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Abstract

3D simulations of drift resistive ballooning turbulence are presented. The
turbulence is basically controlled by a parameter «, the ratio of the drift
wave frequency to the ideal ballooning growth rate. If this parameter is small
(a €1, corresponding to Ohmic or L-mode plasmas), the system is dominated
by ballooning turbulence, which is strongly peaked at the outside of the torus.
If it is large (a > 1, corresponding to H-mode plasmas) field line curvature
plays a minor role. The turbulence is nonlinearly sustained even if curvature
is removed and all modes are linearly stable due to magnetic shear. In the
nonlinear regime without curvature the system obeys a different scaling law
compared to the low o regime. The transport scaling is discussed in both
regimes and the implications for OH-, L-mode and H-mode transport are
discussed.

Die nachstehbende Arbeit wurde im Rahmen des Vertrages zwischen dem
Max-Planck-Institut fiir Plasmaphysik und der Europiischen Atomgemeinschaft iiber die

Zusammenarbeit auf dem Gebiete der Plasmaphysik durchgefiihrt.



1 Introduction

The role of plasma turbulence as the main source of transport in toroidal confinement
devices has stimulated a large amount of theoretical and experimental work. The
particular importance of the plasma edge turbulence is demonstrated by the L-
H transition where the formation of a transport barrier at the plasma edge leads
to a dramatic improvement of the global confinement. Since the edge transport
also determines the width of the scrape-off layer (SOL), knowledge of the transport
scaling is required to estimate the divertor heat load of future tokamak experiments
and to design the geometry of closed divertors.

We present the results of 3-D simulations of tokamak edge turbulence with realis-
tic parameters in toroidal geometry. Our work is related to that presented in several
previous publications (see Ref. [1] and citations). Due to the high collisionality at
the plasma edge we use a two-fluid model. We include the field line curvature since
measurements of fluctuations in the edge display an inside/outside asymmetry, the
amplitudes being larger on the outside where the curvature is unfavourable [2][3].
Heat load measurements at the divertor plates also indicate that transport on the
outside of the torus exceeds that on the inside, consistent with the curvature as a
drive of the transport [4][5][6]. The structure of the turbulence is largely controlled
by a single dimensionless parameter a, the ratio of the ideal ballooning growth rate
to the drift wave frequency, which governs the transition from resistive ballooning
to drift wave turbulence. If this parameter is evaluated for experimentally observed
plasma edge parameters, L-mode plasmas fall in the resistive ballooning regime and
H-mode plasmas in the drift wave regime. The linear analysis of the unstable modes
in the two fluid model was presented in Refs. [7][8] (and citations within). A set
of nonlinear two-fluid equations were derived and used to simulate turbulence and
transport in a flux tube system [1], but due to the numerical approach the simula-
tions were restricted to the resistive ballooning regime with reduced magnetic shear
and the time interval of the runs was quite short. Improvements of the numeri-
cal algorithms enable us to treat the whole parameter space and to correctly deal
with the large parallel correlation length. Periodic boundaries in the radial direc-
tion ensure steady state conditions by avoiding profile flattening. Finally implicit
time stepping allows us to run far into the nonlinear regime where fluctuations and
transport evolve to quasi-steady levels.

In section 2 the basic equations are described and transformed to a dimensionless
form which is adequate for the ballooning space and time scales and for the use in a
flux tube coordinate system. In section 3 we present our numerical results including
the observations related to a new nonlinear instability [9]. In section 4 the values
of the dimensionless parameters are computed for realistic tokamak edge profiles of
ASDEX and the implications of our results for understanding the edge turbulence in
this machine are discussed. Our numerical methods are explained in the Appendix.



2 Equations and Computational Domain

Since the complete derivation of the equations is reported elsewhere [1], it is only
summarized briefly here. The basic nonlinear equations are the reduced Braginskii
equations [10]
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where 7] = —cV¢ x b/B, d/dt = 8/8t+ 7% -V and njy = =V + (Te/e)Vylnn with
n the classical resistivity, b= E/B the direction of the magnetic field and & = b-Vb
the field line curvature.

