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ABSTRACT

We have developed a code which evaluates the complex input impedance, the load-
ing, and the spectral distribution of the launched power, of metallic antennas for ion
cyclotron heating of large tokamak plasmas. The current distribution along the con-
ductors is obtained selfconsistently from a variational method. The plasma response is
evaluated assuming that the WKB approximation can be used already at the plasma
edge, thereby avoiding the lengthy integration of the wave equations in the plasma.
This makes possible systematic scans over frequency or other parameters, while retain-
ing a sufficiently large number of Fourier components in the radiated fields to ensure
convergence of both the resistive and reactive part of the power. Optionally, the code
can evaluate the antenna response in vacuum or with a dummy load, for comparison
with test bank measurements.

We have applied the code to a few antennas of practical interest. The code reproduces
accurately the expected transmission-line-like behaviour of a simple feeder-to-short an-
tenna, and reasonably well the measured properties of the folded antenna of the ASDEX
Upgrade ICRF experiment. This antenna is found to have particularly favourable prop-
erties, since its outer conductors present to the plasma a relatively uniform current over
a broad range of frequencies, which, moreover, is always larger than in the return con-
ductors. The loading of the “violin antenna” recently proposed for use in ITER is found
to be satisfactory in the vicinity of antenna resonances, although rather poor at other
frequencies. In the case of simple strap antennas replacing the short by an adjustable
capacity, as in TORE SUPRA, is confirmed to be a good way of optimizing the loading.




1 — Introduction. A sustained effort has been devoted to the theoretical description
of antennas for ion cyclotron heating (ICH) in tokamaks. In a first phase, the coupling
properties were investigated assuming a given, usually space-independent, distribution
of currents in the external conductors [1]-[10]. This is justified as long as the antenna
is electrically short, i.e. at low frequencies and in small devices. With the increase of
the plasma and antenna size and the widening of the frequency range to be covered
for different heating scenarios, however, the need for a self-consistent determination of
the antenna currents becomes evident. A powerful variational method for the solution
of the self-consistent problem was proposed by Teilhaber and Jacquinot [11] for fast-
wave antennas, and extended in [12] to cover arbitrarily oriented antennas. A decisive
advantage of this approach is that it provides at the same times the complex input
impedance of the antenna, which is needed to treat the launcher as a known element of
the h.f. circuit delivering the h.f. power from the generator to the plasma.

In large tokamaks, however, the variational approach is very computing intensive.
To substantiate this statement, it is necessary to recall briefly how the coupling problem
is formulated. Because of spatial dispersion, the plasma response can be evaluated in a
realistic way only if the electromagnetic field can be decomposed into partial waves hav-
ing a definite periodicity along the static magnetic field lines. For coupling calculations
it is justified as a first approximation to neglect the curvature of the real configuration,

replacing the tokamak by a plasma slab, so that this goal is easily attained by Fourier- .

analyzing the solution of Maxwell’s equations in toroidal and poloidal directions:

E= 3" Bkyks,z) eihrvthe (1)

kylkz
where z, y, z are the straight geometry correspondents of the radial, poloidal and
toroidal coordinates, respectively, and the summation is over a sufficiently large set of
values of ky, k,, usually discretized according to the periodicity of the toroidal configu-

ration:

by = o k=g (2)

where m and n are integers, and a,, R, the plasma and torus radius, respectively. From
the point of view of coupling, the plasma response is completely summarized in the
surface impedance matrix Z (ky, kz) [12]. Introducing the ‘tangential’ fields as

E,=E, i, + E, i, B, = —@, x B, = B, i, — By, (3)

(where 1, are units vectors in the directions of the coordinates) the 2 X 2 symmetric
matrix ép is defined from the linear relation

Ey(0) = z,- B,(0) 4)
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satisfied at the plasma surface z = 0 by the causal solution of Maxwell’s equations in
the plasma. For each partial wave the surface impedance matrix Z must be evaluated
in principle by integrating the finite Larmor radius wave equa.tlons either across the
whole plasma, or at least until a position where the density is sufficiently large to impose
outward radiation conditions exploiting the validity of the WKB approximation.

The upper limit to n = ck;/w which can be efficiently coupled to the plasma is
easily deduced from the dispersion relation of the compressional wave
2 2
2 — Dy — ) )
. (nf ~ 8)

where R, L and § = (R+L)/2 are the elements of the cold plasma dielectric tensor [13].
Most heating scenarios (minority heating, cyclotron harmonic damping, electron heat-
ing and current drive) are optimized for modes with a sufficiently large n", which are
evanescent in vacuum and become propagative only above the cutoff n“ R. The
latter, therefore, must not be located too deeply inside the plasma. Recalling that
R = O(w2;/9%), it follows that the physics of heating requires to take into account
partial waves up to values of the parallel index n| = ck./w of the order of a fraction
of (m; /me)l/ 2 essentially independently from the plasma size. Since the reactive part
of the antenna impedence is influenced also by evanescent waves which are not radiated,
however, the selfconsistent evaluation of the antenna characteristics typically requires to
extend the exploration in k, to values of the order of the inverse of the antenna width;
the corresponding values of n| are at least two or three times larger than those which
contribute to the loading resistance. Similarly, only the few lowest values of n,, = cky /w
can be radiated efficiently into the plasma: since n} = n% — n2, a finite k, enhances the
evanescence close to the antenna. For an accurate evaluation of the complex antenna
impedance, however, it is necessary to explore a range of ng about as large as the range
in n2. The reason is that, although a fast-wave antenna is usually much longer in the y
than wide in the z direction, its selfinductance is strongly influenced by contribution of
feeders and shorts with evanescence length of the same order as the transverse width of
the conductors [5].

According to Egs. (2), on the other hand, the density of modes is inversely propor-
tional to the plasma size in each of the two ignorable coordinates. From these elementary
considerations we can conclude that the number of modes which must be taken into ac-
count increases as the square of the plasma dimensions, and, for a given plasma size,
as the square of the frequency. It is clear, therefore, that for tokamaks of the size of
JET or ITER a systematic frequency-dependent investigation of the electric properties
of IC antennas can be a very heavy task. It should also be mentioned that obta.lm_ng Z
with good accuracy from the numerical integration of the wave equations in the plasma
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becomes increasingly difficult for the Fourier modes with very short evanescence length
required to evaluate the reactive part of the complex power.

