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Abstract

A two-dimensional collisional drift-wave turbulence model, which includes mag-
netic fluctuations is studied using numerical simulations. This model has as limits the
electrostatic Hasegawa-Wakatani equations and the two-dimensional magnetohydro-
dynamic equations. The main parameter of the system g = dwnoT/ B2 determines
the strength of the magnetic fluctuations. For 8 = 0.001 the system is electrostatic,
while for 8 = 10 it is electromagnetic. The properties of the turbulence were analyzed
by increasing the value of 8 and comparing with the characteristics of the Hasegawa-
Wakatani system. The linear analysis shows that differences enter only for 8 = 10,
and that the adiabatic regime is most sensitive to variation of 3. The saturated state
of the turbulence for different cases was studied using many different diagnostics.
The transfer of free energy and other nonlinear invariants were directly computed.
The principal effect of the magnetic fluctuations is to diminish the adiabaticity of
the system by reducing the immediacy of the dissipative coupling between the den-
sity and electrostatic potential fluctuations, since this coupling must go through the
magnetic fluctuations. The computed particle transport decreases strongly for higher
values of f3.




1 Introduction

The physical processes of plasma transport in magnetic confinement devices, e.g. toka-
maks, are not well understood. The transport of particles and energy is anomalous, i.e.
the observed values are much larger than what is calculated by considering Coulomb colli-
sions between the particles. It is usually assumed that the anomalous transport is due to
the observed turbulent fluctuations of density, electric potential and magnetic field. The
presence of spatial plasma gradients in the plasma lead to collective oscillations called drift-
waves. The main effect of the drift-wave dynamics in the macroscopic scale is an anomalous
diffusion of particles and energy along the corresponding gradient of the plasma density
or temperature. Drift-wave turbulence is therefore considered as a possible cause for the
anomalous transport in tokamaks [1, 3]. Drift-wave turbulence theories are usually electro-
static, i.e. the fluctuations of the magnetic field are neglected [3]. However, it is not clear
whether electrostatic or magnetic fluctuations (or both) are responsible for the anomalous
transport [4]. Determining which fluctuation mechanism is dominant in driving the trans-
port would provide a major constraint in the viability of various theories. An experimental
determination of which effect is dominant would require a major advance in experiment
diagnostics [5].

Experimental measurements of the fluctuation of the magnetic field are difficult. Until
recently only measurements of magnetic fluctuations at the plasma edge have been possible
[4]. Even at the edge of the tokamak, it is difficult to make quantitative calculations of
the effects of the magnetic fluctuations. Besides the coherent and high-beta MHD activity,
such as sawteeth, fishbones, tearing modes and ELM’s, broadband fluctuations are observed
[2]. These incoherent magnetic fluctuations have amplitudes 6B, /B ~ 10~* — 10~°, with
8B, > 6By, are fairly isotropic perpendicularly to B and increase with decreasing minor
radius [1, 2, 4]. Magnetic fluctuations have been considered a possible contributor for
the transport in various tokamaks [6]. The magnetic fluctuations have been found both
to correlate and not correlate with plasma transport in different machines. A correlation
between the magnetic fluctuations and the quality of confinement is found during various
transitions of confinement regimes (L-mode, H-mode, and ELM’s) [2]. The Reversed Field
Pinch (RFP) is ideal to study magnetic fluctuations as they are typically two orders of
magnitude larger than those observed in tokamaks; theories can then be tested over a
wider dynamic range than in tokamaks [6, 7, 8]. Recent experimental results for the
RFP show that the magnetic fluctuations and the electrostatic fluctuations are related and
conclude that suppressing the tearing mode activity could lead to a reduction of the edge
electrostatic fluctuations [9]. By contrast, recent measurements in the tokamak TEXT
indicate that the magnetic fluctuations are not responsible for the transport of heat [10].
The fact that the level of magnetic fluctuations in the plasma boundary region is very
small can lead to the conclusion that they do not play a significant role for transport [11],
even in the case of the RFP [8]. However, the issue cannot be assumed to be clear without
a more complete investigation.

Many models have tried to relate the magnetic fluctuations to the transport in the
plasma [1, 12, 13, 14]. The theories have very different approaches towards the problem.




Typically these theories utilize quasi-linear approximations and neglect self-consistent field
effects. Some models calculate the anomalous electron thermal conduction due to stochastic
magnetic field, but without specifying the source of the magnetic fluctuations (see e.g.
[15, 16]). Other models consider, for instance, the anomalous electron thermal conductivity
due to high-m ballooning modes [17]. Many studies of magnetic turbulence suppose a
linear relation among the modes, relying in quasi-linear or weak turbulence approaches or
concentrate on the magnetic fluctuations associated with finite sized magnetic islands and
microtearing modes [13, 18]. Magnetohydrodynamic (MHD) turbulence [19, 20], which
disregards the fluctuations of the density, was also studied thoroughly and has properties
similar to fluid turbulence.

Although drift-waves are basically electrostatic modes, they also have a small magnetic
component, which can also lead to transport [21]. Magnetic fluctuations at the plasma edge
that may be associated with electromagnetic drift-waves have been observed in the TCA
tokamak [22]. Quasi-linear studies of electromagnetic drift-waves have been performed
by many authors (see [1] and references therein). Calculations for stochastic diffusion of
electrons in tokamaks due to a spectrum of electromagnetic drift fluctuations obtained
diffusion coefficient scales approximating experimental scalings [3]. Other electromagnetic
studies of drift-wave turbulence include the collisionless model of Molvig et al. [23] and
the numerical simulations of Waltz [24]. A recent numerical study of a similar system
with magnetic and density fluctuations, but disregarding potential fluctuations, observes
three different turbulent states, even for identical parameters, making the turbulence state
nonunique [25]. In [26] the anomalous transport due to electromagnetic drift-Alfvén tur-
bulence was studied using DIA (Direct Interaction Approximation) techniques, concluding
that the electromagnetic contribution to transport by circulating electrons is important,
while the transport dominated by trapped electrons is not affected by magnetic fluctu-
ations. This result contrasts with another study of drift-Alfvén turbulence [27], which
concluded that electrostatic fluctuations alone regulate the transport. Another recent in-
teresting analytical study of drift-wave theories, derived using a Lagrangian method, shows
that the magnetic fluctuations may not be negligible even for § < 1 [28].

Three-dimensional numerical simulations of drift-wave turbulence confirm earlier in-
dications that collisional drift-wave turbulence is the fundamental ingredient underlying
tokamak edge and scrape-off layer turbulence [29]. It has been also suggested that edge
turbulence could originate in the core plasma region [30], where the magnetic fluctuations
can be of fundamental importance. Experimental evidence of drift-wave like instabilities
in the core region of the tokamak is given in [31]. Recent numerical simulations suggest
that the transition from resistive ballooning to drift-wave turbulence as a possible model
for the L-H transition [32]. Therefore, it is of fundamental importance to understand the
role of the magnetic fluctuations in a simple drift-wave turbulence model, to see better
how their effect should be considered in more realistic models.