The ions are assumed to be cold and the electron temperature is kept constant.
The first term in the continuity equation (1) includes E x B convection, the second
results from the divergence of the E x B flow, which is nonzero in a curved magnetic
field, the third arises from the divergence of the ion polarization drift and the last
term describes the divergence of the parallel flow. The vorticity equation (2) balances
the currents from the two species insuring quasineutrality. The first and second
terms are the charge flow due to the ion polarization drift and the electron curvature
drift respectively. These perpendicular drifts are balanced by parallel currents which
are connected to the density and the potential by Ohm’s law. Finally the velocity
equation (3) describes the sound wave propagation along the magnetic field due to
parallel density gradients. In the toroidal coordinate system the operators take the
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Because of high parallel conductivity, disturbances of ¢ and n have large parallel
correlation lengths along B. To minimize the size of the computational domain
required to describe such fluctuations. we transform the equations to a field line
coordinate system [11] in which z lies along the local B and z, y are transverse to

B. The transformation is defined by
z=r,y=all—(»—v)/q) — avo/qs, z = Rep. (6)

In this coordinate system the operators are given by

d
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where we have used the abbreviations § = (a/q) dq/dr, L. = 27q, R, and zy = Ro.
This coordinate system has the added advantage that there is no explicit z depen-
dence so that radial correlation lengths are a consequence of the nonlinearities in the
system and not the variable resolution of the numerical grid. Since for diagnostic
purposes we often use a helical flux tube system with a more ’'natural’ field line
geometry we also write here the transformation to this system:

=z, y =y-2ri(z—z.)(z— 20)/L., &' = 2. (11)

In this coordinate system the magnetic field is parallel to the z-direction only at the
radial plane z = z,; at different locations it is inclined according to the magnetic
shear 3.

Characteristic space and time scales are obtained [1] by using the ballooning
property of the equations. If the perpendicular wave-length is small, the parallel
gradient term in the vorticity equation (2) is negligible, leading to the ideal balloon-
ing growth rate vo = ¢,/(LnR)Y/?, with ¢, = (T./m;)"/? and L, = —n/(dn/dz) the
density e-folding length. Balancing the involved terms leads to the characteristic
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Taking V| ~ L' the perpendicular scale length L, is obtained by balancing the
first and the third term in (2):
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Inserting these scalings into the equations, we obtain immediately the scaling for
the density fluctuation, the potential and the parallel velocity:
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with ng denoting the background density and 7 = n — ng the density fluctuation.
This leads to the dimensionless equations in field aligned coordinates:
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and the additional viscosities D, and Dg. Compared to the well-known Hasegawa-
Wakatani equations [12] we obtain additional terms due to field line curvature, which
are all contained in the operator C, and an additional equation describes the parallel
flow. The anomalous particle transport coeflicient is related to the particle flux from
the simulations through

d¢
Dun = DO(nUradial) = _DO(n_y) (18)
with the intrinsic transport given by
R
Do = (QﬂQa)ngyeiL_- (19)

Since we evaluate the flux as a function of the parallel coordinate the brackets ( )
denote an average over the poloidal plane = and y.

Multiplying Egs. (15), (16) and (17) by n, ¢ and v respectively, integrating over
all space and combining the resulting equations, we obtain the total rate of change

of energy
f)dt/[ Va)'+ +”“)]d3I:
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The terms on the left hand side correspond to perpendicular kinetic energy, internal
energy and parallel kinetic energy respectively. On the right hand side only the first
term can act as a source. It describes the extraction of energy from the density
profile. The damping terms appear as sinks since the temperature equations have
been discarded. In our numerical simulations this energy theorem is used to monitor
the accuracy of the time stepping algorithm.
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Stabilization of edge turbulence by sheared poloidal rotation has been proposed
as a mechanism for turbulence suppression at the L-H transition. Two distinct mech-
anisms follow from a fluid treatment of edge turbulence: Reynolds stress [13][14] and
Stringer spin-up [15][16][17][18]. The Reynolds stress is produced by a self-induced
distortion of fluid vortices and has been identified as a mechanism for sheared flow
generation in a variety of simulations of plasma transport [1] [19]. Recent simula-
tions of the Hasegawa-Wakatani equations in 3D [20] showed a very strong shear flow
generation due to Reynolds stress. Since these simulations were performed without
magnetic shear the behaviour of the present system may be different. The Stringer
spin-up is a toroidal effect and is therefore not present in simple slab treatments
of turbulence. It is related to a transport asymmetry between inside and outside
of the torus which leads to parallel flows from the outside to the inside. To drive
these parallel flows a radial pile-up of plasma pressure on the outside of the torus is
required. Such effects cannot be included in a local transport model (in particular
with periodic boundary conditions), hence the Stringer spin-up is not included in
the present simulations.

