. 2). For more than 40 complex moments, a classical least-square method
for 6,,(1) determination would not work as the system to be solved is ill-conditioned and
special procedures have to be used.

Even if the relative error could be made acceptable by identifving a sufficient number of
moments, the running time, necessary to solve the system of m complex differential equations
(4), would be prohibitive for practical calculations.

Introducing now a cast function f which describes with a desired accuracy the given
separatrix curve, we may write :

fP=1+ 7= f5+ Real [Z Sme"”“”] (6)

where f2 = (f?), is the averaged part of f*, while f? = f? — f2 is the periodic part of f2.
With these notations, we can write equation (2) in the form :

'()2((1_“;):024-.%60[ [szﬁim*} +f2 (T}
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Figure 2: Moment description of an ASDEX-Upgrade separatrix configuration. Real configuration (a),

modelling with 12 complex moments (b}, with 24 complex moments (c) and with 60 complex moments (d).
respectively.

where 8,, = 6,. — 6,,. Thus, the &,, moments describe a function of class C! or higher.
It is easy to prove that the necessary and sufficient continuity condition for the difference
function p? — f? at the X point is that both angles generated by the functions f and p at

this point are equal (i.e. in the vicinity of the X point. it is not necessary for both functions
to be “identical”)

In Sec. IV and Sec. V respectively, two different cast functions will be given.

III. CALCULATION OF METRIC COEFFICIENTS

Making the following notations

A = Real [Z EmefﬂW] (8)
Q.—_Z—|—f2 (Q)
y=d’+a (10)

the metric coefficients. used in our equilibrium and stability calculations, become

2

O’J/’
g2=9+— (11)
4y
g =2 4 100 — Pl (12)
2a da~y
and the Jacobian
D=a+~ (13)
2
3




where, prime indicates, as before, derivation with respect to a, while the subscript « indicates
derivation with respect to w.

Considering now a surface distribution of the toroidal plasma current density of the
form :

Loy

ﬂmxa?—% (14)
and taking fp as cast function (given in Sec. V and related to the shot 5000 of
the ASDEX-Upgrade tokamak). the averaged values of the metric coefficients (p(a.w))_.
(ga2(a.w)), ), (D(a.w)), and of some coefficients involved in our equilibrium code like
(g12(R — pcosw)/D)_ and (g/(R — pcosw)/D) _ have been computed; their surface de-
pendence is presented in Figs. 3a - 3e, with R the radius of the magnetic axis.

For the current density distribution given by equation (14). the surface dependence of
the rotational transform

i e} i== Ja) (15)

aR( g22(a,w) >w

(R — pla,w)cosw)D

(P o

(D)ey

(f22)o

Figure 3: Various profiles of metric coefficients (a) - (e) and of the rotational transform (f) calculated using
the cast function fg only: the current density distribution is given by equation (14).
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IV. 1st CAST FUNCTIONS MODEL

A first model for a cast function has been naturally suggested by the currents distri-
bution given in Fig. 1; in place of concentrated currents, a current density distribution .J,
has been considered to avoid the singularity of the magnetic field at the magnetic axis. For
simplification and without loss of generality, in the following, a cylindrical current distribu-
tion will be considered.

a) Symmetrical cast functions

We are considering now a Cartesian coordinate system (z.y) with the origin at the
axis of the J, current density domain and the r axis passing through the axis of the I, cur-
rent (Fig. 4a). For the sake of simplicity, at the beginning, only symmetrical cast functions
with respect to the y axis (fa(z,y) = fa(z,—y)) will be considered. At the point (z,y).
the magnetic field and the magnetic vector potential respectively, due to a constant current
density distribution are given by the relations
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Figure 4: Model for the f4 cast function calculation: coordinates (a) - (b), magnetic field distribution (c)
and magnetic flux distribution (d).

Bi(ri) = S Au(r) = £ir (16)

Similarly, for the current /5 one has

Ho Iz, A(r2):5—0]21nr§+C (17)

2wy T

32(7"2) =

where, 7, = (22 + y*)'/% r; = ((z — h)? + y*)'/%, C is an integration constant, while yq is
the magnetic permeability of free space.