The aim of this work is then to analyze the effect of the magnetic fluctuations in drift-
wave dynamics. The magnetic fluctuations bring different physical effects into the system.
We want to determine which are these effects and what is their role into the system. It is
also important to understand whether the electrostatic approximation is a valid hypoth-
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esis when studying turbulence at the edge of the tokamak. We consider the magnetic
fluctuations in a simple model for drift-wave turbulence. The properties of the Hasegawa-
Wakatani system have been studied thoroughly in two and three dimensions [33] - [38].
This model is generalized by including the magnetic fluctuations in the equations. We
then analyze how these fluctuations modify the properties of the electrostatic model. Re-
lated forms of these equations were first derived independently by Hasegawa and Wakatani
[39] and Hazeltine [40]. The model chosen has as its extreme limits the two-dimensional
(2-D) Hasegawa-Wakatani model [33] and the 2-D MHD model [19, 20], both well known,
which makes the interpretation of the results obtained easier. Bekki and Kaneda [41] per-
formed low-resolution numerical simulations of this model in three dimensions analyzing
the formation of structures, but did not study the turbulent state. A related electromag-
netic drift-wave system was studied numerically by Waltz [24]. A similar study has already
been done for a more general set of equations [42], but there numerical restrictions did not
allow a thorough study of the electromagnetic effects. The numerical scheme employed
here is similar to the one used for the Hasegawa-Wakatani model [34] and in other studies
with a sheared magnetic field [43].

The principal result of this study is that the role of the magnetic fluctuations is to
reduce the immediacy of the coupling between the density and the electrostatic potential
fluctuations in an otherwise electrostatic system. That is, the basic physics is that of
drift-waves with a certain enhancement of the nonadiabatic character due to the internal
dynamics of the magnetic fluctuations. The transport is always nearly electrostatic. This
result shows that the drift-wave part of a more complicated system can never be neglected,
as shown previously in the case of rippling modes [44]. Specifically, microtearing [25] is
unlikely to have any significant role on its own in anomalous transport in tokamaks.

In Section 2 the model and its main characteristics are described. The linear properties
of the system are studied in Section 3. Section 4 describes the main results of the numerical
simulations. In section 5, we study the linear mode interaction and the nonlinear transfer
of energy, enstrophy and magnetic potential. The conclusions are presented in section 6.

2 Model and invariants

2.1 Electromagnetic drift-wave equations

This model is a generalization of the Hasegawa-Wakatani system in slab geometry when
magnetic fluctuations ¥ are also considered. The total magnetic field B has an uniform
component in the z direction, By, and the magnetic fluctuations are in the plane (z,y),

B = Byé, — V X ¥é,. (1)

As usual, the electron density n is given by n = no(1+m /ng), with n; < ng. The
equilibrium density no(z) has a density gradient in the negative x direction, such that the
equilibrium density scale Ln = no / |dno/dz| is a constant. Additionally, the electrons are




considered isothermal and the ions cold, such that T; < T, = T. Temperature gradients
and fluctuations are neglected.

We obtain the equations of the model from the Braginskii two-fluid equations [45].
The drift-wave dispersion scale p, and the sound speed ¢, are defined respectively as p; =
c/M;T/eB, c¢s = /T /M;. The fluctuations are scaled according to ¢ = (ed/T) (Ln/ps),
7i = (n1/n0) (Ln/ps), ¥ = () Bops) (L/ps) and the dimensionless variables are defined as
T = x/ps, Y = Y/Psy 2 — Z[Ln, t = tcs/ L.

The equations that describe our model are then given by

dg

= ” 4 X
= - Q
pral Vu{ nVig, (2)
di 0 ~ .
En = —a—y + V)J — uVin, (3)
op 9 _ = a4
o0 = gy + V1 (7= 6) —mBT - uViy, (4)
where
0 = Vi, (5)
J = -5vid (©)
dg d a ~
E = E+(ZXVL¢)‘VL, (7)
V" = iKH = (i X VL?,D) : v_;_, (8)
b 47T710T
2
_ me La
n* - 471_ Cspg‘ (]‘0)

0/0z was replaced by the parallel wavenumber K, = k.L,, which will be taken as a
constant. A term of the type —uV* 7 was added in each equation. These terms are hyper-
viscosity like terms and by taking appropriate values of p confine the dissipation to the
smallest scales resolved in the system. An equivalent form of these equations can be found
in [41].

From the analysis of the equations, it is expected that the electromagnetic effects will
be mainly controlled by . For # <1 the current J corresponds to weak magnetic fields
1 (see equation (6)) and the corrections to the parallel operator (equation (8)) and Ohm’s
law (equation (4) for ¥ — 0) are negligible. We are therefore interested in studying the
effect of large values of 3 in the model. Similar versions of this model were first obtained
in [39, 40].

The Hasegawa-Wakatani equations are obtained from the electromagnetic drift-wave
equations (2) - (4) in the limit ¢y — 0 and J = 1K) (ﬁ— gb/ (n.)). The Hasegawa-
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Wakatani equations are linearly cross-coupled through the adiabaticity parameter
c= i

Bn. (1)
For C > 1, there is an adiabatic regime, with the cross-coupling forcing 7 to mimic o,
which collects at the large scales [34]. On the other hand, for C < 1, the hydrodynamic
regime, the weakness of the cross-coupling causes 7 to exhibit pronounced gradient sheets
as it is cascaded to small scales, a feature of a passively advected scalar [34]. The 2-D
MHD equations [19] are obtained from the electromagnetic drift equations (2)-(4) in the
limit of constant density (n = constant) and Ky = 0. The electromagnetic drift-wave
equations have then as extreme limits two well known systems, the Hasegawa-Wakatani
equations (electrostatic limit) [33] and the 2-D MHD equations (electromagnetic limit)
[19]. An interesting discussion of the electrostatic and electromagnetic limits can be found
in [40].

For the electromagnetic drift-wave equations there are 3 free parameters that determine
the turbulent state: Kj, # and 7. As the behavior for a fixed C is already known, it
is interesting to vary these parameters such that the value of C is kept constant. The
parameter that is of greatest interest is 3, as it determines the intensity of the magnetic
fAuctuations. In order to keep C constant we also vary 7, keeping K constant. As we
increase [, the value of the resistivity 7 is then diminished, which helps to intensify the
effect of the magnetic fluctuations in the system.

2.2 Invariants of the Model

The invariants of the purely nonlinear subset of the electromagnetic drift-wave equations
are the total fluctuation free energy (herein energy)

1 - = 1 ~
E:EffxUvg$+ﬁ?+ﬁwuﬁ):EV+EN+EM (12)
the generalized enstrophy
_1 2. (= a2 _ 1 2 /= 2
U—ﬁjﬂx(n—V@)—5]d$M—Q% (13)
and the magnetic potential

1 _
A:iffzw. (14)

The energy was mentioned as an invariant of this model in [40, 41], but the other two
invariants were not considered. The Hasegawa-Wakatani system also has the total energy
E (with EM = 0) and the generalized enstrophy U as invariants [33, 34]. On the other
hand, the 2-D MHD system has the total energy E (with EN = 0), the magnetic potential
A and the cross-helicity H as invariants [19] (H = [d?zv-B=[dx V.- Vi)




According to the electromagnetic drift-wave equations (2), - (4), the invariants E, U

and A, evolve with time as
oF
ot
B_U
at
0A
ot

= Fn - Fr _DE:
== Fn _DU1

= T,—T;—D4,

where

DE = 4 / &z (~gViQ+avia+Ivig),

DU — ,u/d% (7-9)vi(7-9),

DA = p,/dzam,bv 1,[)

(24)

I',, the source of energy, is the rate at which the energy is extracted from the density
gradient. I', is the rate at which the energy is resistively dissipated, and I'; the rate that
the magnetic potential is resistively dissipated. T'; is the source of the magnetic potential,
and is proportional to the nonadiabaticity of ¢ and 7 (for n = ¢, Ty = = 0). The dissipation
terms DF, DV, and D# are due to the introduction of viscous like terms in equations

(2)-(4).