3 Simulation Results

3.1 Simulation Results: a <1

Since the parameter a divides the turbulence into two different regimes, we separate
the discussion of our simulations into low and high values of a. Our low-a reference
run was performed with the following parameters: a = 0.5, ¢, = 0.04, ¢ = 0.25,
v =0.02, § = 1.0, D = D* = 0.002. The box dimensions are L, = 5.73, L, = 6
transverse to B, and L. = 3 along B, corresponding to three full periods of good and
bad curvature. The poloidal plane is resolved by 64 x 64 complex modes in = and
y direction and in z direction we use 96 grid points. Starting from low-amplitude
random noise the ballooning instability grows and forms extended streams in the
radial direction at the unfavourable curvature location (see Fig. 1 at = = 1.0).
The perturbation spreads along the magnetic field into the favourable curvature
region. With increasing distance from the bad curvature region the extended streams
become more and more inclined with respect to the radial direction due to the
magnetic shear (Fig. 1 at z = 0.75, 1.25). In the favourable curvature region the
perturbations due to the two neighbouring unfavourable curvature regions form a
pattern of intersecting lines (Fig. 1 at z = 0.5). The ballooning character of the
fluctuations is shown in Fig. 2 in this linear phase. The bad curvature regions
are centered at z = 0.0,£1.0. We obtain a pronounced peaking of the transport
at the outside of the torus (Fig. 3). This strong peaking occurs because of the
ballooning of the disturbances and because of the inclination of the flows on the
torus inside compared with the torus outside. On the outside positive radial flows
carry positive density perturbations outward. producing large transport. On the
inside the magnetic shear causes the flows to tip in the poloidal direction. resulting
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Figure 1: Structure of n for @ = 0.5 in the linear regime. The plots show poloidal
cross sections (transformed into the helical flux tube system) at different parallel
locations. White corresponds to high density and black to low density. z = 0.5
corresponds to the favourable curvature location and z = 1 to the unfavourable
curvature location. The density gradient points to the left and the poloidal angle
increases upward. '
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Figure 2: (n?)!/? (upper line) and (6?)1/2 (lower line) during linear phase for o = 0.5
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Figure 3: Radial transport during linear phase for a = 0.5
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Figure 4: Probability distribution of density and poloidal electric field during linear
phase for a = 0.5
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Figure 5: Probability distribution of density and potential during linear phase for
a=10.>5

in a lower transport level. The efficiency of the flows in driving transport can be seen
from the probability distribution of n and the poloidal electric field Eporoidal ~ Vrad
in Fig. 4. The strong alignment along the diagonal implies that the flows are very
efficient in driving transport in the linear phase. Finally Fig. 5 shows that there is
no correlation between density and potential.

When the streams become sufficiently strong entering the nonlinear phase they
break up because of the Kelvin-Helmholtz instability. They form mushroom-like
density blobs with high density streaming outward and low density inward (Fig. 6).
In the parallel direction the variation is weak leading only to a twist of the pattern
along the magnetic field which can still be seen in Fig. 6. This behaviour is con-
firmed by the autocorrelation function of n, ¢ and k in parallel direction (Fig. 7). On
the other hand the parallel correlation length is sufficiently short to decorrelate the
turbulence within the chosen length of the flux tube, hence justifying the pseudo-
periodic boundaries in parallel direction (the numerical approach is described in
detail in the Appendix). In addition the correlation length is too short to invoke
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Figure 6: Structure of n for o = 0.5 at different locations along the magnetic
field. The plots show poloidal cross sections (transformed into the helical flux tube
system) at saturation, beginning in the favourable curvature region and ending in

the unfavourable curvature region.
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Figure 7: Autocorrelation function in parallel direction of n. o (lower lines) and h