Introducing the non-dimensional coordinates (Fig. 4b)

T y h T ) )
==, n==, fo=—, pp=—, p2=— (18)
To To o To To

£
S

and the non-dimensional magnetic field and magnetic vector potential

B B A
b’:_r. b?,:—y. = — 9\
B TR ‘T =
where
I 1/2
To= ( 2 ) . Bo= ﬁ_lEJlf’o- ®o = Boro (20)
ﬁJl 2
one obtains the following expressions which depend on the £, parameter only
pr=(E+0") p2=((€— &) +n")" (21)
a:;pf—i—lnpz—j—f (22)
1 1
ba=n(l+—2)- br,=(§—£o>(1+—2)—s (23)
P2 P2
On the axis 7 = 0, the b, component has the expression
by(€.0) = —— — ¢ (24)
A T i
with a maximum
bre=(£,0) = 2~ & (25)

at the point & = &, — 1; b,(£,0) vanishes at the points (at the same points. the magnetic flux
has two extrema, Fig. 4c)

1 1 ) 1/2
i =580+ (150 - 1) (26)

It is obvious that real solutions exist only if £ > 2.

For this configuration the (,,0) point represents the X point of the separatrix, where
the flux has a maximum, while the (£,0) point, with a minimum for the flux, represents
the magnetic axis. It is convenient to choose an integration constant (' such that the flux
vanishes at the magnetic axis; thus, the flux expression becomes (Fig. 4d)

o=¢ (B =) -n= (27)

2 P2

and the maximum flux value. with which the flux has to be normalized. is

=1 (@-g)-Im& (

2 &

[R]
@ 2)

o0



The slopes of the constant flux surface contours are

r_dn _ —E(m+1)+&
d¢ n(p3+1)

On the axis 77 = 0 all the constant flux surface contours have an infinite slope. with
the exception of the separatrix curve whose slope is given by

i ( pi) (30)

At the X point (&,,0) the slope takes the values

i 1—6?)1/2 .

It is interesting to remark that at the magnetic axis (&, 0), the zero measure constant
flux surface presents a “corner” too, with the slope equal to 7,.
If the slope 7, = p is given as input data, then the necessary values of ¢ and & are

(29)

i given by
=g 1/2
| P 2
and
P p, 1
&S=§& + Eﬁ (33)
!

Obviously, |p| < 1, corresponding to a half-angle at the X point 6,/2 < m/4; the real
case of an angle greater than 7 /2 will be treated later. In Fig. 5, constant flux surface con-
tours obtained by a symmetrical cast function with £, = 2.2 and a scaling factor &, = 0.6.
defined later in equation (49), are presented.

b) Non-symmetrical cast functions

The real separatrix is not symmetric with respect to the n axis, thus, to the pre-
vious symmetrical flux function a non-symmetrical, odd with respect to 5, additional flux
function a, has been added

1 g . q
a-_—-?—‘(pf—ff)—lng—i—gaa (34)

The simplest form that a, could take is

by = 10b, (35)

where 1, is an even function with respect to . Knowing that on a constant flux surface
contour da = 0, one obtains

] = , 1 8"a ' '
£+ nm +£—%+§ [(t'a‘i‘n"_.'a%)?? +nt‘u] =0 (36)

2
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Figure 5: Constant flux surface contours given by the symmetrical f4 cast function with & = 2.2 and
ry = 0.6; the angle at the X point is equal to the real one.

To maintain the position of the X point at £ = ¢, and n = 0, ¢, must vanish at this point.
l.e. ¥, has to be of the form

We = (f—ﬁr)(0+5(f—§r))+’}772 (3?)

a. 3, and v being arbitrary “asymmetrisation factors”.
The slope of this new curve is given by

?,:W §_§0+P%[§+n(%a+ﬁ(§_§’))] (38)
T T A (€& (@ + BE—E)) + 3vP)

The two different slopes of the function at the point (£ = £,, n = 0) are given by

P (02+4§f—4)1/2—a
T B 2

(39)

The flux center (&, 7.) - the point where the flux function reaches its minimum - can
no more be determined analvtically; a minimization algorithm for non-linear functions has
to be used.

c¢) Elongation of the constant flux surface contours

From Fig. 5 we can see that, at the opposite side of the X point, the constant flux
surface contours present a too flat structure in comparison to the real separatrix. To improve
in this sense the form of the theoretical curve, on the same 1 = 0 axis one introduces two
currents of the same sign. Noting with d the distance from point (£,0) to these two new

10




currents, located symmetrically at the left and the right of the X point and with &/, the
intensity of these currents, the additional flux is given by the relation

ag = 81, 1n(paps) (40)
where |
pr=(—&+d)? 47", pi=(E—&—d)? +7° (41)

Thus, the flux function becomes

_1, 2 :
=3P +1np; +a,+ aq (42)

One might prove that, in this new configuration, the point (£, 0) remains an X point.
At the X point, the slopes of the cast function are given by the relation

4 (1‘2 1 (8}
:h(u _1+T) —'2'

’ —_—
Mo = - (43)
where
26
u? = 53 + Z (44)

d) Coordinate space deformation

Investigating the cast functions, we have observed that for & > 2.2 the curve be-
comes concave near the X point, while the real separatrix is convex there. But for § ~ 2.
the angle of the corner is less than 7 /3, while the same angle of the considered separatrix is
greater than m/2; thus, a space deformation along the 7 coordinate was necessary.