3 Linear Analysis

3.1 Linear Growth Rate

The linearized system is first solved analytically, to gain a better understanding of the
nonlinear and linear properties. By linearizing and Fourier decomposing equations (2) -

(4), assuming a modal dependence of the type e!®*~“!) we obtain

(w+ ink) b = i =0
kybi — (w + ipk®) e — %k%]}k =0

zK”qbk — ?,Kuﬂk + ( (w + z,uk4) +2ky + 'I]kz) 'l,b ={}
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(26)
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The dispersion relation obtained from these equations is

2 K Ki
(w+ i,uk4)3 +i (nk? + iky) (w+ ink') - ?“(1 + k?) (w+ iuk®) + ?“ky —0. (28
The solutions of this equation are given by
AT 4 2PA L F
wi = ~3 (nk + iky + 3pk ) 37 + 3o (29)

(1+N§)A (1—3'\/5)?

Wy = —% (1k? + iky + k) + g mpr T 62l (30)

gy = -% (nk? + ik, + 3uk*) +%—%@£—%ﬁ, (31)
where

A = (nk*+ iky) ~ %ﬁ (1+4), (32)

B = —Qi{;—ﬁ (14 K2) (nk? + i) +2i (k" + iky) 27%%, (33)

F = (B + (44% + 82)1/2)1/3 . (34)

The linear growth rate is given by the maximum of the imaginary part of the solutions,
that is
~v(k) = max (Im w1 (k), Imws(k), Im w3(k)), (35)

and the correspondent real part is w r(k).

In Fig. 1 we show the main properties of the linear growth rate 7y and wg. The variation
of v and wg with different values of 8 (8 = 0.001,0.1,1,5,10) and corresponding values
ofpforC=1 Ky=1 k= 0 and ;2 = 0, is shown in Figs. 1(a) and 1(b). In Fig. 1(c)
we show the maximum growth rate Ymax as a function of 3 for C = 0.1,1,5 and k, = 0,
Ky =1 and = 0. The value of kmax (k that corresponds to Ymax) @s a function of fis
shown in Fig. 1(d).

By analyzing Fig. 1(a), one can see that for higher [ values the linear growth rate 1is
smaller. This property will have an important role in our numerical simulations, as for
higher 3 it takes a longer time for the system to reach a saturated state. This fact is more
important in the adiabatic regime (C = 5), which has smaller growth rates, than in the
hydrodynamic regime (C = 0.1), as can be seen in Fig. 1(c). When varying 3, the linear
properties will only have noticeable changes for 21 (see Figs. 1(c) and 1(d)).

3.2 Linear phase-shifts

It is interesting to obtain the relations among the different fluctuating fields in the system,
linearly and nonlinearly. From the linearized electromagnetic drift-wave equations (25) -
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Figure 1: The linear growth rate (k) (a) and wg(k) (b) for C = 1 and different values of
B. The maximum of the linear growth rate ymax (c) and the corresponding wave-number
kmax (d) as a function of 3 for C = 0.1, 1, 5.




(27), expressions for the relations between the fluctuating fields %k, 7ix, Ui can be calculated

(B (wr iy + pkY) — ky)&g

=i, = (wr + 1 (7 + 1Y) (36)
d = gt = % (UJR +1 (’}’ L3 #k4)) Vi (37)
PR Ky 1 ky, _am\

Moo = M = B (op i (y + 1K) ((wR ) ) Ve L

where for each k, v and wp were defined in section 3.1

The ratio between any two complex numbers can be given in terms of an gmplitude
and a phase-shift. The phase-shifts between the fluctuating fields Ay, ¢k and ¥ may be
expressed as

5 = Imlogiyo, (39)
6 = Imlog i, (40)
o = Imlogiigiy, (41)

which will be directly evaluated from our nonlinear numerical simulations. The linear
phase-shifts (described by a superscript “L”) are obtained as functions of the response
functions fi, gix and hy, such that

k4
S = — arctan u Ao 2) , (42)
k? (w% + (v + pkt) ) — wrky
4
0y = — arctan (7 G ) , (43)
Wr

(44)

al = — arctan ( i) (k2 (wZR Lk i 'ukd)Q) _ Qky‘”R) ) :

by (W — (7 + 1uk)?) = Bwr (@] + (1 + 1k")’)

In Figs. 2(a) and 2(b) and dg is shown for C = 0.1 with # = 0.001 and g = 10
respectively. Figs. 2(c) - 2(f) show 9L and o, for the same parameters. In Fig. 3 we show
the same functions for C = 5. For larger values of C, i.e. in the adiabatic limit (6 =-8)
the linear phase-shifts are more sensitive to changes in 3 than in the hydrodynamic limit
(C = 0.1). For C = 1 the changes of the linear phase-shifts for increasing values of 3 are

already noticeable. In all regimes, the absolute values of the linear phase-shifts diminish
as 3 increase, this effect being particularly strong for C =5 (see Fig. 3).

4 Numerical Simulation Results

4.1 Numerical Simulation Details

The electromagnetic drift-wave equations (2)-(4) were solved on a square box of size L* =
(2m/ K0)2 with periodic boundary conditions using a deliased pseudo-spectral algorithm.
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The algorithm is very similar to the one employed in studies of the Hasegawa-Wakatani
system [34] and for a sheared magnetic field [43]. In most runs, the number of collocation
points (grid-size) was 1282; in some cases a larger number of collocation points (1024°) was
employed. The box size was chosen such that Ky = 0.15. The dissipation parameter p
was taken just large enough to prevent numerical instability, 4 = 107 in most of the 1282
runs. Another set of runs was considered to check if any important effects appear when
the box is larger. For these runs, we chose Ky = 0.0375, o ~ 1072, and in most cases 2562
collocation points.

Two types of computations were performed: computations for a fixed value of C (see
definition in eq. (11)), with 3, n and K| varying accordingly, and computations with one
of the parameters varying (e.g. K)|) and the other two parameters fixed (e.g. 4 and 7).
The computations with fixed values of C are the most interesting ones, as the behavior of
the system is known at the electrostatic limit (Hasegawa-Wakatani system) and therefore
the effects due to the variation of the parameters can be better visualized. The values
of C chosen for our studies, were the same that were already employed for the Hasegawa-
Wakatani system: C = 0.1,1,5 (see [34]). These values represent three different turbulent
regimes in the electrostatic case: a hydrodynamic, an intermediate and an adiabatic regime,
respectively. The properties of each of these regimes are described in [34].

The density 7, potential 6 and magnetic 1) fluctuations were initialized with a random-
phase, broad-band field, such that all degrees of freedom are excited with a constant
amplitude M o o

> kb = Y e = Y Yt = M. (45)
Kk k k

In most calculations, we chose M = 1.e7%, however in the cases that the linear instability
is very weak we considered M = 1.e™*, or even M = 1l.e — 2; so that the time required for
reaching a turbulent saturated state would not be long. The numerical error was tracked in
all runs using the energy equation (15); the numerical error was never greater than 0.01E.

The runs with a finer-grid (10242) were obtained by continuing the 128% runs and then
increasing the number of collocation points to 2562, 512* and finally 10242. These runs
were performed to obtain better resolution for the spectra and contour plots.

4.2 Properties of the Saturated State

A typical numerical simulation has a linear phase, followed by a saturated turbulent state,
which is then maintained long enough for good statistical quantities to be obtained.

In Figs. 4(a) and 4(b), the typical time evolution of the components of the energy E",
EV and EM for a electrostatic case (3 = 0.001) and a electromagnetic case (§ = 10) are
shown. By analyzing Fig. 4, one can see that even for the case § = 10, the magnetic
energy EM is not the dominant component of the total energy E. By increasing [, the role
of the kinetic energy EV diminishes in order to allow EM to increase (see Table 1). In the
hydrodynamic regime, the role of the density is so dominant, that the value of EV/E is
kept constant (0.83), independent of the value of 3. By contrast, in the adiabatic regime,
the role of each component of the energy is much more affected by the values of 3. The
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Figure 4: The total energy E and the energy components EY, EV, EM for 8 = 0.001 (a)
and # = 10 (b) in the saturated state, with C =1, K =1, and p = 0.001.

saturation values of the total energy F, the enstrophy U and 432 /2 increase as 3 goes from
0.001 to 0.1 and diminish strongly for 3 = 10. The magnetic potential A saturation values
increase with .