(upper line) for a = 0.5
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Figure 8: Correlation of the density (n(zo + x,yo + ¥)n(Z0,Y0))z,.4, at the outside
midplane for a = 0.5
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Figure 9: Probability distribution of density and potential in a saturated state for
a=105

any rational surface effects in experimental geometry. The stationary turbulence is
nearly isotropic in the poloidal plane. This can be seen clearly in the corresponding
correlation function of n shown in Fig. 8. Note, however, that the correlation func-
tion has a weak tail which fluctuates around the radial direction. This reflects the
tendency of the disturbances to stream radially due to the unfavourable curvature.
Compared to the linear phase (Fig. 5), there is now a definite correlation between ¢
and n (Fig. 9). The width of the distribution function on the other hand shows that
the nonadiabatic contribution is still significant. To measure the relation between
¢ and n we define the adiabaticity parameter

o (6=an?)

- (¢? + a?n?) (21)

with the brackets ( ) denoting the average over the whole domain. ¢ is one when ¢
and n are completely uncorrelated and zero if the system is adiabatic. For the state
shown in Fig. 9 we obtain § = 0.37. Short scale structures (compared to the linear
phase) are present only in the density whereas the potential remains smooth. The
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Figure 10: Probability distribution of density and poloidal electric field in a satu-
rated state for a = 0.5
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Figure 11: Radial flux (nv,.q) in a saturated state for a = 0.5

increased correlation between n and ¢ leads to a reduction of the correlation between
n and the radial velocity (Fig. 10). Nevertheless low density is still correlated to
an inward velocity and high density to an outward velocity leading to anomalous
transport (Fig. 11). Finally the mean square fluctuation levels of n and ¢ retain
the ballooning property also in the saturated turbulent state (Fig. 12). Since the
turbulence is now more adiabatic, the potential is more closely connected to the
density, leading to a relatively stronger fluctuation amplitude of ¢.

A series of simulations have been performed in the regime of o < 1. The most
pronounced ballooning behaviour is obtained for @ = 0. For this run the dependence
of the transport on z in the nonlinear saturated regime remains smooth similar to
the linear phase in Fig. 3 in contrast to the more noisy and fluctuating behaviour
for o = 0.5 (Fig. 11). The diamagnetic propagation is weak for o < 1 decreasing
with decreased a. The correlation between n and ¢ becomes significantly stronger
with increased a. Since the correlation is produced by the parallel diffusion of the
nonadiabatic contribution h = ¢ — an, for a =0 there is no correlation between ¢
and n and the adiabaticity parameter ¢ is unity.
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Figure 12: (n?)'/? (upper line) and (#?)!/? (lower line) in a saturated state for
a=10.5

As discussed in section 1 Reynolds stress as a mechanism for shear-flow gen-
eration is included. Nevertheless we do not observe a significant stationary shear
flow for a > 0.5 (also in the regime o > 1 dicussed in the next section). Only a
simulation with @ = 0 led to a stationary shear-flow which was sufficient to reduce
the level of turbulence significantly.

A surprising result of the simulations is that the level of the transport in the
range 0.5 < a < 1 is insensitive to a. In the unfavourable curvature region (nv,qq)
is approximately 0.070 £ 0.015 and in the favourable curvature region 0.035 £ 0.010.
According to linear theory, increasing o leads to diamagnetic stabilization of the
long wavelength modes and a shift of the spectrum to short wavelength. Thus, we
expected that larger a would correlate with reduced transport. The reason why this
does not happen will be discussed in the next section.

3.2 Simulation Results: a > 1

In the high-a regime the system is still linearly unstable if « is less than approxi-
mately 1.5. Above this value long-wavelength resistive ballooning modes are stabi-
lized by the large electron diamagnetic drift and short wavelength modes are sta-
bilized by viscosity (which is at a realistic level for the tokamak edge). The usual
slab drift-wave is stabilized by magnetic shear [21]. For reference we discuss two
simulations with @ = 1.25 and @ = 1.5 and all other parameters as in the a = 0.5
run discussed earlier. The size of the computational box in the transverse plane is
varied to ensure that the structure of the turbulence does not depend on the peri-
odicity assumptions. In both runs in the linear phase ballooning modes grow as at
low a but with significantly reduced growth rates and at shorter wavelength. As the
turbulence saturates it undergoes a qualitative change in structure: the fluctuations
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Figure 14: Correlation of the density at the outside midplane for a = 1.5