To speed up antenna evaluations, in [14] we have derived analytic expressions for the
surface impedance matrix of large plasmas, assuming that the WKB approximation can
be used already at the edge of the plasma. For this purpose, the boundary conditions
which connect the three independent solutions of the finite Larmor radius (FLR) wave
equations in the plasma to the two solutions in vacuum has been established, and it
has been shown that they guarantee the continuity of the total power flux entering
the plasma. The values of ép obtained analytically are in excellent agreement with
numerical evaluations, provided that no singularity of the wave equations is present in
the near-field region. This is not astonishing, since it amounts to a confirmation of the
accuracy of the WKB approximation. The availability of relatively simple yet accurate
analytic expressions for ép makes possible a substantial reduction of the computing
time required to calculate the properties if IC antennas.

It is often also useful to evaluate the electrical properties of antennas in vacuum: by
comparing the results with the properties measured on a test bank or with estimations
based on simple transmission line models of the antenna itself, one can test the accuracy
of the numerical simulations. In addition, the plasma is likely to influence strongly the
loading resistance of the antenna, but only weakly its reactive impedance, particularly
in the presence of a Faraday screen. The behaviour of an antenna in vacuum or with
a dummy load is therefore significant also for the plasma-loaded case: for example,
the frequencies at which the antenna is resonant will be little affected by the plasma,
although the quality factor of the resonances should appreciably decrease if coupling to
the plasma is good.

These considerations have motivated us to produce a code which combines the an-
tenna module of the FELICE code [15] with the fast evaluation of the plasma response
based on the WKB theory. This code, which has been named ANTWKB, can evalu-
ate also antennas radiating towards a vacuum half-space or on an absorber. Another
advantage of an independent antenna package is that it does not need large arrays to
store partial results, and is therefore less memory consuming and more flexible in the
number of components which can be included in the Fourier representation of the fields.

The antenna routines of ANTWKB and FELICE are based on the formalism pre-
sented in [12] for the solution of Maxwell equations in vacuum. With respect to [12],
however, a few changes and generalizations have been made:

a) The solution has been formulated in terms of impedances only, avoiding admit-
tances. The two are perfectly equivalent in principle, but impedances are numerically
more convenient, because they remain well-behaved also near perfect conductors.
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b) The currents in feeders and shorts are no more assumed to be constant (since
these conductors are in the same situation as the central conductor of a coaxial line, the
same propagation constant as in vacuum is to be expected). We have found that taking
into account propagation in the radial conductors is important at high frequencies.

¢) The Ritz procedure has been extended to the case of several coupled antennas.

The third generalization, sketched in the Appendix, is the most important, since it
allows in principle to evaluate selfconsistently the coupling constants of arrays. Imple-
menting the general case, however, requires a major rearrangement of the code structure;
for the moment, therefore, only the case of two loops fed in parallel by the same line
has been implemented. The simplest example of such configurations is a T-antenna,
which can be easily treated also as a single element by exploiting its symmetry. Having
checked that the two approaches give the same results in this case, we have applied the
new possibility to the violin antenna proposed for ITER [16], which is just an asym-
metric T-antenna with two arms of very different lengths. Results for arrays will be
presented separately when the necessary modifications to the code are ready.

The paper is organized as follows: sections 2 and 3 introduce the way in which
different antennas are characterized in the ANTWKB code; sections 3 to 7 present
applications to a number of cases of practical interest, both without and with plasma.
Several antenna configurations are routinely available in ANTWKB:

1) A simple strap antenna fed at one end and shorted at the other;

2) A push-pull antenna with symmetric feeders at both ends and shorted in the
middle;

3) The ASDEX Upgrade antenna (described below);
4) The violin antenna [16].

In cases 1) and 4) the antenna can be terminated on a capacitor instead than on a
short. In addition, the code is so organized that it should be relatively easy for the user
to add any additional configuration which might be of interest. Here we will present
examples for cases 1), 3) and 4) in vacuum, and for case 1) and 4) with plasma. Some
conclusions will be summarized in section 8.




2 — Input, radiation and effective resistance. The output of the ANTWKB
code consists of the complex input and radiation (or loading) impedances of the antenna,
and the spectral decomposition of the launced power. The latter is useful to estimate
the power balance and the power deposition profiles in heating experiments; the input
impedance Zg, on the other hand, is the most important quantity characterizing the
antenna behaviour. As well known, Z is the ratio of voltage to current at the entrance
point of the antenna,

Ve =ZplF Zr = R; +1X; (6)

Its knowledge is necessary and sufficient to treat the antenna as a passive element in
the h.f. power line. The radiation impedance, on the other hand, is defined in terms of
the complex power

| . = i .
Pcmnpl - E /Et* -Jy dl = EZL[ISP Zy = Rrad + ZXrad (7)

where the integral extends over the antenna conductors, and Ig is the current in the
short, which is normally also the peak current in the antenna (floating antennas tend to
couple electrostatically to short wavelength surface waves in the plasma, and must be
avoided in IC heating). Since the code neglects the internal resistance of the antenna,
the real part of Peomp is the radiated power P; moreover

1 1
P= -2-RdeIs|2 = 5—’?4'|IF|2 (8)

Neither Zr nor Z;, however, are easily accessible experimentally, except on a test
bank. During operation in ICRF experiments, it is instead customary to deduce from
the measured launched power P an effective resistance R.ys defined as

1 g i g A Y
P= ‘2—R1|IF| = EREfoma:cl = §Re.ff fzné:w ©)

where Ina: and Ve are the peak voltage and peak current, respectively, in the coaxial
line feeding the antenna, and Z,. its characteristic impedance. In particular Ry is
directly related to the maximum power which can be transmitted, which is usally limited
by the maximum voltage which the line can stand.