The spatial structure of the system is also altered by varying /3, which can be seen by
analyzing the contour plots. Figs. 5 - 8 show the typical contour plots of o, 71, ¥, Q and
J in the electrostatic and the electromagnetic regimes for C = 0.1, and C = 5 respectively.
For each case, the contour plots were obtained at the same instant of time in a turbulent
saturated state. In all contour plots we considered Ky = 0.15, K = 1, p ~ 107 —9 and
5122 collocation points. The figures show only the region [0 : lex [0: TFL] which is one
fourth of the real area calculated in the simulations. As usual, ¢ collects at large scales,
however by increasing 3, ¢ collects at larger scales (Figs. 5 and 7), an effect that is stronger
for C = 1 (see also Table 3). In the electromagnetic limit (8 = 10), for C = 5, n does
not mimic ¢, but is more similar to P (Fig. 7). The magnetic fluctuations 1 have the
same behavior in all regimes, always collecting in the larger scales. The vorticity ) usually
has fine structures; the presence of large 3 smooths these structures (Figs. 6 and 8). By
contrast, the current J, which collects at average size structures in the electrostatic limit,
shows a much finer structure in the electromagnetic limit. This effect, however, appears
only in the adiabatic regime, where the electromagnetic effects have a stronger influence
on the system.

The angle-averaged spectra of the invariants were also obtained (for the definition see
[34]). The spectra exhibit a maximum at a certain wave number ksp. On the high-k side
of the maximum kgy, there is an inertial range with a decaying power law (e.g. By~k™®)
up to the viscous cutoff. The variation of the spectral exponents (e.g. a) with C and f3 is
shown in Table 2. In the electrostatic limit, the spectral exponents are almost identical
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Figure 5: Contour plots of ¢ ((a) and (b)), @ ((c) and (d)) and ¥ ((e) and (f)), for C = 0.1
in the electrostatic (f = 0.001) and electromagnetic (3 = 10) regimes, respectively.
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Figure 6: Contour plots of Q ((a) and (b)) and J ((c) and (d)), for C = 0.1 in the
electrostatic (8 = 0.001) and electromagnetic (3 = 10) regimes, respectively.
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Figure 7: Contour plots of ¢ ((a) and (b)), 7 ((c) and (d)) and ¥ ((e) and (f)), for C = 5
in the electrostatic (3 = 0.001) and electromagnetic (8 = 10) regimes, respectively.
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Figure 8: Contour plots of Q ((a) and (b)) and J ((c) and (d)), for C = 5 in the electrostatic
(3 = 0.001) and electromagnetic (3 = 10) regimes, respectively.
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Lc| s | E|BYE|EY/EIEM/E] U | A [¢/2]
0.001 [28.0[ 0.83 | 0.17 | 10°% [42.1] 107 [ 15.3
01| 0.1 |283| 083 | 0.16 | 0.0006 | 42.3 | 0.009 | 16.1
10 |[13.1| 0.83 | 0.14 0.03 | 188 20.1 | 87
0.001 | 6.7 | 0.61 0.39 107* [14.0]| 1077 | 3.7
1| 01 | 76| 062 | 0375 | 0.005 |15.20.009| 4.4
10 | 6.0 | 077 | 0.14 009 | 7.3 | 30.1 | 6.2
0.001 | 14.2 | 0.82 0.18 10— |184 ]| 10~ | 8.9
5] 01 [23.2]| 086 | 0.14 | 0.002 | 27.9| 0.02 | 22.2
10 | 44 | 0.78 | 0.13 0.09 | 5.1 | 13.8 | 3.7

Table 1: Saturation values in the different regimes.

(€1 7 [ B [ B [ B B [ U [ 4]
0.001 k—l.? 16 [ =31 k_3'4 k_1’4 k~5.4
0.1 0.1 k_l'g k—l.B k—3.1 k—3.4 k—l.ﬁ k-5‘5
10 k_3'2 k_3'2 k_3'5 k—4.8 k~2.1 k—ﬁ.o
0.001 ka.O k72.8 k=33 k—4.4 k_1'5 k—ﬁ.ﬁ
1 0.1 k_3'4 k~3.0 k73.5 k—d.B k_l'g k—ﬁ.s
10 k—4.5 k73.8 k*S.D k_4'8 k_2'1 k—G.d
0.001 =40 | }.—16 k—3.8 k—6.0 k—2.1 =75
5 0.1 k_3'7 k—4'2 k_3'7 k_5'8 k72.1 k_7'7
10 k~3.2 k73.1 k73.9 k_3'1 k—Z.S k.—-5.3

Table 2: Decay exponents for the invariants and energy components spectra in the different
regimes.

to the Hasegawa-Wakatani case for C = 0.1 and C = 1 (see [34]). However, for C = 5
the electromagnetic effects are stronger. Even for § = 0.001, in the adiabatic regime, the
spectral exponents are higher than in the Hasegawa-Wakatani case. As [ increases, the
spectral exponents of the three invariants and the energy components (EY, EY and EM)
increase for C = 0.1 and C = 1. In contrast, the spectral exponents of the energy E}
and its components and the magnetic potential Ax diminish for C = 5, while the spectral
exponents of the enstrophy Uy increase. The spectral exponents for both the energy E; and
the magnetic potential A in the electromagnetic limit (independent of the value of C) are
very different from the ones obtained in 2D MHD turbulence (—3/2 and —7/3 respectively
[19]).

In Fig. 9 the spectra of the energy Ej, the enstrophy Uy and the magnetic potential A,
spectra for different values of 3 are shown. A different behavior of the spectral exponents
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Figure 9: Energy spectra Ej, for § = 0.001,0.1, 10, C =0.1 (a) and C =5 (b). Enstrophy
spectra Uy (c) and the magnetic invariant spectra Ay (d) for 4 =0.001,0.1,10 and C = 1.

of E,, for C = 0.1 (Fig. 9(a)) and C = 5 (Fig. 9(b)) can be observed. While the curve of
E, for B = 10 is steeper than the curve for § = 0.001 for C = 0.1, the opposite happens
for C = 5. When the value of 3 is increased, the enstrophy spectra Uy are steeper for all
values of C (see Fig. 9(c)). The effect of increasing 3 on the magnetic potential spectra Ag
depends on the value of C, (see Fig. 9(d)), but the spectral exponents do not have such
strong changes as do the energy spectral exponents. Fig. 10 shows the variation of the
spectra of energy components By, B} and E}M by varying . EJY, which is the dominant
component of the energy, has a different behavior when 3 is increased for C = 0.1 and
C =5. EY is not much affected when £ is increased, especially for C = 0.1. The magnetic
energy component EM also has a steeper curve in the electromagnetic regime (§ = 10)
than in the electrostatic regime (8 = 0.001) for C = 0.1. In contrast for C = 5 the effect of
increasing 3 is to make the spectrum of EM less steep.
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Figure 10: Density spectra E}Y for § = 0.001,0.1,10, C = 0.1 (a) and C = 5 (b). Kinetic
energy spectra E} for f = 0.001,0.1,10, C = 0.1 (¢) and C = 5 (d). Magnetic energy
spectra EM for 8 = 0.001,0.1,10, C = 0.1 (e) and C = 5 (f).
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[(CT B [ kn [k [ b [ Fm | kn | b [ K5 ]

0.001]1.35|1.43|0.90|0.76 | 1.58 | 0.42 | 0.56
01| 0.1 |1.34|1.41(0.90|0.75|1.57|0.42 | 0.55

10 |1.10|1.08 | 1.21 | 1.11 | 1.55 | 0.41 | 0.46
0.001 [ 1.12 | 1.05 | 1.21 | 1.02 | 1.59 | 0.69 | 0.82
1 0.1 |1.09]1.02|1.19]0.99|1.55|0.67|0.81

10 | 0.89|0.78 | 1.15 | 1.23 | 1.25 | 0.43 | 0.39
0.001 | 0.53 | 0.49 | 0.65 | 0.67 | 0.64 | 0.50 | 0.48
5 0.1 |0.45]|0.40|0.69 | 0.80 | 0.63 | 0.53 | 0.37
10 |0.82]0.69|0.99|1.43|1.00|0.48 | 0.39

Table 3: Average wave-numbers k, for the invariants, the energy components and ¢ /2 in
the different regimes.