evolve to much longer wavelength and form structures which clearly propagate at
the electron diamagnetic velocity (as the linear modes do). A plot of the density
perturbation in the bad curvature region at late time from the a = 1.5 run is shown
in Fig. 13. The mushroom-like structures which were evident at low a are absent,
the fluctuations are much smoother, and the scale lengths are larger. Note that in
Fig. 13 the computational box is doubled compared with the a = 0.5 case in Fig.
6. The increased scale length of the turbulence is reflected in a broadening of the
{ ransverse correlation function of the density for a = 1.5 shown in Fig. 14 compared
with the corresponding plot for a = 0.5 (Fig. 8. note the different scale). For this
high a case the tail on the correlation function corresponding to radial streaming is
absent. The corresponding autocorrelation functions of h, ¢ and n in the z direction
are shown in Fig. 15. The function h has a modestly larger field-aligned correlation
than for @ = 0.5 but it remains shorter than the parallel length of our computational
box. The drift-wave-like propagation is a consequence of the increased adiabaticity
of the fluctuations as measured by the parameter §. which is now 0.21 compared
to 0.37 with a = 0.5. Figure 16 shows the mean-squared values of n and ¢ as a
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Figure 15: Autocorrelation function in parallel direction of & (upper line), n (middle
line) and ¢ (lowest line) for @ = 1.25

Figure 16: (n?)1/? (solid line) and (¢?)'/? (dashed line) in a saturated state for

a=1.25
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function of z. The larger value of ¢ compared to @ = 0.5 is due to the increased
adiabaticity which requires ¢ ~ an and therefore larger ¢ fluctuations as a is in-
creased. The transport level is 0.075 + 0.010 at the unfavourable curvature location
and 0.040 + 0.005 at the favourable curvature location which is almost exactly the
same level as in the low o case in spite of the significantly reduced linear growth
rate of the instability in the high a regime.

The unexpected change of the character of the turbulence after saturation and
the surprisingly high level of transport given the weakness of the linear instability in
comparison with the case a = 0.5 suggest the existence of an additional (nonlinear)
drive mechanism. Nonlinear instabilities in drift wave turbulence have previously
been discussed [22][23]. To test this hypothesis we removed the curvature drive (all
terms containing the operator (") in our equations and restarted a run for @ = 1.25
from a saturated state at late time. Even without curvature the transport remained
at almost the same level although the system was linearly stable. By contrast the
turbulence in the a = 0.5 run immediately died away when we removed the curva-
ture. As expected, without curvature the mean properties of the turbulence became
homogeneous in z direction. At the former bad curvature location the transport level
modestly decreased and at the favourable curvature location increased. To further
check that our boundary conditions do not introduce a spurious instability in this
sheared slab system, we completed a run at = 1.25 from noise with the curvature
removed. The fluctuations died away as expected. We have recently shown that
the source of the nonlinear instability is the self-consistent nonlinear amplification
of radial flows [9]. This nonlinear mechanism completely dominates the usual linear
drift-wave drive even in the absence of magnetic shear.

The turbulence and transport which develops from the reduced set of equations
without the curvature drive obeys a different scaling than with curvature. We de-
rive the new scaling laws by dropping all curvature terms and, for simplicity, terms
containing the parallel velocity in Eqs (15), (16) and by rescaling the system ac-
cording to 2 = /Ly, § = y/Ly, z = 25, t=ta/L,, ¢ = ¢/al,, s = n/L, with
L, = o'/?/&§*3  We obtain equations similar to the Hasegawa-Wakatani system
with magnetic shear

d , 8% ..
d—vi@ = ——azg(ff’ —n) (22)

dn do a?
oW ".a?(m —n) (23)

with V2 = (9/0x + H,.Hﬁ/ay) + 9%/0y?, where the tilde has been dropped, and
p? = e,(a§)"?. The transport in the new variables is given by

- do - alf3

Dan = DQ(??E‘;), Dg = Dgﬁ
The governing parameter now is p° = ¢, (a§)¥/3. To explore the variation of the
transport with this parameter, we completed a series of simulations without curva-
ture with different values of ¢, while keeping @ = 1.25 and § = 1. The fluctuation
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Figure 17: Transport versus p*. The errorbars represent the standard deviation due
to the time variation of the flux.

amplitudes monotonically decreased with increasing e, although the characteristic
scale lengths and drift-wave-like propagation properties remained unchanged. The
variation of the average flux with p? is shown in Fig. 17. Above p* = 0.15, the non-
linear drive mechanism becomes extremely weak and the development of sheared
flow triggers the collapse of the nonlinear instability and subsequent decay to zero
amplitude.