Let pic, p2c and 8., respectively represent the two slopes and the angle at the X point
of the real separatrix

0. = arctan p;. — arctan ps. (45)
From equation (43), for the calculated p; ; slopes one has the relation

T |

b Ml ) 4
u? +1 (46)

Pipr=—

Scaling now the 7 coordinate with the factor «,, to obtain the real angle 6., the
following relation has to be satisfied

0. = arctan(k,p;,) — arctan(k,pz) (47)
or
Fnlp1 = P2) 2_ r2) = tanf, (48)
1 i "'nPI'PZ
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Thus. for the scaling factor &, one obtains the two solutions

2\ 1/2
a 2 1/2
(uq—l-i-—{) 114_14_0_
N ;

+ut—1

tan 0, - tan- 6,

Ky = 2 — 1 (—1()]

retaining only the positive one.
e) Determination of the cast function [

From equation (7), it is possible to see that the calculation of our metric coefficients
is easier if the cast function has the explicit form

fa =pla,w) (50)

where w is some polar angle representing the angular gap between the vector radius p (chai-
acterizing the distance between the “flux center” - the magnetic axis - located at (£..7.) and
the current point on a constant flux surface contour) and the axis of the considered currents
distribution. In this model, the f4 function can be put in the form of an implicit (with
respect to the independent variables ¢ and w) transcendental equation only.

Making the following notations

E=6+ [y cosw, n=n.+ [ sinw (51)
=47, p=(-&)1’+7° (52)
pr=E—&a+d’+7? pi=(E—Ea—d) +7° (53)
aa = (€ — €)(a + B(E — &) +7°) (54)

the flux function may be written as

1 .-
a(fa.w) =5 (o +1npd + 61n(p3p}) + aa) (55)

For a given flux a;, at constant angle w, the cast function f4 is obtained by solving
the following transcendental equation

F(fa) =a(fa,w) —a(0,w) —a; =0 (56)

To correlate now these results with a real separatrix curve. given by (r.z) points. the
following algorithm has to be followed :




- from the input data one determines the 6, angle at the X point;

- one chooses an initial slope |p| < 0.2 for a symmetrical configuration;

- one gives such initial values to the parameters a, 3, 7. d and &, as to describe a curve
in the system of coordinates (&, x,7) with the same angle 6, at the X point and having the
flux center located at (£ ., k,7.);

- one scales the abscissa of the cast function in order to obtain the same abscissae of
the distance flux center- X point for both curves:

- modifying now the parameters, one realizes the superposition of the ordinates of the
flux centers.

V. 2nd CAST FUNCTIONS MODEL

In the following, a cast function fg, easier to use for the metric coefficients calcu-
lation, has been obtained just through geometrical considerations.

Let us consider the ASDEX-Upgrade separatrix configuration given in Fig. 6, with
the origin of the coordinates system at the magnetic axis. For the beginning, we will write
the equation of a separatrix characterized by the following parameters only : a, the distance
from the magnetic axis to the X point, a. the distance from the magnetic axis to the inter-
section of the OX line with the separatrix, 7 — ¢g — ¢, the angle at the X point and 6, the
angle between the vector radius connecting the magnetic axis and the X point with the =z
axis

Figure 6: Geometrical parameters for the fp cast function calculation.

pla,l) =a, [1 + a1(1l —cost) + Bysint —ap (1 — cost)lﬂ] (57)

witht =60 — 6y and w =6 — 7/2.
It is easy to find the relations connecting the above-mentioned parameters with the
coefficients ag. ay. and 3

tan @g + tan ¢

Qg = ﬂ (:

[&]]
o0
—
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—tan op + tan o,

S
[
o
O
O

7 . (GO)

To give some degrees of freedom in order to identifv a curve close to the real separatrix.

but satisfying the values of the above-mentioned four parameters. equation(57) can be put
i the form

P w 17, . <
plas.0) = as|1 + a;(1 —cosz‘)+Jlsmf+3(sml’Assm?fj—ag{_l —cosf)”‘

+sint(zo + 1, cost + T2cos2t + - - - + yy sint + y, sin 2 + ) (61)

with the coefficients 3. x¢. 22.- -+, y1. Y2, - - - to be determined by a least squares method in
order to be “close™ with our curve to the real separatrix.