In Table 3 the average values of k are shown for E, EV, EM U, A and $%/2. In the
case of the total energy E, for instance, the average kE  is defined as

K°E
P g R 46

with analogous definitions for the other k. In the hydrodynamic regime (C'=9.1) and for
C = 1, when J is increased the values of k2, kN (which is always the dominant component),
kU kA and k%, diminish, i.e. these fields have larger structures in the electromagnetic limit.
It is important to notice that this effect is stronger in the case C = 1. In contrast, in the
adiabatic limit C = 5, these fields have smaller structures for § = 10 than for § = 0.001,
as in the latter the structures are already large. From the linear theory the value of kmax
increases with 3 for all values of C (see Fig. 1(d)). For the runs in which a larger box
was considered (Kj = 0.0375) the spectra’s maximum ksys and average wave-numbers k,,,
had approximately the same values as in the case for Ko = 0.15. Therefore the structures
did not become larger. All the other properties of the system remained the same, when a
larger box was considered.

Another interesting feature comes from analyzing how the phase-shifts between the
main quantities are altered when f is increased and then comparing this with the linear
phase-shifts. In Fig. 11 we show the phase-shifts obtained with C = 0.1 in the cases
of = 0.001 and 3 = 10. Fig. 12 show the same functions for C = 5. While in the
electrostatic limit 8 = 0.001, 8- and & still had some resemblance for C = 5 (compare Figs.
3(a) and 12(a)), in the electromagnetic limit, this resemblance has completely disappeared.
The same effect occurs for o and oy for C = 0.1 (compare Figs. 2(c) and 11(c)). The
other linear and nonlinear phase-shifts are very different in both the electrostatic and
electromagnetic limits. Therefore, any small influence that the linear properties still could
have on the turbulence in the electrostatic limit practically disappears for 3 = 10. This
result is expected as the linear growth rates are small in the electromagnetic limit.
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Figure 11: Nonlinear phase-shifts for C = 0.1. dy for § = 0.001 (a) and 3 =10 (b). 8y for
£ = 0.001 (c) and 8 = 10 (d). oy for B = 0.001 (e) and B = 10 (f)

23




a
. (a)
u ‘\ ﬂ‘h&"«; '1“(,":/‘\4.,
’|
M' ,H(“:' ), Sl
‘\r‘\i\'ﬁ: 1\':1},‘ e s

C AL
« b | ",l\“-_l‘» ’,-'Ir,“q, ! Y .\. i"
A ‘.;'f'-‘gf TR VN

, i ‘1\1\"}
\H‘

V

Ml ’n‘“ ‘/‘?‘.,!’/ il
t”v c\'l( i

08, ()

l IM

’[.’ t.,%

k o2 k
b 1 X
f
1.5 ( )
- aban i
\ .‘urﬂ/'.'\ \M ‘ ;
\ i N
O(k ' H"U'd \Tip“( ak -
"n et “’“‘ i
\.4\\;\ w e p,‘
'*’r .
E \'1 Ak :‘n.'. ".ff “
—Ozw _Oaw
k 04 k kK o4 k
y X b X

Figure 12: Nonlinear phase-shifts for C = 5. 0y for 8 = 0.001 (a) and # = 10 (b). 6k for
= 0.001 (c) and 8 =10 (d). ay for 8 = 0.001 (e) and 8 = 10 (f)

24




10 f———T—" : g
“i“h | ['Q '”1'1'\ Ifr,“l“i,I Wy A
S \le'- vﬁ L T o
0.1¢F H—)\* E
— ﬁﬂgi‘]’ AS:?.*I
= O =
0 ' g=1o 0.01 o
.1 P a—— | 1 1 . PRPRTITS BEPEPETITT B TTTT BT | T |
200 600 1000 10r* 1T 1 102
t B

Figure 13: (a) Flux ', for C = 0.1 and = 0.001,0.1,10 (b). Variation of the average flux
< D> with ffor 6 =0.1,C=1and €= 5.

On the other hand, the fluxes are very much affected by the value of 3. In particular
I, which is responsible for the transport, diminishes as § increases (see Table 4). This
can be interpreted using the linear theory, which shows that the maximum of the linear
growth rate 7. diminishes for higher values  (see Fig. 1) with a behavior similar than
that of T',, almost constant for # < 1 and a fast drop for § > 1 (see Fig. 13).

Bispectral analysis is a standard method for studying turbulence [46, 47, 48]. The
bispectrum is equivalent to a two-dimensional Fourier transform of a correlation between
two fields. The bispectrum is zero unless there is a phase coupling between the modes.
A phase coupling occurs when the two modes k and g are simultaneously present in the
signal considered, along with their sum (or difference). The bispectrum between 7 and ,
for instance, is defined as

B(k,q) = (z Z Fk)F(a)7 *(k+q)>, (47)

where (k) = ¥x. d(ka, k,) and the brackets stand for ensemble averaging (over many
realizations). In Figs. 14 and 15 we show the bispectrum between the different variables
for C = 0.1 and C = 5 respectively. In the electromagnetic regime (3 = 10) the bispectrum
is concentrated in a fewer number of modes than in the electrostatic regime (4 = 0.001),
this effect being stronger for C = 0.1. While B?Y and B™ increase, B" diminishes as
[ increases for C = 0.1 and C = 5. This reflects the fact that in the hydrodynamic
regime for higher  the quantities follow 1; and in the adiabatic regime by increasing [
the adiabaticity becomes poorer, as can be seen in the contour plots (Figs. 5 and 7).
The largest values of the bispectra are obtained for § = 0.001 (electrostatic limit) in B".
Therefore, even though for C = 0.1 1 does not mimic ¢, as happens for C = 5, there is a
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strong phase coupling between q‘ﬂ and 7. In the electromagnetic limit 3 = 10, for C = 0.1,
B%¥ has larger values than B™. the opposite happening for C = 5, reflecting once more
the similarities that occur between the different contour plots for 8 = 10.