4 Comparison with ASDEX Results

Having identified the key parameters which control the drive mechanisms and struc-
ture of tokamak edge turbulence, we now discuss the implications of the results for
understanding edge turbulence in real machines. At the present time this discus-
sion must remain qualitative since key ingredients such as the coupling between a
SOL, with appropriate boundary conditions at the divertor or limiter plates, and
the closed flux region are not properly treated in the present model. Our discussion
focuses on data from the ASDEX experiment although the qualitative conclusions
also apply to DIII-D. The experimental values of the dimensionless parameters are
calculated from edge data [24]. Since for this purpose the cold-ion approximation
is not appropriate (7; > T. in L-mode and H-mode), we modify our equations to
include T; = const. # 0. The inclusion of the ion diamagnetic drift in the ion
continuity equation leads to an additional term —2n& - ¥y arising from V - nvy with
B = (ch/enB)E % Vn the ion diamagnetic velocity. In the vorticity equation the
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[ [OH [OH [L L [L [L [H [H [H |
r[em] 0 1 o7 Jo [-1 [-2 |02 |0 -1

R[em] 165 | 165 || 165 | 165 | 165 | 165 || 165 | 165 | 165
B[T) 22 |22 |22 |22 |22 |22 [22 |22 |22
Zry 2 2 4 4 4 4 4 4 4

Ga 35 |35 (135 |35 |35 |35 [[3.5 {35 |35
m;i/m, 2 2 2 2 2 2 2 2 2

T.[eV] 70 | 110 || 70 | 130 | 170 | 210 | 150 | 240 | 325
T 05 |05 |1 1 1 1 1 1 1

n[10¥cm=3 |/ 0.8 |1.1 |04 |06 |0.82|1.0 0.4 106 |12
n/[102cm=4] |33 |25 [[3.0 |24 |20 |13 |48 |60 |55
Ln[cm] 94 |44 | 13325 [416|75 [0.83|1.0 |22
1[1078s] 20 [214 1.28|1.29|1.45|1.76 || 0.69 | 0.6 |0.76
Lo[em)] 029 |0.24(0.37]029|0.26)023103 |0.28|0.27
a 09 (1.0 {08210 [1.0 |1.0 ||1.9 |2.37|186
€n 029 | .053 || .016 | .03 |.05 |.091| .01 |.012|.027
5 004 | .005 || .003 | .004 | .005 | .007 | .002 | .003 | .004
ena®3(1+7) || .04 |.08 [|.02 | .06 |.1 |.18 {.05 |.08 |.12
Do[10°cm?/s] || 0.43 | 0.27 | 1.1 | 0.66 | 048 | 0.29 | 1.3 |13 |10
Doum|[m?/s] || 0.25/0.12 0.5/0.25 1.2 [1.0 0.2

Table 1: Edge data of ASDEX (OH, L-mode, H-mode). The last line shows a rough
estimate of the anomalous diffusion rate based on our simulations. The two values
under Ohmic and L-mode conditions correspond to the regions of unfavourable and
favourable curvature.

total pressure appears in the curvature drive so that 7, is replaced by 7. + T;. The
nonlinearity due to the diamagnetic contribution to the V¢ convection (see Ref.
[8]) appears in the vorticity equation. The altered equations are given by

d L A
aVi(D —arV, - [(€ — €& X Vn)-V|Vi¢+Cn+ Vﬁh =0,
% + g—z — .Ch + exa(1 4+ 7)Vih + V) = 0,
dyy ___on
a9z
with ¢, = (Te(1 + ) /m)V? =TT, a = (pscsto)/(LnLo(1 + 7)) and all other

quantities as defined previously (the viscous terms have been dropped). The only
change in the equations is the factor 1 + 7 in the continuity equation and the dia-
magnetic drift in the vorticity equation.