To obtain the relation between the input impedance Zr of the antenna and the
effective resistance R.s; measured experimentally, one can start from the solutions of
the transmission-line equations in the coaxial,

Z
V(s)=Vr {cos kos —i== sinkos}
Zp

Z (10)
I(s) =Ir {cos kos + zE-Ii sin kos}
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To evaluate I,,,,;, we note that

1
1 L) = (cos ko5 — 2z 8in k,8)> + 2 sin’ ks
1 (11)
= 5{ (r2+22+1) — (r? + 27 — 1) cos 2k,s — 2zi5i112k08}
where
2 = = T = i (12)
' Zoc ¢ P

and we have taken into account that Z,, is purely real. The r.h. side of (11) is stationary
where

22z;
Defining
A= \/(r? +22 —1)" +427 9
we can rewrite (11) as
|I(8)I __{(r?+z?+1)+Acos2ko(5—sM)} (15)

the choice of sign being dictated by the requirement that |I(sar)|?> must be a maximum.
From (9) then follows

Refs = f(:i‘z:) (16)
with
flri,z) = %{ (rf + 22+ 1) + \/(rf + 22 — 1)2 + 423} (17)

with 7; and z; defined by (12). The behaviour of the function 1/f(r;, ;) is illustrated
in fig. 1. Note that R.ss is always smaller than the input resistance R;, and does not
depend from the sign of the reactive part of the input impedance Z; (whether ‘inductive’
or ‘capacitive’). To evaluate R.ys, moreover, it is not necessary to know the radiation
resistance R,.q of the antenna, as expected.

By construction, the running complex impedance Z.(s) = V(s)/I(s) in the coaxial
is real at the point s = sps. Hence the whole line beyond sz, including the antenna, is
equivalent to a purely resistive load R.ss inserted directly at sps. From this remark it
is not difficult to derive the alternative expression

ZOC
Ress=— (18)
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where S is the standing wave ratio in the coaxial,

S

140 (1+r,?+z,?+A)1/2

T1-0 \1+ri+22-A (19)

I" being the reflection coefficient, and the last expression being deduced from Eq. (15).
From these equations it can be shown [17] that if the antenna is itself a transmission line
with characteristic impedance Z,,, and R,qq < Zoq, Resy is smaller or larger than R,.qq
depending on whether Z,. is smaller or larger than Z,,. Although this relation has no
universal validity, it is a useful guideline in the choice of the coaxial impedance Z,..

3 — Representation of the antenna currents. For the implementation of the
variational method it is necessary to have a reasonable representation of the current in
the antenna. In the main conductors we assume a factorized distribution of the form

#m0=%nw%m (20)

where 7 and ¢ are orthogonal coordinates along and across the conductors, respectively
(for fast wave antennas usually = y and ¢ = z; the code, however, can take into
account misalignment with respect to the static magnetic field due to the poloidal field
of the tokamak). With the conventions

Max, {|fa]} =1 fA 0a(C) d¢ = w4 (21)

14 is the total peak current at the short, and the form factors f, and g, are dimensionless
and of order unity. In all examples g,(¢) has been taken simply equal to unity, although
profiles peaked towards the edges of the strips in the transverse direction have also been
tested. The current in the radial conductors is then

T20,0) = 2 3 0w b (1= 1) falm) 9a(0) hale) (22)
¢ {F}

where the sum extends to all feeders (¢ = +1) and shorts (¢F = —1). The func-
tion h,(z) takes into account radial propagation and has the form of a transmission line
solution with boundary conditions at the wall and at the insertion point on the main
conductor (the propagation constant in feeders and shorts is taken as given, i.e. it is not
determined as part of the variational procedure).

To write f,(77) we have assimilated the antennas to one or several pieces of transmis-
sion line, taking into account the boundary conditions dJ/dn = 0 at shorts. Optionally,
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ANTWKB can be asked to determine the value of the propagation constant v, which
makes the variational functional stationary. This, however, has the disadvantage of as-
suming for practical reasons a real propagation constant, and therefore restricts exces-
sively the class of test functions. Here, therefore, we use only the Ritz algorithm [11]-[12].
In this approach f(7) is assumed to be the sum of several transmission-line functions
with different values of v,

fa(n) = ¢jfa(va(5) kom) (23)

i=0

(ko = w/c), and the variation determines the complex coefficients c;. The values v,(5)
are in principle arbitrary: the basis functions are not required to be orthogonal to each
other, and the results are very robust to changes in the representation of f,(n). The
best convergence, however, is obtained by chosing the v,(j) commensurate with the
electrical length of the antenna,

ik
kol

Vall) = gzl Loss P (24)
and k is a number of order unity. Including the constant distribution j = 0 is useful
at low frequency (k.f, < 1), indifferent if the antenna is not electrically short. In the
applications three (j =0, 1 and 2) to five modes have been used, with x = 0.85. It
should be stressed that there is no point in including modes with v,(j) larger than
the largest value of n, used in the solution (1) of Maxwell’s equations; r = 3 is a good
compromise at all frequencies, ensuring an accuracy of the order of a few percent, except
near antenna resonances where the error appears to increase to 10-20%.

By far the largest uncertanties in the results are due to the discretization of the
Fourier expansion (1) for the electromagnetic field in vacuum and in the plasma, as it
will become clear from the examples. In the applications we have used mostly 200 modes
in the toroidal and 100 in the poloidal direction (2 10* Fourier components altogether),
and occasionally up to 10 times more. Depending on the complexity of the antenna
(number of conductors) each point in a frequency scan requires between 10 and 30 s
on a Cray YMP for an antenna radiating in vacuum, and two to three times longer
in the presence of plasma. The CPU time required by FELICE to integrate the wave
equations over 1 m inside the plasma in order to obtain the surface impedance matrices
for the same number of Fourier components would be several h. Although this is partly
compensated by storing the tables of ép so that they can be used for different antennas
without running FELICE again, the advantage of the independent antenna package is
obvious.




4 — Simple feeder-to-short antenna. The current distribution in a simple strap
fed at 7 = 0 and terminated at = £, treminated by a short or a capacitor (fig. 2) can
be written (omitting for simplicity the summation of Eq. (23))

fa(n) = 0y, {COS ko”a(n - ‘ea) =+ Qa. Sinkoya(n - ga)} (25)

where o, is the sign of £, (orientation of the antenna), and Q, is either zero (short) or
a constant of order unity and negative.