A quantity related to the bispectrum is the bicoherence. The bicoherence is a measure
of the amount of phase coupling that occurs in the signal considered and is defined as the
normalized squared bispectrum. The bicoherence between 7 and ¢, for instance, is defined
as

(B™(k, )’
Sq (B (k,q))"

The bicoherence takes a value close to unity when a nonlinear (quadratic) interaction
takes place, showing a high degree of phase coherence. A value of the bicoherence near
zero suggests an absence of the quadratic nonlinearity and a low degree of coherence,
indicating that any waves present are probably spontaneously excited independent modes
rather than coupled modes [47]. The bicoherence between the different quantities in both
the electrostatic and the electromagnetic regime for C = 0.1,1,5 was calculated. In Fig,.
16 we show the bicoherence between the different variables for C = 5 in the electrostatic
and the electromagnetic limits. For all values of C and (3, the bicoherence was low, with its
maximum value (0.2) occurring, as expected, between ¢ and 7 for C = 5 and 3 = 0.001.
The low values of the bicoherence in all cases are in agreement with the fact that no long
lived coherent structures were observed. When the turbulence exhibits coherent structures
a phase coupling can be expected [48]. For C = 0.1 and C = 1 the increase of 3 does not
affect greatly the values of the bicoherence; the maximum value of b™ increases from 0.05
to 0.08. The maximum values of 5™ and b%¥ remained approximately constant (0.05) for
C = 0.1 and increasing values of 3 (0.001 - 10). On the other hand, for C = 5 the maximum
of all bicoherence diminish strongly in the electromagnetic regime. Especially b™? has its
maximum strongly diminished as § varies from 0.001 to 10 (Fig. 16). This once more
reflects the fact that in the electromagnetic regime the system is less adiabatic than in the
electrostatic regime.

b (k,q) = (48)

5 Linear and Nonlinear Spectral Transfer

The dynamical quantities which reveal the most information about the direction of cause
and effect in a complicated turbulent system are the rates of transfer of invariants or
pieces of invariants among different parts of the system. Linear transfer refers to exchanges
between different dependent variables within each Fourier component or mode k; e.g. the
transfer of fluctuation free energy between density and potential fluctuations mediated by
the dissipative coupling through V"j in the equations for 72 and V% ¢. Nonlinear transfer,
also called spectral transfer, refers to exchanges between different modes. This can occur
within a given dependent variable, as e.g. for E x B transferring density fluctuations
free energy between two modes with different k. With magnetic fluctuations present this
mode-mode transfer can also occur between different dependent variables, as we shall see.

26




1.5x107* (C) 1.2 (d)

Figure 14: Bispectra for C = 0.1. B™ for 5 = 0.001 (a) and # = 10 (b). B** for # = 0.001
(c) and B =10 (d). B™ for 3 = 0.001 (e) and 3 = 10 (f).
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Figure 15: Bispectra for C = 5. B™ for § = 0.001 (a) and § = 10 (b). B* for §# = 0.001
(¢) and B = 10 (d). B™ for = 0.001 (e) and 3 = 10 (f).
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Such transfer analysis has proven very useful in understanding cascade phenomena in
neutral fluid [49] and electrostatic drift-wave [34] turbulence. We now apply it to the
electromagnetic drift-wave system.

5.1 Linear Transfer

We now obtain the linear transfer of energy, enstrophy and magnetic potential between
the dependent variables ¢, 7 and ¢ within a mode k. The linearized equations in Fourier
space are

3‘;&“) = Ky T (k) — k() (49)
afj’i(tk) = —iky(k) +iK) T (k) — pk*7(k), o0
aqfégk) = ik, P (k) +iK) (k) - $(K)) - n.8T(k) — pk*(k). (51)

In Fourier space the invariants £, U and A are given respectively by

E = Y EY(k)+E"(k)+EM(k)

= 5 2 -0005(10 + A(0(10) + TR, (52)
1 L i _ B _
U = 2 zkj Uk) = zkj (7ik) — Q(k)) (A(-k) — Q(-k)), (53)
A = LY AW =LY G000k, (54
k k

By using the definitions of each of the energy contributions given in equation (52) and
equations (49) - (51) we obtain the linear transfer of the energy components:

% = —IV(k) - DE(K), (55)
PP~ 1,00 - 00 - DE), (56)
% = T} (k) + T} (k) — I (k) — Dy;(k). (57)

The contribution of the parallel fluxes (I') and '} ) to the linear transfer of the total energy
E is zero, although they have an important role in the linear energy transfer for each of
the energy components.
The linear transfer for the enstrophy U and the magnetic potential A can be obtained
in a similar way and are respectively
oU, (k)

T = T - DY), (58)
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(¢ B [T [OF [0 [O [ T [ Ty [DF [ DF [ D [ DU ] D7 ]
0001 34|19 [-003|09 ] 10*]|-10° 1.2 003 | 1077 | 2.7 | 10710
0.1] 0.1 33119 |-003| 09 | 025 |[-0.008| 1.1 0.03 | 107® | 26 | 10°°
10 1.3 | 0.2 |0.005| 0.5 7.1 | -0.004 | 0.2 0.04 | 0.007 | 1.1 0.07
0.001 | 09 | 0.7 [-0.03| 0.3 | 1074 105 | 004 [ 0.03 |10 | 0.6 | 107
1] 01 | 09|09 |-005|041]006]| 107" | 004|004 107*] 071 0.01
10 0.2 (0.02]-0.01 008 1.5 |[-0.002| 0.03 | 0.01 | 0.01 | 0.2 0.3
0.001 | 0.1 | 0.1 |-0.01 {0.07|-10"%] -10=% [0.003 | 0.01 | 105 | 0.1 [ 10~
5 0.1 0.1 | 0.1 [-0.02|0.06|-0.02| 10=* [0.003| 0.06 | 10 | 0.1 | 10~
10 0.09 { 0.01 | -0.02 | 0.02| 0.7 |-0.002| 0.02 | 0.006 | 0.02 [0.08| 0.09
Table 4: Total values of the linear transfers in the different regimes.
0Ar(k
L0 _ 1, 1) - 10 - DA(K). (59)
The fluxes and dissipation terms in Fourier space are
Vv v T T
L) = —5K (40)T(~k) — $(-k)J(K)), (60)
1 ~ &= _ =
D) = K () J(-k) - i(-k).J(K), (61)
i » ~ s
a(k) = gk (()$(~k) —i(~k)d(k)) . (62)
L(k) = n.BJ(k)J(-k), (63)
1 - _ = _ 5
Fa(k) = 5K ((8(k) — (k) (~k) — (#(—k) - (k) v(k)) (64)
a(k) = n.BY(k)J(-k), (65)
DP(k) = Dg(k)+ Di(k) + Dy (k)
= pk* (A(l)7(—k) — (k) p(—k) + k' (k) J(~k)), (66)
DU(k) = pk* (k) - Q(k)) (A(-k) — Q(-k)), (67)
DAk) = pk*d(k)(-k). (68)

In Figs. 17 and 18 the linear transfer is shown for C = 0.1 and C = 5 in the electrostatic
and electromagnetic regimes. The fluxes are shown as a function of k¥ = |k|. In Table 4
the total values of the linear fluxes and dissipation terms are given in all regimes. In Fig.
23, the schematic direction of the linear and nonlinear transfers is shown.

Figs. 17 and 18 and Table 4, show that the dominant contribution of the linear transfer
is given by I';,, which is the source of energy. The maximum of [',, (k) is located at a k ~ 0.7
for C = 0.1 (Fig. 17), which is very near the maximum of the energy spectrum Ej (Fig.
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Figure 17: Linear fluxes for C = 0.1, with g = 0.001 ((a), (c) and (e)) and § = 10 ((b), (d)
and (f))
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9). By contrast, for C = 5 the maximum of I', (k) is located at k ~ 0.5 and the maximum
of Ey at k ~ 0.3 (compare Figs. 18 and 9).