Table 1 shows the parameters for L-mode, H-mode and Ohmic plasmas of AS-
DEX [24]. We emphasize that the uncertainties in the parameters are substantial
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(especially Z.ss, 7 and L) so that only qualitative trends should be taken seriously.
Both Ohmic and L-mode plasmas correspond to a ~ 1. According to our simula-
tions (see section 3) the transport is dominantly driven by the ballooning instability
in this o regime. The transport increases in L-mode compared to Ohmic because
of increased Z ;s and 7. For the ASDEX H-mode o ~ 2 and our system is linearly
stable. Nevertheless the turbulence is sustained by a nonlinear instability (section
3.2). In this high-o regime the crucial parameter is 5> = ¢,(a3)3(1 + 7) and the
transport decreases rapidly as this parameter is increased. At the separatrix and in
the SOL in H-mode the transport from the nonlinear instability for p* = 0.5 — 0.8
remains high while at 1 cm inside where p? = 0.12 it is drastically reduced. This be-
haviour suggests the following scenario: transport in L-mode and Ohmic plasmas is
driven by the resistive ballooning instability; a rise of the edge temperature increases
« until it enters the regime where the ballooning drive becomes weak. At this stage
the level of turbulence and transport depends strongly on p?. Near the separatrix
transport is self-sustained while at the larger values of p? interior to the separa-
trix the fluctuations are suppressed and a transport barrier develops. Whether this
transport barrier then propagates radially outward and suppresses turbulence in the
SOL can not be addressed in our present model.

5 Conclusions

The drift resistive ballooning equations produce two distinctly different types of
turbulence, resistive ballooning and drift-wave, depending on the value of the dia-
magnetic parameter a, which is the ratio between drift wave frequency and the
linear ballooning growth rate. The structure of the turbulence as well as the in-
trinsic scaling of the transport differs in the two regimes. The ballooning regime is
characterized by a large asymmetry of turbulence and transport between the high
and low field sides of the torus and relatively weak diamagnetic propagation. At
high values of a the diamagnetic drifts and perpendicular viscosity combine to sta-
bilize all linear modes of the system. Nevertheless, the turbulence remains strong
as a consequence of a nonlinear drive mechanism [9]. In this regime the turbulence
has a relatively weak ballooning character, propagates in the electron diamagnetic
direction and has a larger transverse correlation length. The scaling of the transport
in the high a, drift-wave regime is controlled by a parameter p = p,/L, where p; is
the ion Larmor radius based on T, and L, is the transverse scale length of the drift-
wave turbulence. The transport driven by the nonlinear instability decreases rapidly
with increasing p up to a critical value, above which the turbulence completely dies
away.

A comparison with experimental edge profiles suggests that OH- and L-mode are
characterized by a ~ 1 ballooning turbulence with L-mode transport exceeding that
in Ohmic plasmas as a result of increased impurity content and increased ion tem-
perature. H-mode falls in the high a regime where all linear modes are stabilized. At
the separatrix and in the SOL the parameters are such that the nonlinear instability
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can self-sustain turbulence while interior to the separatrix collapse of the turbulence
should occur. A complete understanding of the L-H transition will require a proper
treatment of the interface between the SOL and closed flux region.
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A Numerical Algorithms

Our numerical simulations are based on the dimensionless equations in field aligned
coordinates Egs. (15)-(17). Since we neglect the radial change of the equilibrium
density (only the density gradient is retained) there is no explicit ¢ dependence in the
equations. The absence of explicit = dependence allows us to use periodic boundary
conditions in this direction, thus avoiding profile flattening which can artificially
reduce the transport rate. In addition, dissipation is z-independent (unlike in a grid
based on the untwisted coordinate system) so that the radial correlation lengths are
not linked to the grid.

On the other hand, the field aligned coordinates introduce a new problem. As a
bundle of flux at a particular z location is mapped down a field line it is stretched
along y and compressed along z. Thus, the coordinate system becomes extremely
distorted with respect to the real system as the system is mapped along z. It then
becomes very difficult to correctly calculate physical disturbances without introduc-
ing an excessively fine radial grid. For example, in the twisted system a disturbance
which is z independent in the physical system has k; = [278(z — z0)/L:)ky in the
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flux tube system (see Eq. (10)) so that kz > ky when § ~ 1 and |z — zo| > L..
To avoid this difficulty, we split the flux tube into several boxes in z direction and
choose for each box an individual zp located at the center of the box. If f) and
f®) represent the same physical quantity but in the representation of different boxes
they must satisfy the matching condition

FO(z,y,z7) = fO(z,y +2m8(28" — 267 )(@ — 2a),27) (24)

at the boundary z* between the two boxes (24 denotes an arbitrary reference flux
surface). Since radial periodicity must be satisfied in both boxes simultaneously we
obtain the additional condition

2ms(z4) — ") L = mLy (25)

which relates the box lengths in z and y direction according to the arbitrary integer
number m.