Here we consider the shorted case with geometrical dimensions as summarized in
Table 1; in order to have the simplest possible configuration, no Faraday screen was
included. This antenna should behave as a piece of transmission line (TL) terminated
on a short, except that its dimensions are such that it is not possible to predict accurately
the distributed capacitance from the quasistatic approximation. The plots of the input
resistance and impedance versus frequency confirm this expectation (fig. 3). From
the position of the £, = A/2 resonance and the low-frequency behaviour of Z; one can
deduce a dimensionless propagation constant v, = 1.16 and a characteristic impedance
Zoq = 63.5 Ohm (distributed capacity C, = 6.11 10! F/m, distributed inductance
L, = 2.46 107 H/m). The equivalent TL characteristic impedance Z, is obtained from
the input impedance at a frequency f well below the resonance frequency fy/4 as

2 Jim T4

Zog = —
“ T f—0 f

Zi(f) (26)
This relation should hold, according to the TL model, in the limit of an electrically
short antenna, v, k.4, < 1.

In this frequency scan we used 300 Fourier components in z and 100 in y, with a dis-
cretization corresponding to the dimensions of ITER, namely R, = 7.75 m, a, = 4.50 m
(the latter being the vertical radius for an ellipticity of 1.6). The upper limits of n,
and n, are then 73.9 and 42.6, respectively; the latter value allowed to include 5 modes
in the Ritz representation of the currents. These values are largely sufficient for good
convergence at all frequencies, so that we can be shure that the small amplitude irreg-
ularities in the numerical results with varying frequency are not due to bad numerics.
The irregularities are particularly visible in the plots of the loading and effective resis-
tance, fig. 3 ¢). As shown in fig. 4, by choosing a slightly different discretization of k,
and k,, it is possible to run the frequency scan so that the results are smooth (although
in this case, to do so while using the same number of Fourier components, we were
obliged to accept a somewhat poorer convergence, and to use only three modes in the
Ritz representation of the currents). Before explaining how this can be done, however,
it is convenient to discuss first the results for a more complicated antenna with Faraday
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screen, for which the oscillatory behaviour of R,,q with frequency is so marked that its
origin becomes immediately clear.

Here we mention that with the values of the distributed constants estimated as
above, and assuming losses such that R,/wC, = 0.01 f (Mhz), the transmission line
predictions for Z; and R;, shown in fig. 5, agree not only qualitatively, but almost quan-
titatively with the results of ANTWKB (most of the discrepancy can be attributed to
a poor modeling of the frequency dependence of the radiation losses in the TL approxi-
mation). If the characteristic impedance of the feeding coaxial is 60 Ohm, moreover, the
radiation and effective resistances are nearly equal at all frequencies. According to the
remark following Eq. (19), this confirms that this antenna is behaving as a segment of
transmission line with a well-defined, frequency-independent, characteristic impedance
of about 60 Ohm, as estimated above. In other words, the code reproduces well the
expected behaviour of a shorted segment of transmission line.

This remains true if an ideal Farady screen is added, as shown in fig. 6. The in-
trinsic characteristics of the equivalent transmission line with screen are found to be
C, = 1.321071° F/m, L, = 2.67 1077 H/m; the larger capacity increases the effective
propagation constant to 1.79 and decreases the characteristic impedance to 45 Ohm.
The radiation load in vacuum, moreover, is appreciably decreased by the screen.

5 — The ASDEX Upgrade antenna. We have next tested the code on the Asdex
Upgrade antenna [18], shown schematically in Fig. 7. The dimensions of the two loops,
summarized in Table 2, are such that they should have nearly the same inductance, and
the folding of the conductors is such that, at least at low frequencies, a nearly uniform
current should be presented to the plasma by the two outer conductors, as required for
good coupling. We shall see that this property remains well satisfied even above the
first antenna resonance.

If IS and I5 are the currents in the upper and lower short, respectively, and defining

B I&g B If;' cos Vyko(2Ly — YF) o7
Q=18 = TF cosvake(Ta + @7)
u u dFo\Ld yF)

the currents in each loop, with reference to fig. 7 can be written as follows:

a) Inner conductors:

—cosUyko(2Ly —y) ifyr <y <Ly

fiy) = (28)
Qcosvgko(Lg+y) f0<y<yr
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b) Outer conductors:

cos Uy koy if0<y< L,

fa(y) = (29)
Qcosvako(La+y) if —La<y<—g

A transmission-line model of this antenna is complicated, because the main and
return conductors are in different situations, and must therefore be expected to have
different characteristic constants. The results of ANTWKB, on the other hand, can
be compared with accurate test bank measurements [19]. They show that the \/4
resonance of the antenna lies at 42 Mhz, and, using Eq. (26), suggest an equivalent
TL characteristic impedance at low frequency of about 18 Ohm. It should be stressed,
however, that precise agreement is unlikely to be attained for several reasons. In the first
place, in the real antenna, the distance between main and return conductor is variable,
to accomodate the structure in the available space between separatrix and wall in the
tokamak. Since the theory is available only for main conductors in planes parallel to
the wall (and to the plasma surface), we were obliged to take an average value for this
distance. Strictly speaking, moreover, the antenna consists of two loops fed in parallel;
we have nevertheless treated it as a single element, assuming the two loops well balanced,
so that the current from the feeder divides equally between the two arms, i.e. Q =1 in
Egs. (28)-(29). This has been found to be nearly true on the test bench, in agreement
with the design goal. In principle, as we shall see in the next section, ANTWKB could
evaluate separately the current in each loop; to enter the necessary data for an antenna
as complicated as this one, however, is rather cumbersome, and we have not attempted
it. Finally, the test bench measurements have been made for two antennas of this kind
parallel to each other and oriented in opposite directions, the same configuration as in
the ASDEX Upgrade tokamak. Although the measurements allow conclusions also on
the behaviour of each antenna separately, the comparison is necessarily indirect. We
should also add that, since there are two shorts in which flows a different current, the
definition of R,.q is not univoque. For simplicity, we have defined it using as reference
the current in the middle-plane short. We recall that the effective resistance R.s;, by
contrast, is always uniquely defined once the impedance of the coaxial line is given.