Another important contribution comes from T} (k), which is responsible for the linear
transfer from 7 to . When 3 increases, '} (k) is located at smaller values of k. For C =5
and 3 = 0.001, I'}(k) has a negative contribution in the smaller values of k, which means

that in this case the linear transfer is in the other direction - from ¢ to ) - (Fig. 18).
This effect disappears when [ is increased (Fig. 18). F;,’(k) is responsible for the linear

transfer between ¢ and 1. IV (k) is (in most cases) positive for the smaller values of &

(linear transfer from gb to zb) and negative for the higher values of k£ (linear transfer from
¥ to @), as can be seen in Figs. 17 and 18. The total contribution of I'} (k) is (in most

cases) negative, the main effect being therefore the transfer from ¢ to ¥ (see Table 4). It
is interesting to note that in the electromagnetic limit, for C = 0.1, the total contribution
of '} (k) is positive (see Table 4), while for C = 5, 'Y (k) is negative in the whole spectrum
(Fig. 18). By comparing Figs. 17 and 18, one notices that I'.(k) (responsible for the
resistive dissipation) has a more important role for C = 0.1 than for C = 5. By increasing
B, T, is dislocated for higher values of k. T'y(k), which is the source of the magnetic
potential, has a strong dependence with 3, with its values increasing dramatically with
increasing 8 and it maximum being dislocated to much smaller values of k.

5.2 Nonlinear Spectral Transfer Analysis

We now compute the nonlinear spectral transter of the different invariants between different
k-modes, both within and between the dependent variables. By considering only the
nonlinear terms of the equations, we obtain for the nonlinear energy transfer:

AEY (k)

W eq ) @
N

aEat(k) = ? (T‘\'\k —q)+ T (k Q)) , (70)
M

Q%t(_k) _ %(1:‘;‘-"(k<—-q)+T2NM(k<—Q)), (71)

where the spectral transfers of energy from mode g to mode k are given by

T'(kq) = 2(kugy — a:ky) Re ($(-L)Q(k — a)é(a)), (72)
T a) = 25 (kuty = aok) Re (100 (k ~ @) T(a) (73)
YNk e @) = 25 (kity k) Re (000~ (@) (74)

Tk q) = 2(kuty — gchy) Re (A(-K)d(k — q)fi(a)) , (75)
T q) = 2 (hat = gk Re (AP0~ ) (@) (76)
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MMk q) = 2% (k2gy — gzky) Re (J(~K)9(k — q)i(q)). (77)

It is important to understand how this transfer occurs. By considering now the mode q,
we have

3E;t(‘1) pe ' am % (T (k « q) + T3 (k 1), (78)
N

@Eat(Q) = -X (Ve )+ TNk ), (79)

aE_;(.‘L) = -y (TVM k < q)+TVM(k + q)) : (80)

Therefore, the purely kinetic and density transfer terms are transferred in a direct way
(between different modes of the same fluctuation field), while the mixed magnetic-kinetic
and magnetic-density terms are nonlinear transfers between modes of 7 and v or ¢ and 1.
That is, the E x B transfer remains within a given dependent variable, but the magnetic
transfer occurs between different dependent variables. Each of the nonlinear transfer mixed
terms (TYM TYM TNM and T)N™) is not symmetric by itself, a sum must be defined in
order to obtain transfer terms with a definition equivalent to the other transfer terms. 7V
and TMM are defined respectively as TVM(k « q) = TYM(k + q) + TVM(k « q) and
T"M(k + q) = T"M(k + q) + T"M(k < q). The resulting effect of the mixed transfer
terms is then given by TV™ and TMM, which then define the character of the nonlinear
transfer. A schematic form of the nonlinear and the linear transfers of energy can be found
in Fig. 23.

We are also interested in the spectral transfer of the enstrophy U (see equation (53))
and the magnetic potential A (see equation (54)). We obtain:

U (k)

5 ZTUIH—q)
= Zz (key — aoky) Re ((7(—k) — 2(-k)) (k — @) (7i(a) - O(a))) , (81)

% = ZTAkwq)
- ZZ 2@y — Gaky) Re ($(—X) (A(k — q) — 7i(k — q)) B(q)). (82)

In Figs. 19 and 20 the nonlinear transfer of the energy components are shown for C = 0.1
and C = 5, respectively. In both Figs. the electrostatic and the electromagnetic regimes
are shown. In Figs. 21 and 22 the nonlinear transfer of the three invariants of the system
(E, U and A) is shown in the electrostatic and the electromagnetic regimes for C = 0.1
and C = 5 respectively. In Figs. 19 - 22, contours of T'(k « q) are shown only where it is
positive, since by definition the nonlinear transfer functions are anti-symmetric about the
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| C ‘ )6 l l |Tnz'\1ra}1([ | Tﬂ‘:ii‘;({ max| maxl max
0.001 1.29 0.23 10°]10%]1.16]203]10°%
0.1] 01 |145| 0.30 |0.001 | 107* | 1.15 | 224 |10

10 |0.24 | 0.02 | 0.01 |0.006| 0.23 | 0.33 | 0.19
0.001 012 0.08 | 10 | 107° | 0.06 | 0.33 | 107
1| 01 |019 ] 0.13 |0.001|0.001 | 0.07 | 0.39 | 10~*

10 | 0.03 | 0.004 | 0.007 | 0.003 | 0.03 | 0.05 | 0.10
0.001 [ 038 0.11 | 10® | 10~® | 0.27 | 0.60 | 107°
5 0.1 | 022 0.09 |0.001|0.001]|0.17 | 0.31 | 104
10 | 0.02 | 0.003 | 0.005 | 0.002 | 0.02 | 0.02 | 0.06

Table 5: Maximum values of the nonlinear transfers in the different regimes.

(C1 7 [T [ T [T 7" [ 7F [ 77 [ 7" ]
0.001 | direct | inverse | mixed | direct | direct | direct | direct
0.1 | 0.1 | direct | inverse | mixed | mixed | direct | direct | direct
10 | direct | inverse | direct | direct | direct | direct | direct
0.001 | direct | inverse | mixed | mixed | direct | direct | mixed
1 0.1 | direct | inverse | mixed | mixed | direct | direct | direct
10 | direct | mixed | direct | direct | direct | direct | direct
0.001 | direct | inverse ;| mixed | mixed | mixed | mixed | direct
5 0.1 | direct | inverse | mixed | mixed | direct | direct | direct
10 direct | mixed | direct | direct | direct | direct | inixed

Table 6: Cascade type of the nonlinear transfers in the different regimes.

line k = ¢ (dashed line drawn in the figures), which corresponds to the exchange (k < q).
Further clarifying the behavior of T(k « q) is the surface of T" as a function of k£ and g¢.
The variation of the maximum values of the nonlinear transfer in the different regimes is
given in Table 5. From Figs. 19 - 22, one can see that most of the activity of the nonlinear
tranfer functions is close to the line k = ¢, which shows that the transfer occurs between
scales of motion of similar scale, the transfer may be then properly described as a local
cascade. When the positive contours lie above the & = g line, there is an inverse cascade,
towards large scales. A direct cascade, towards small scales, is specified when the positive
contours are under the k = ¢ line. When the positive contours appear simultaneously
above and under the k = ¢ line, without a clear dominant behavior, a mixed cascade is
defined, with the transfer occurring simultaneously to both large and small scales. The
cascade type for each of the nonlinear transfers is given in Table 6.