Looking for an adequate numerical scheme to solve Eqgs. (15)-(17), we notice
first that the parallel direction z has to be treated in configuration space since
the flux tube must be split into boxes which need to be matched together by a
transformation. Hence periodic boundaries are not appropriate. To avoid a severe
restriction of the time step the parallel diffusion terms in Egs. (15) and (16) must be
solved implicitely. Since in the vorticity equation V¢ is advanced in time and not
&, the implicit treatment of the parallel diffusion requires a simultaneous solution of
the Poisson equation which determines ¢. The easiest way to do this is by fourier
transforming the equations in and y which finally leads to the following linear

system
hiy1 — 2hi + hi—y ;
k2 ¢ — At = = bf (26)
hivs — 2h; + hi_
e P /_\,:2+ Lo_ g (27)

with i labeling the grid points in z direction. This linear system is solved either by
a block tridiagonal solver or by reducing the set of equations to a linear system for

h

- (28)

1
h — At (— + € N = ki :

1.2

14
which is treated by a standard tridiagonal solver. Afterwards n is computed by
inserting h into Eq. (27) and ¢ by using the relation h = ¢ — an.

We developed two independent different codes to solve the set of equations in
order to check the influence of the numerical treatment and the correctness of our
codes. The first code follows the numerical scheme which is described in Ref. [1] but
treats the parallel diffusion implicitely according to Eq. (28). For all remaining terms
a trapezoidal leapfrog algorithm is used as described in Ref. [1]. The nonlinearities
due to the E x B convection are evaluated to fourth order in configuration space.

2) hiy1 —2hi+hic1 b?
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The spectrum is cut at high mode numbers by a special velocity dependent nonlinear
damping which is also described in more detail in Ref. [1].

The second code is a pseudospectral code in the poloidal plane. This allows
us to introduce a V¢§ hyperviscosity which is solved exactly, thus avoiding any
time step restriction due to numerical stability. All remaining linear terms are
treated by a Crank-Nicholson scheme. The nonlinear convolutions are computed
by multiplication in configuration space with time stepping according to the usual
leapfrog scheme. In addition to the perpendicular damping a small parallel diffusion
is included. The complete numerical equations are

k2ot — At [C t+1 | RitL — opitl 4 hiﬂ} B

Az? o

h-'+1 hf -1y h jl }e_g(Dcpkzl_*,ﬂkg,y)At_
Az?

= {kiqbi‘l 4+ At [én"z—] 4
2Atﬁfﬁe'(m"i+ﬂk3.y)ﬁf’

hitl — 2R+ 4+ Bt
Az?

ntt! 4 At [ikyqsfjl — e CR o

= v g - Ryl — 2Rt 4+ ALTH vl —vl
{ni 1At [zkyqﬁ’z ' e, Chi™ 4+ o= A7 1] — Ah,._iAz_l .

_ n.2 6 ~s  _(DnL2 6
e ADKLHRKE )AL 4 g Ay At o=(DPKL +REL, )AL

ni,i+1 _ t RES
t+1 — t _ At z—1 Z+1 AtAf Af
" {v"‘ ! oAz T

with A, A,, and A denoting the convective nonlinearities and
= [cos(2mz Az) + 213(z Az — 20) sin(27z Az) — €] ik, + sin(2mz Az)ike,

k2 = [ky + 278(2 Az — 2o)k,)* + k3, K2, =kI+k}, k=4, —an;.

The dissipation terms in z direction have been dropped. The matching between
different boxes in z direction is done by explicitely using the values of the adjacent
box after transforming according to Eq. (24). To ensure numerical stability we use
the most recent values in the adjacent box, hence the values at time ¢ 4 1 if the box

has been advanced already. To avoid boundary effects we close the flux tube in z
direction according to the same matching procedure.
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