The complex input impedance obtained with ANTWKB by discretizing the spectra
according to the Asdex Upgrade periodicity (R, = 1.67 m, a, = 0.5 m) is shown versus
frequency in fig. 8. It is immediately clear that these results have nothing in common
with the measured ones. The test bank, however, is in a large room, so that the very
short periodicities of Asdex Upgrade are likely to be inappropriate for this simulation.
We have therefore re-run the frequency scan putting the antenna in a larger square box
with B; = ap = 5 m. The results, shown in fig. 9, begin to recall the measured ones,
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but show, enhanced, the same kind of irregular behaviour already noted in the case
of a simple antenna (fig. 3). This becomes particularly evident if we plot the effective
resistance versus frequency (fig. 9 ¢). The transformation from R; to R.ss eliminates
the effects of the large A/4 antenna resonance; the remaining periodic peaks in Rsy
have nothing to do with the antenna itself, but appear precisely at those frequencies
at which a new partial wave in the Fourier representation (1) changes from evanescent
(n2 +nZ > 1) to propagative (n? +n} < 1). The reason why these parasitic resonances
are stronger in this case than in the previous one is that the idealized Faraday screen
helps guiding waves with n, = 0 along the poloidal and toroidal directions; the artifi-
cially imposed periodicity makes them interact again and again with the antenna. The
results of fig. 8 are dominated by “box resonances” of this kind.

These consideration also suggest a way of eliminating the parasitic resonances,
namely by chosing the dimension of the toroidal box to be frequency dependent in
such a way as to be always at the mid-point between two peaks. For a square box the

recipee is
c

Ry=ap=(Ny+3) o7 (30)
where N, is an integer which denotes the number of propagative modes with0 <n, <1
and n, = 0, or with 0 < n, < 1 and n, = 0. This way of discretizing the spectrum has
also the advantage of making convergence robust and roughly frequency-independent.
Since there are only about 4 Ng propagative partial waves, where N, is necessarily much
smaller than the total number of components (in practice, we have used N, = 5), it is
clear that the sampling of radiating modes is rather poor. The accuracy obtained is
nevertheless acceptable, since the normalization of the Fourier transform automatically
compensates in part for the rough discretization.

The results obtained using the “variable box” normalization are shown in fig. 10
in vacuum and with a strong absorber. They are qualitatively quite similar to the
experimental ones, although the /4 resonance is about 6 Mhz too high, and the values
of the input impedance Z; somewhat too small. Also, to reproduce the broad peak
in R,z s with absorber around 50 Mhz we must use a coaxial line of 50 Ohm according to
ANTWKSB (fig. 11), while experimentally it appears already at 30 Ohm. As mentioned
above, however, it would not be too difficult to improve agreement by changing slightly
the radial distances between conductors and wall, and particularly the position of the
Faraday screen.

In the case of the ASDEX Upgrade antenna it is particularly instructive to have
a look to the selfconsistent current distribution predicted by the Ritz algorithm. At
low frequencies the current in the the outer conductors is nearly uniform, as expected.
This configuration is very robust: when the the ratio Is/Ir increases as the frequency
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approaches the A\/4 resonance, most of the variation takes place in the return conductors
close to the walls (fig. 12 a). Above the resonant frequency (fig. 12 b) the current
changes sign between feeder and shorts, but again the node occurs close to the feeder
in the return conductors, so that the current in the outer conductors has the opposite
direction, but is again quite homogeneous. The transition from one configuration to
the other occurs rather abruptly around the resonant frequency. It is not difficult
to understand the reason for this behaviour: the return conductors, being close to
the metallic wall, are equivalent to segments of TL with higher capacity, hence larger
propagation constant, and can therefore easily accomodate most of the variation of J(7).
This has the advantage that the antenna presents to the plasma a satisfactorily uniform
current at most frequencies, as required for good coupling, which moreover corresponds
always to the section closest to the shorts, which radiates best.

We conclude this section by mentioning that the variable box discretization of the
spectrum can be used with advantage also in the presence of plasma, preferentially
with different values of IV, in the toroidal and poloidal directions, chosen so that the
effective values of a, and R, are as close as possible to the real ones. When the plasma
is sufficiently absorptive, the suppression of spurious surface modes is more important
than an exact sampling of the spectrum.

6 — Violin antenna. Recently [16] an antenna of new design has been proposed for
ITER, and discussed using both a transmission-line model and numerical simulations.
It is an asymmetric shorted T-antenna, with the feeder much closer to one end (fig. 13);
the long arm should be the main radiating part, while the short arm should act as
‘tuning’ element. This launching structure, which has been appropriately named ‘violin’
antenna, has advantages from the point of view of its mechanical support, and should
have an acceptable loading over a wide frequency band.

In each arm of the violin antenna the current distribution can be represented by
a function of the form (25); in contrast to the case of the Asdex Upgrade antenna,
however, it is obviously not possible to assume that the feeder current divides equally
between the two arms. To determine the antenna current selfconsistently, therefore,
the extension of the variational method to the case of two coupled loops is essential.
In the quasistatic limit one would predict that the current in the short arm, which
presents to the feeder a much lower impedance, should be about ten times larger than
in the main arm; this is confirmed by the variational method at frequencies below
about 15 Mhz. Near antenna resonances, on the other hand, the current in the two
arms becomes comparable, and a non-negligible current in quadrature with the feeder
can flow between the two shorts, ignoring the feeder. These current modes are ‘natural
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vibrations’ of the antenna not unlike the vibrations of a violin string; formally, their
excitation means that the coefficients of the Ritz superposition (23) can have a large
imaginary part.