In all cases, the dominant nonlinear transfer is TV (Figs. 19, 20 and Tables 5, 6).
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Figure 19: Nonlinear transfers of the energy components for C = 0.1, # = 0.001 ((a), (c),
(e) and (g)) and 8 =10 ((b), (d), (f) and (h)).
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Figure 20: Nonlinear transfers of the energy components for C = 5, § = 0.001 ((a), (c), (e)
and (g)) and § =10 ((b), (d), (f) and (h)).
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Figure 21: Nonlinear transfers of the invariants for C = 0.1, f = 0.001 ((a), (c) and (e))
and = 10 ((b), (d) and (f)).
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Figure 22: Nonlinear transfers of the invariants for C = 5, 8 = 0.001 ((a), (c) and (e)) and
4 =10 ((b), (d) and (f)).
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Even in the electromagnetic regime, the terms responsible for the magnetic transfer of the
energy, T and TVM are much smaller than TV. TV shows a direct cascade, as 7 is
passively advected by the E x B flow eddies. Even in the case C = 5, which is the most
sensitive to changes of 3, TV has always the same character, showing a direct cascade,
with only the magnitude of TV being sensitive to variations of 3 and C. TV shows an
inverse cascade in the electrostatic limit. However, this character is modified when [ is
increased for C = 1 and C = 5 (mixed cascade), while the inverse cascade remain robust
for C = 0.1. The direct cascade contribution of TV is already present in the electrostatic
limit. Nevertheless, as the inverse cascade contribution is very strong, the direct cascade
contribution cannot be seen in the contour plots. As 3 increases, the inverse contribution
of TV becomes weaker. Therefore, in the electromagnetic limit the direct contribution of
TV becomes more important and a mixed cascade appears (for C = 1 and C = 5). It is
interesting to note that the dual cascade, which was observed for the Hasegawa-Wakatani
system [34], with an inverse cascade of the electric potential and a direct cascade of the
vorticity is still present in the electrostatic case. For increasing 3, the vorticity continues to
show a direct cascade. However, the electric potential sometimes presents a mixed cascade
instead of the inverse cascade.

The nonlinear transfers involving the magnetic fluctuations P, TVM and TVM | are very
small (negligible) in the electrostatic limit, as expected. In this limit, 7V and TV have
a mixed cascade character. As [ increases, the direct cascade becomes stronger until in
the electromagnetic limit, the direct cascade is clearly dominant for all values of C (Figs.
19, 20 and Tables 5, 6). By comparing the electrostatic limit with the electromagnetic
limit, we can conclude that the magnetic fluctuations make the transfer of energy between
the density and the potential fluctuations more difficult. Therefore, the response of the
potential fluctuations ¢ to the density fluctuations tn is delayed, leading to the loss of
adiabaticity in the electromagnetic limit. Hence, even though the nonlinear mixed transfer
are still much smaller than TV even for 8 = 10, their presence is enough to change the
adiabaticity of the system. This enhancement of the nonadiabatic character is the most
important contribution of the magnetic fluctuations energetic to the overall system.

Moreover, TZ, the resulting nonlinear energy transfer, is strongly dominated by 7"V in
all cases considered. For C = 0.1, T'¥ shows a direct cascade independent of g (Fig. 21 and
Table 6). In the adiabatic regime (C = 5) for 3 = 0.001, T* has a mixed cascade character,
since in this limit 7V has an important role. As 3 increases this role diminishes and T'F
shows the usual direct cascade (see Fig. 22 and Tables 6, 5). The nonlinear transfer of
the enstrophy TV shows a direct cascade, except in the case C = 5 and § = 0.001. In
this case the kinetic transfer has a more important role, changing the character of the
transfer to a mixed cascade. However, even in this case the dominant behavior is the
direct cascade. Therefore, the main effect of 3 on TV is to change its magnitude, with the
qualitative behavior of the nonlinear transfer being rather robust. 74 is the quantity that
is most affected by 3. Besides the expected increase of the magnitude of 74, its qualitative
behavior depends strongly on § and C. For C = 0.1 and 8 = 0.001, T4 presents a direct
local cascade. When 3 = 10 the cascade is still direct, but involves a rather different range
of modes, not so near the line £ = g (compare Fig. 21(e) and 21(f)). On the other hand, for
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C = 5, while the electrostatic limit is very similar to that of C = 0.1, the electromagnetic
limit has a mixed local cascade character.

In Fig. 23 we summarize the linear and nonlinear transfer of energy of the system. We
chose as a typical example the case C = 0.1 and # = 10. The arrows have thicknesses which
are proportional to the logarithm of the quantities considered (multiplied by 10?). On the
left side, we show the linear transfer of a mode k& < k£ and on the right side of a typical
mode q > kE. These modes are then connected by the nonlinear transfers. The source
of density energy I', is present in both modes, but is stronger at k. The energy is then
linearly transferred from n to v through I'?, while being dissipated in the smaller scales
by DY, D¥ and T,. Simultaneously the energy is being transferred nonlinearly from 7 (k)
to 7i(g) in a direct cascade, represented by TV (directed to smaller scales). The nonlinear
transfers are represented by arrows in the direction of the cascade, however the sum of all
the nonlinear transfers is zero. Besides the strong nonlinear transfer TN the energy is also
transferred nonlinearly from 7i(k) to 4(q) (T™™), which is also a direct cascade. The figure
shows clearly how the presence of ¢ makes difficult to transfer energy from 7 to ¢. In the
small scales region (¢ > k), there is a weak linear transfer from ¢ to ¢ through ', but
for the larger scales this linear transfer is in the opposite direction. ¢ is also related to ¥
through a direct cascade TYM . Finally there is a strong nonlinear inverse cascade between
&(k) and &(¢) and a kinetic dissipation Df (stronger at smaller scales). Fig. 23 shows
clearly that the role of the magnetic fluctuation in the system is rather important for the
energy transfer, even though the nonlinear transfers involving the magnetic fluctuations
have a magnitude much smaller than the nonlinear transfers T and TV. The magnetic
fluctuations determine how strongly or weakly the density and potential fluctuations are
related. It is important to notice that the energy transfer character is in agreement with
the electrostatic studies [34, 50]. The magnetic fluctuations do not change the character
of the nonlinear transfers T and T in the electrostatic system, only the linear transfer,
which occurred between 72 and ¢ is not present here in the same form. It bears repeating
that the result of this transfer investigation has Leen to show that the most important
effect of the magnetic fluctuations is to enhance the nonadiabatic character of the system
by reducing the immediacy of the coupling between 7. and ¢.

6 Conclusion

In this paper, we have presented detailed properties of the turbulent states of a simple drift-
wave model with magnetic fluctuations. The system was solved numerically and compared
with the known properties of its limiting cases, the 2-D Hasegawa-Wakatani and MHD
equations.

The most important single conclusion is that although in certain limits the magnetic
fluctuations have significant influence (near-adiabatic electrons, high /), the turbulence is
largely electrostatic in character. This is particularly true with regard to the transport.
We observed dominant magnetic influence only when [ was as large as 10, a value quite
far from the operational limits of current magnetic confinement devices (8 < 1). In more

42




" T" E
D, — = —=D,

Figure 23: Nonlinear and linear energy transfers among the variables 7, é and ¢ for C = 0.1
and 4 = 10.
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moderate situations, the magnetic part of the system was seen to be effective in enhancing
the nonadiabatic character of the electron dynamics. In turbulence in a sheared magnetic
field, the electron nonadiabaticity is already strongly enhanced, so that a preliminary study
saw little effect of the magnetic fluctuations in the collisional regime [42]. However, the
present results suggest that the hot plasma regime (T > 1keV') may be made less adiabatic
than would be otherwise expected. Work is underway on a three-dimensional model which
will test this directly in tokamak geometry.

In any case, the neglect of magnetic fluctuations should be done with extreme care,
since as was seen in the energy transfer analysis, the magnetic part of the system has an
important influence on the relation between density and electrostatic fluctuations, i.e., the
nonadiabatic dynamics which determines the transport. Therefore, even if the turbulence
can still be considered electrostatic, it is of importance to understand the role of the
magnetic fluctuations in determining the characteristics of the turbulence in more realistic
models.
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