An alternative form that we have investigate is given by the relation
; . L 1/
p*(as,0) = a*|1 + a,(1 — cost) + By sint + B(sint — 5sin2t) —ag(l — cost)'?
+sin’#(zg+ rycost 4+ Tocos2t + -« + y;sint + yosin 2t + - - ) (62)

Using equations (61) or (62). the real separatrix curve can be reproduced with an
accuracy depending on the number of determined coefficients. To represent now the internal
constant flux surface contours. using the same cast functions, in such a way that these
curves have to be as close as possible to the real constant flux distribution of the considered
equilibrium . equation (61) has been put in a very flexible form

} 5 —_ L
pla.d) = asb'{l +5[01[1 —cost)+ Gysint + 3(sint — 351112” -

92

,(a—ay)? ik
ag | 7*———+ 1 —cost +

2

aS

2

2':0 - a.’:‘)

a5

sin1(xg + xycost + rocos2t 4+ - - + yysint + yo sin 2t T---)]} (63)

where. S is a function of @ and may have one of the following kinds of dependence

3
Sy =5+ -5 () (64)

_ 3 ¥ 0 ey -
& e L s




and + is a free parameter.
Accordingly, equation (62) has been put in the form

p*(a,0) = a*|1 + a;(1 — cost) + Gy sint + B(sint — %sin?f) -

a— a, 2 1/2
Qg (";QL—G) +1- cosl‘)

a?

§

+ sin? t{(ro+ xycost + xocos2t + -+ + yysint + yosin 2t + - - -)] (67)

In Fig. 7, constant flux surface contours using only the cast function (63) are presented
for a S(a) = S;(a) dependence and v = 0.5.

06 -04 -02 0 02 04 06

Figure 7: Constant flux surface contours given by the fp cast function for the ASDEX-Upgrade separatrix
configuration given in Appendix; S(a) = Si(a) and ¥ = 0.5.

IV. DISCUSSION

In the present paper, a method for the calculation of the metric coefficients in di-
verted toroidal configurations is presented. The metric coefficients. to be used in stability
calculations (where the potential energy presents itself with the simplest form if it is ex-
pressed in a flux coordinate system), have to be calculated by equilibrium codes. taking into

15




account the real plasma configuration and parameters. Due to the presence of the separatrix.
direct use of a flux coordinate system can not be made. To overcome this. the cast functions
method has been introduced. The cast functions describe the separatrix with a prescribed
accuracy and approximately the internal constant flux surface contours . Using a moment
equilibrium solver. the moments to be determined are related to the difference between the
real flux surface contours and the surface contours described by the cast function onlv. At the
separatrix. these moments take the boundary values corresponding to the difference between
the curve described by the cast function and the separatrix itself; these boundary values
are, in general, zero. Such an approach permits to use a reasonable number of moments
to describe accurately a quite complicated separatrix configuration and to ensure the time
efficiency of our computations.

Two models of cast functions have been considered : if for the first model. deduced
from physical considerations. the constant flux surface contours near the magnetic axis are
closer to the real a? surface dependence, for the second model, a better modelling of the
separatrix and of the constant flux surface contours near the separatrix is obtained.

A generalization of the cast functions form, especially for the first model, could be
possible. Thus, other current densities distributions could be considered, for example. a
parabolic radius dependence as in real plasmas

Ji(r) = JO(1 + 4ep?) (68)

where the same definition of the reference radius ro, given in equation (20), has been con-
sidered, while ¢ is a negative parameter. With this current density distribution one obtains

1
Bi(r) = Bop(1 +2¢p?); A1 = 5Pop*(1 + ¢p?) (69)

The relations to be obtained now are more complicated than in the previous case (¢ = 0)
but the supplementary freedom degrees could better approximate the constant flux surface
contours.

For the second model, an optimization of the S(a) functions given by equations (64) -
(66) has to be considered.

As an example of application of our approach, a particular equilibrium configuration
of the ASDEX-Upgrade has been considered.