The physical dimensions of the violin antenna proposed for ITER in [16] are sum-
marized in Table 3. The behaviour predicted by ANTWKB for this antenna radiating
towards a vacuum half-space is presented in fig. 14 for two values of the distance be-
tween the conductor and the Faraday screen (the very tight screen distance of 1 cm
was chosen to see how low the first antenna resonance could be made; in the following
we will concentrate on the more realistic distance of 5 cm). It is instructive to com-
pare these results with the predictions of a TL model of the antenna. Since the two
arms are geometricall identical except for their length, and are fed in parallel, the input
impedance seen by the coaxial line should be

-1
Z; = —Zc{ cot vgkol1 + cot uakot’z} (31)

where the effective characteristic impedance Z, can be obtained from Eq. (26) using
the effective length Less = £1£2/(€1 + £3). When £; < ¢; the presence of the short arm
shifts the first zero of the expression in bracketts in such a way that the first two antenna
resonances should be roughly equispaced in frequency. This prediction of the TL model,
however, is not completely confirmed by the numerical results. The ratio between first
and second resonant frequency is found to be about 2.5, definitely less than the value 3
for a single line, but still larger than the approximate value 2 predicted by Eq. (31).
As shown in fig. 15, therefore, the TL model can interpolate reasonably well either the
first or the second resonance, but not both; it is also more difficult than in the case of a
simple antenna to make a guess about the distributed losses which describes well both
the height and the width of the two peaks of R;. We attribute these discrepancies to
the fact that the simple TL model (31) neglects the mutual coupling of the two loops,
which is automatically taken into account by the variational method.

It is natural in this case to define the radiation resistance with reference to the
current in the short of the major arm. In the absence of losses this current vanishes at
a frequency just above each antenna resonance, so that when radiation losses are taken
into account R,qq has large and broad peaks above the \/4 resonance (fig. 16 a). This
suggests that in vacuum this antenna is a good radiator over a broad frequency range.
It should be noted, however, that the absolute values reached by R,.q are largely a
matter of definition. The peaks of R,,q, moreover, can be completely suppressed by
the transformation to Ry, unless the impedance of the coaxial line is sufficiently large
(fig. 186).
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It is therefore important to investigate how efficient the violin antenna is in the pres-
ence of plasma. Figure 17 shows the results obtained with ANTWKB with a ITER-like
pure deuterium plasma as load. The parameters chosen for these runs are summarized
in table 4; note that only edge values are given, since the assumption that the WKB
approximation can be used to evaluate the plasma surface impedance matrix makes all
other parameters irrelevant. We have not made shure that this assumption is justified
over the whole frequency range: on the contrary, it is likely to be invalid at frequencies
around 34 and 68 Mhz, when the fundamental and first harmonic cyclotron resonance
of deuterium, respectively, cross the outer plasma edge. We stress, however, that the
load evaluated by ANTWKB is physically meaningful even in these frequency ranges,
although it will differ somewhat from the real plasma load in the inhomogeneous toka-
mak configuration. It is also important to realize that in the presence of plasma, when
the procedure mentioned at the end of section 5 is used to discretize the spectrum, the
number of Fourier components required for convergence increases as the square of the
frequency; at 80 Mhz we had to include 2.2 10° components (10° in the toroidal and 220
in the poloidal directions). Failing to use a systematic discretization of the spectrum and
to ensure convergence results in spurious resonances and in discontinuities even stronger
than in the vacuum case, which make any interpretation of the results impossible.

It is immediately apparent that the response of the violin antenna in the presence of
plasma is qualitatively the same as in vacuum: the resonance frequencies are practically
unchanged, X; is reduced by a factor between 1.5 and 2, the effect being larger at low
frequencies, and the quality of the antenna resonances is not significantly reduced by
the plasma load. The radiation resistance above the first antenna resonance is again
quite large, with peaks (not shown in fig. 17 b) of about 140 Ohm. It must be recalled,
however, that R,,4 does not characterize well the coupling efficiency of this antenna. As
shown in fig. 18, at frequencies above the A/4 resonance the current in the main short,
although a local maximum, is by no means the largest current in the antenna. If the
latter were used to define R,..q4, its values would be reduced by more than an order of
magnitude. Similarly, the two peaks of R.s; close to the antenna resonances are quite
comfortable, but elsewhere the values of Rss, although somewhat larger than in the
vacuum case, remain rather low, implying a relatively large standing wave ratio and
large voltages in the coaxial.

For comparison, fig. 19 shows a frequency scan in the presence of the same plasma for
the simple feeder-to-short antenna of section 4 (with Faraday screen). While the input
impedance is again little affected, the loading in the presence of plasma, is considerably
increased at low frequencies, and decreases again to values comparable or lower than in
vacuum at frequencies above 50 Mhz. In spite of the fact that the total length of this
antenna is only half that of the violin antenna, the effective resistance seen by a 50 Ohm
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coaxial line is larger at all frequencies except in the vicinity of resonances of the latter.
Incidentally, figs. 17 ¢ and 19 ¢ are a good warning against using the absolute values
of Ryqq to compare the launching efficiency of antennas of different design.

Although neither antenna has been optimized, the conclusion which can be drawn
from this comparison is that the violin antenna is really superior only if used in the
vicinity of its resonances (that it should be used above the \/4 resonance was stressed
in [16]). We believe that the poor performances at low frequencies are due to the
fact that the violin antenna presents to the plasma a current with a dicontinuity in
the poloidal direction at the position of the feeder. The Fourier spectrum of such a
configuration is rich in large n, components, which are poorly coupled to the plasma.
This becomes less important near antenna resonances, where there is a large current
component in quadrature with the excitation which is continuous at the feeders, as in
the case of fig. 18. Elsewhere, however, the violin antenna is at disadvantage compared
to an antenna of similar size but without discontinuity. If the radiation and effective
resistances are evaluated with ANTWKB without making use of the variational method,
but assuming instead a transmission line current distribution (with the propagation
constant appropriate to locate the antenna resonances correctly, but at a frequency far
from resonance), the values obtained for the long arm alone are typically an order of
magnitude larger than for the complete violin antenna.

7 — Capacitively terminated antennas. The situation might be different, how-
ever, if the main conductor terminates on a variable capacity, which can be adjusted
to match the antenna to the feeder line and to improve the effective resistance. This
technique has been implemented in the TORE SUPRA IC antenne [20]. To investigate
this case, we note that a capacity Cy at the end of a transmission line with distributed
capacity C, and propagation constant v, would give

Ca
kove Cs

Qo= — (32)
in equation (25) (note that the current distribution (25) remains regular also in the
limit v, — 0). Since (32) is the continuity of charge at the capacitor, it follows that the
physically meaningful quantity is Q = Q,v,, which must therefore be the same for all
current modes used in the Ritz algorithm. At a given frequency, on the other hand, we
can made a scan over Q to determine the value which optimizes the launcing efficiency;
this procedure is analogous to the experimental tuning of the capacity.

For our present example we have chosen the frequency of 45 Mhz, where the effective
resistance of the shorted violin antenna is close to its minimum. The results are shown
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in fig. 20 for the violin antenna, and in fig. 21 for the simple antenna of section 4
with Faraday screen. As expected from the TL model, there is a value of the variable
capacity around @ = 1 which makes the antennas resonant, although the resonance is
appreciably less marked than in a frequency scan. The responses of the two antennas to
variations of @) are actually quite similar, except that their radiation resistances behave
symmetrically with respect to the resonant ) value. In both cases the effective resistance
has a clear peak on the side of the resonance on which the antenna as a whole begins to
behave as a shorted transmission line. If allowance is made for the different lengths of
the two antennas, moreover, the peak values of R,y are essentially similar. It seems fair
to conclude that terminating the conductor on a adjustable capacity is a more flexible
method than the violin design to improve the radiation efficiency of the antenna over
a broad range of frequencies. One should bear in mind, however, that a capacitively
terminated strap is mechanically delicate and can hardly be realized without insulating
elements relatively close to the plasma; the violin antenna, by contrast, is particularly
robust and easily compatible with the reactor environnement.

8 — Conclusions. The code ANTWKB reproduces with reasonable accuracy the
behaviour of simple IC antennas, and can be useful to investigate more complicated con-
figurations. The code confirms the favorable features of the folded ASDEX Upgrade IC
antenna, whose outer conductors present to the plasma a relatively uniform current at
all frequencies in a broad domain, which, moreover, tends to be larger than in the return
conductors. In the case of simple strap antennas, replacing the short by an adjustable
capacity has been found to be a good way of improving the launching efficiency. The
advantages of the ‘violin’ antenna [16], on the other hand, have been found to be re-
stricted to the vicinity of the antenna resonance. Extensions of ANTWKB to deal with
arrays of independently fed antennas, with individual conductors recessed in the wall
or separated from each other by metallic septs would be desirable, and are partly in
progress.

Extensive use of the code has shown the importance of using a suitable systematic
discretization of the Fourier spectrum of the launced fields, and of including a sufficiently
large number of Fourier components to ensure convergence in both the poloidal and
toroidal directions. The semi-analytic evaluation of the surface impedance matrix of
the plasma developed in [14] was essential to reach the latter goal with a reasonable
numerical effort.
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Appendix — Variational formulation for coupled loops. To deal with antennas
arrays the approach of Ref. [12] must be generalised to take into account the mutual
interactions between different loops. For this purpose we consider the linear relation
between voltage and current at the feeder point of each conductor,

Va/dg = Z Zgplp (A1)

where indexes p, g have been introduced to distinguish the conductors. The matrix Zgp
is symmetric, and has therefore generally N, (Ne+1)/2 independent elements, where N,
is the number of conductors. As a consequence of (A1), the externally excited field at
the feeder 7, can be written

Esmt(Fq) = Z Zgp gqp ' 'I:J(Fq) (A2)
P

If conductor p is at distance w, from the wall and OF, (Yp, 2p) is a step function which
is unity at the p—th feeder and zero elsewhere, the linear operator @_q . is of the form

M- j;(ﬁl) = —b(z — wq)qu (Yq, 2q) [4 Jp,m(wpaywzp)er (?Imzp) dypdz, (A3)

—4qp

On the other hand the response of the system (including the load) induces at 7, an
electric field which is a linear function of the currents in all conductors,

E’;ﬂd(f-‘q) =R, I (A4)
To obtain Eqp we use the Fourier representation of currents and fields, Eq. (1). Let
Ep(ny! Nz Tq) = f_im (ny,nz) - j;,(ny, Nz, Tp) (A5)

be the field induced in the plane of conductor q by a Fourier component of the current
flowing in the p-th conductor, all other conductors being passive. Then

. 1 ) > :
di=\ _ NyYg+n:2zq . = ~ +nzz =
B0 = Grapgy 2 R )« [ o eniannenar,
v z
(46)
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where R, a, are the torus and plasma radius, respectively. Using this equation E__q .
can be constructed by solving the wave equations in the plasma.

We must impose
Eest () = Eind(7,) (AT)
for each g and each choice of the excitation. Since the voltage applied to each conductor
can be chosen independently, there are N (N, + 1)/2 such conditions, as required to
determine the impedance matrix Zg,. For this purpose, we multiply (A6) with cur-
rents K ¢(7y) flowing in the g-th conductor, integrate over all conductors, and sum
over ¢, we obtain in a few elementary steps

V=YY K;Z,l,
= 4n’R aZZ ZEK (ny,mz) - R (”y:nz) J('n.y,nz)

ny Nz

(48)

A set of independent equations of the form (A7) is obtained by varying K, 7 (7g) while
keeping K and one of the total currents I, in turn constant, and all others equal to
zero (by symmetry, only one of the two equations obtained by interchanging g and p
needs to be retained). Thus the expression on the r.h. side of (A8) is the appropriate
generalisation of the variational functional of [12]. Moreover, interchanging the role of
the test and actual currents, and using easily proved symmetries of épq, it is possible
to show that Zg, will be symmetric as required. These results can be summarised by
stating that the selfconsistent current distribution minimises all self and mutual energies,
as one would expect.