16




APPENDIX : RELEVANT DATA FOR THE CONSIDERED
SHOT

Shot no. : 5000 at time : 1.550 s
Coordinates of the magnetic axis point : r = 1.685 m:z = 0.132 m
Coordinates of the X point : r = 1.546 m:z = -0.848 m

Separatrix curve described by the following 155 (r,z) points (in meters) :

1.5455 —0.8481 1.5323 —0.8331 1.4976 —0.7924 1.4671 —0.7548 1.4386 —0.7188

1.4121 —-0.6838 1.3874 —0.6497 1.3644 —0.6165 1.3429 —0.5841 1.3230 —0.5523

1.3044 —0.5212 1.2872 —0.4907 1.2712 -0.4608 1.2564 -—0.4314 1.2427 —0.4025
| 1.2300 —0.3741 1.2183 —-0.3462 1.2075 —0.3188 1.1976 —0.2918 1.1886 —0.2652
1.1802 —0.2390 1.1727 —-0.2132 1.1658 —0.1877 1.1597 —0.1625 1.1541 -0.1377
1.1492 —0.1131 1.1449 —-0.0889 1.1412 -0.0648 1.1380 —0.0410 1.1353 —0.0174
1.1332  0.0060 1.1315 0.0293 1.1304 0.0524 1.1297  0.0754 1.1295  0.0982
1.1297  0.1210 1.1304  0.1437 1.1316  0.1664 1.1333  0.1890 1.1354  0.2116
1.1380  0.2343 1.1411  0.2569 1.1446  0.2796 1.1487  0.3023 1.1533  0.3252
1.1583  0.3481 1.1639  0.3711 1.1701  0.3943 1.1769  0.4176 1.1843  0.4410
1.1924  0.4646 1.2011  0.4884 1.2106  0.5123 1.2208  0.5363 1.2319  0.5605
1.2438  0.5848 1.2567  0.6092 1.2704  0.6337 1.2852  0.6582 1.3011  0.6827
1.3180  0.7071 1.3362  0.7314 1.3555  0.7555 1.3762  0.7791 1.3982  0.8022
1.4216  0.8245 1.4465  0.8457 1.4728  0.8656 1.5005  0.8836 1.5296  0.8994
1.5600  0.9122 1.5914 0.9215 1.6236  0.9269 1.6562  0.9280 1.6887  0.9247
1.7208 09173 1.7521  0.9062 1.7823  0.8920 1.8113  0.8753 1.8388  0.8566
1.8649  0.8363 1.8895  0.8149 1.9127  0.7927 1.9345  0.7700 1.9549  0.7469
1.9741  0.7237 1.9921  0.7003 2.0089  0.6769 2.0247  0.6536 2.0393  0.6303
2.0530  0.6071 2.0657  0.5841 2.0775  0.5612 2.0884  0.5384 2.0985  0.5158
2.1078  0.4934 2.1162  0.4711 2.1238  0.4489 2.1307  0.4270 2.1370  0.4052
2.1425  0.3836 2.1473  0.3622 2.1516  0.3409 2.1552  0.3199 2.1583  0.2990
2.1608  0.2783 2.1628  0.2578 2.1643  0.2374 2.1653  0.2172 2.1658  0.1971
2.1659  0.1772 2.1655  0.1574 2.1647  0.1377 2.1635  0.1181 2.1618  0.0986
2.1597  0.0792 2.1572  0.0598 2.1543  0.0404 2.1510  0.0211 2.1472  0.0018
2.1431 -0.0175 2.1385 —0.0368 2.1335 —0.0562 2.1281 —0.0757 2.1222 —0.0952
2.1159 —0.1148 2.1091 —0.1345 2.1018 —0.1544 2.0939 —0.1744 2.0856 —0.1946
2.0767 —0.2149 2.0672 —0.2355 2.0571 -—0.2564 2.0463 —0.2774 2.0349 —0.2938
2.0227 —0.3205 2.0098 —0.3425 1.9960 —0.3649 1.9814 —0.3877 1.9658 —0.4109
1.9492 —0.4345 1.9316 —0.4586 1.9127 —0.4832 1.8927 —0.5084 1.8712 —0.5341
1.8484 —0.5605 1.8239 —0.5875 1.7978 —0.6153 1.7698 —0.6439 1.7398 —0.6735
1.7075 —0.7042 1.6729 —0.7363 1.6354 —0.7700 1.5948 —0.8039 1.5608 —0.8352

These data have been obtained by the equilibrium interpretation code DIVA®
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