To implement the variational principle with the Ritz method [12] we represent the
currents in the conductors as

L=5Y o} fi(u,2) i Ry =K3 Y B fL(y,2) (49)
k k

where i, is a unit vector along the p-th conductor, and other notations are standard.
In this representation the variational sum is

V=Y Y K;Z,I,= ZEZZK*E’ R® I,o? (A10)
with C
ng = 47’Roa Z Z f;‘l("w n;) (ﬁq : ﬁqp(ny’ n;) - ﬂp) fi (ny,nz) (Al1)
ny N
In practice, we must proceed differently in the case of independenly feeded loops (array

antennas) and in the case of a T-antenna in which the same feeder excites two loops in
parallel.
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a) Independent loops. If all conductors are feeded independently, we must impose
the additional conditions

D =1 N B = (A12)
k )

for each ‘active’ conductor p (g), where f_,’: are the values of the basis functions at the
feeder position in each conductor. Variation with respect to ﬁ;-’ with I, =1 (or with
respect to of with K, ¢ = 1) in turn, and all other currents zero therefore gives

Apff =) R o} Noft =) B RE (413)
p :

where Ay, are Lagrange multipliers for the conditions (A12). These can be inverted as
o =Apg ) F(RE) B =2 > _(RI)'AE (A14)

i k
(the inversion is with respect to the indexes j, k only). Finally, substitutiting into (A10)

-1
Ay =N = T e {EZ (R f,’f;’} (A15)
k

j
This is the required generalization of the results obtained in [12] for a single conductor.

b) T-antennas. In the case of a T-antenna we must take into account that the two
loops are not feeded independently. With obvious notations, we can write

Jy = iy Iaﬁzaifﬁ(y,z)
F (A16)

-

Jo =~y I,(1- €)Y o} f2(y, 2)
k

and similarly for the conjugate K-currents. The coefficients of and B; must sat-

isfy (A12) as before. Variation with respect to of and ﬂ;? and £ in this form, however,
would lead to non-linear equations. Moreover, in this case, we are interested only in the
input impedance Z; of the antenna as a whole, rather than on the separate constants of
the two half loops and their mutual impedance. It is therefore more convenient to treat
the T-antenna as a single element by defining

a, =£&aj Bl=(@1-¢8p1 (A17)
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which must now satisfy
Y (akfi +aifR) =1 S BR+BR) =1 (A18)
k J

The variation now give
M= (Rjié; + Rj7&3)

k
" (A19)
M7 =) (Ridi + Rizag)
k
which can be inverted as
ap=x)_ > fi &P~ (A20)
a J

(here the inversion must be done with respect to both set of indexes, which is immediate
by considering {a}, i} as the components of a single vector). Then finally

A=2Z= {sz:ﬁ(Rgg -1f,§}_1 (A21)

which is differs from (A15) only by the meaning of the inverse matrix.
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Figure captions.

Fig. 1 — The factor 1/f(r, z) in the transformation between the input and effective
resistance (Eq. (17)).

Fig. 2 — Simple feeder-to-short antenna.

Fig. 3 — Characteristics of a feeder-to-short antenna without Faraday screen (di-
mensions as in Table 1, spectral discretization according to ITER periodicity): a) - b)
resistive and reactive part of the input impedance; c) radiation and effective resistance.

Fig. 4 — Comparison of the results of ANTWKB for the feeder-to-short antenna with
the predictions of the transmission-line model (C, = 6.11 107! F/m, L, = 2.46 107
H/m).

Fig. 5 — Same as fig. 3, but with spectral discretization according to Eq. (30) with
N, = 5.

Fig. 6 — Same as fig. 5, with Faraday screen.

Fig. 7 — Idealized model of the ASDEX Upgrade IC antenna.

Fig. 8 — Characteristics of the ASDEX Upgrade IC antenna; spectral discretization
according to the periodicity of the ASDEX Upgrade tokamak.

Fig. 9 — Characteristics of the ASDEX Upgrade IC antenna; spectral discretization
in a square box of 5 X 5 m.

Fig. 10 —Characteristics of the ASDEX Upgrade IC antenna; spectral discretization
according to Eq. (30) with N, = 5.

Fig. 11 — Comparison of the effective resistance of the ASDEX Upgrade IC antenna
in vacuum and with a resistive load (a very resistive wall at 5 cm from the Faraday
screen).

Fig. 12 — Current distribution in the ASDEX Upgrade IC antenna at 40 and 60 Mhz
(below and above the A/4 resonance, respectively). The current in the feeder is unity.
The heavier lines are the currents in the outer conductors; for convenience, the currents
in the inner conductors are represented with changed sign.

Fig. 13 — The “violin” antenna.

Fig. 14 — Input impedance of the violin antenna radiating in vacuum. Spectral
discretization according to Eq. (30) with N, = 4.

Fig. 15 — Comparison of the results of fig. 14 with the transmission line model of the
violin antenna. Dots: numerical values; dashed lines: characteristics of the TL chosen
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to match the first resonance; full lines: characteristics of the TL chosen to match the
second resonance.

Fig. 16 — Radiation and effective resistance of the violin antenna in vacuum (the
peak of R,,4 at 45 Mhz exceeds 250 Ohm).

Fig. 17 — Characteristics of the volin antenna in the presence of a Deuterium plasma
(plasma parameters as in Table 4; the peak of R,.q at 45 Mhz exceeds 150 Ohm).

Fig. 18 — Current distribution in the violin antenna (with plasma) at 68.5 Mhz. The
current in the feeder is unity. The dotted line is the current in quadrature with the
feeder excitation, which is continuous at the feeder.

Fig. 19 — Characteristics of the feeder-to-short antenna in the presence of a Deu-
terium plasma (plasma parameters as in Table 4).

Fig. 20 — Characteristics of the violin antenna (with plasma) at 45 Mhz, assuming
that the main arm is terminated on a varying capacity.

Fig. 21 — Characteristics of the feeder-to-short antenna (with plasma) terminated
on a varying capacity, at 45 Mhz.
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TABLE 1

Simple feeder-to-short antenna

Length of the main strap

Width

Distance from the wall

Distance conductor-Faraday screen

TABLE 2
Asdex Upgrade antenna

a) Outer conductors

Length of the upper arm

Length of the lower arm

Distance from the wall

Distance from the Faraday screen
Gap between upper and lower arm
Width

b) Inner conductors

Distance from the wall
Position of the feeder
Width

TABLE 3
Violin antenna

Major arm length

Minor arm length

Width

Distance from the wall
Distance form Faraday screen

25

1.5

0.25
0.32
0.05

0.54
0.34
0.10
0.025
0.045
0.18

0.01
+ 0.32
0.18

2.6
0.4
0.25
0.32
0.05

BBEB

BEBEBEBBB

BB B

BBEBBB




TABLE 4

Plasma parameters
Plasma composition: pure D
Major radius 115 m
Minor radius 2.80 m
Vertical plasma dimensions (ky) 3.70 m
Magnetic field at outer edge 4.475 T
Edge electron density 0.8 1020 m-3

Edge temperature 50 eV
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