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Abstract

Explicit symplectic integration schemes for the Arnold-Beltrami-Childress flows
are presented and compared to the fourth order Runge-Kutta method. For the cal-
culation of stable orbits with moderate accuracy the symplectic schemes are more
efficient. The structure of the Hamiltonian prevents the implementation of symplectic
methods with constant time steps.



1. The ABC Flow

The Arnold-Beltrami-Childress (ABC) flows are 3D, incompressible flows with a vari-
ety of interesting features (c.f. [1]). The equations for the streamlines of a simplified
case of the ABC flow are:

T =cosy + esinz (1)
7Y =sinT + €cosz (2)
z=siny+cosz (3)

where € is a parameter. The equations may be rewritten in Hamiltonian form with
z being the time-like variable [1]:

dz . oH 4
dz ~  dq (4)
dg OH
&~ oz )
with
H(z,q,2) =siny(z,q) + cosz + €(y(z, q) sin z — z cos 2) (6)
and
y
qg= / (siny’' +cosz) dy' =1+ ycosz — cosy. (7)
0

For € = 0 the system is integrable. For € # 0, the system has both chaotic and stable
quasi-periodic streamlines.

2. Symplectic Method

Symplectic integration schemes approximately preserve the Hamiltonian invariants
of the system and are exact solutions of a “nearby” Hamiltonian system. So, rather
than solving an exact Hamiltonian approximately, symplectic schemes solve an ap-
proximate Hamiltonian exactly. For this reason, symplectic schemes have been found
to have good stability properties and allow longer time steps than non-symplectic
methods (c.f. [2]).

Here, we use the approach of Yoshida to develop explicit symplectic integrators
for the ABC flow [4]. The flow S associated with the Hamiltonian H is the mapping
such that

S(€) = (z(20),9(20)) = (2(20 + €), q(20 + C))- (8)

The mapping S is symplectic. For a one degree of freedom Hamiltonian, sym-
plecticness is equivalent to preservation of area in the (z,q) plane. Additionally, we
define a flow T such that

T(7) : (z(to), y(to), 2(t0)) = (z(to + 7),y(to + 7), z(to + 7)) (9)



where z(t), y(t), z(t) solve equations (1, 2, 3). The flow T is more convenient to
calculate than is S and as it can be expressed in terms of S, is also symplectic with
respect to (z,g). We note additionally that since T is the flow of an incompressible
velocity field, it preserves volume in (z,y, z) space.

The method of Yoshida requires that we be able to split the Hamiltonian into
parts such that the Hamiltonian system associated with each part can be solved
explicitly. We separate the Hamiltonian into two parts H = H; + Ha with

Hi(z,q) = siny(z,q) +cosT (10)
and

Hs(z,q,2) = e(y(z,q)sinz + z cos z). (11)

Let T1(7) and To(7) be the flows associated with Hy and Hs. Then the flow T'(7) is
approximated by

T(r) = Ta(r/2)T1 (1) Ta(7/2) + O(7%). (12)

As the maps T; and T are symplectic, so is their product. A fourth order approxi-
mation is given by

T(7) = To(ar)T1 (B7)T2(v7)T1(67)

xTo(y7)Ty (BT)Ta(at) + O(7°). (13)
with
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A sixth order integrator can also be easily constructed from the fourth order one
4]

It is important to note that the subscripts 1 and 2 in equations (12) and (13) may
be interchanged without affecting the order of the method. Since T» must be applied
twice, it is desirable that T3 be less computationally expensive than Ti. Secondly, the
estimate of the error term suggests that the approximation is better if H, is smaller
than H, [4].

We note that in general the use of a constant time step 7 for the flow T does not
give a constant step size ¢ for the flow S. Only in the case € = 0, is 7 proportional




to ¢. As can be seen from equation 3, there are points zg, yo, 2o such that there is
no step size 7 that results in a given step size (. This inability to use a step size
that is constant is important because it has been observed that many of the desirable
features of symplectic integration schemes are lost when a variable step size is used
(c.f. [6]). An intuitive reason for this effect is that when a constant step size is used,
one is solving a single approximate Hamiltonian system. While if a variable step size
is used, one is solving a different approximate Hamiltonain at each step.

2.1. Calculation of T;
We calculate the flow T by solving the system:

T = Ccosy (18)
Yy =sinz (19)
Z=siny + cos z, (20)

with initial conditions z(0) = zo, y(0) = yo, 2(0) = z. Following (3] (with a few
minor corrections) we note that 2 = const = v, so that z(t) = z; + vt. We introduce
new variables ¢; and ¢, with

hi=30+z-3) (21)
br=5-z-12) (22)

Then both ¢; and ¢ satisfy the differential equation

432 = k% — sin? 0. (23)

where

k=1/1-22/4. (24)

d¢

Separating variables in (23) gives

=k df, (25)
/1= 1/k2sin? ¢
which can be integrated to obtain
F($|1/k?) = £k(t — to) (26)

where F' is the elliptic integral of the first kind and t depends on the initial condi-
tions. Inverting (26) we have

sin (4(t)) = sn(k(t — to)|1/k?), (27)

or more conveniently,




sin¢(t) = k sn(£(t — to)|k?), (28)

since 0 <k <1.
So ¢, and ¢, are given by

sin (,’bl(t) =k sn(:t(t = fo})'kz), (29)
and

sin ¢o(t) = k sn(£(t — to2)|k2), (30)

where tp; and tgo are chosen to satisfy the initial conditions for ¢1 and ¢o. The choice
of sign in the definitions of ¢; and ¢ is given by the initial sign of ¢. We note that

s 1
¢ = 5(sin:c + cosy) = — cos ¢ sin Pa, (31)

. 1
b = E(sina: — cosy) = cos ¢ sin ¢. (32)
Because the solution we have found is valid for =5 < ¢12 < 5, if —¢2 >0 then
sin ¢y (£) = k sn((t — to1)|k?), (33)
and if ¢ >0

Sian)g(t) =k Sn((t = toz)lkz). (34)

Otherwise we take the negative sign.
Additionally, there is a relation between tp; and Zo2. A short calculation shows
that

COS (b1 COS ¢ = % (35)

This can be rewritten as
dn((t — to1)|k?) dn((t — to2)|K*) = V1 — k2, (36)
noting that dn(—u|k?) = dn(u|k?). Using the following identity for elliptic functions

VI = k2 = dn((t — to1)|k?) dn((t — to1 £ K)|k?) (37)

where K is the usual quarter period, implies that fo; and fo2 differ by the quarter
period K.

The solution can be extended to the entire plane using periodicity and parity
considerations. That is, we note that if ¢ is a solution then so are ¢ — 7 and ¢+ n2m.




2.2. An Approximation to T}

We can avoid the numerical cost of calculating T} by breaking H; itself into two
parts,

H =H" + H®, (38)

with H :El} =cosz and H {2) = siny and then calculating a symplectic approximation
to T} using (12) or (13). The flow associated with Tl(l) is

z(t) = zp + tcosy (39)
y(t) = yo. (40)
The flow T\ is
a:(t) =TIy (41)
y(t) = yo + tsinz. (42)

We continue to use the relation z(t) = zo + vt.

2.3. Calculation of T,

The calculation of the flow of Hs is trivial:

z(t) = o + etsinz (43)
y(t) = yo + et cos z (44)

and
2{t) =2 (45)

3. Numerical Tests

3.1. Implementation

The numerical implementation of the symplectic scheme described above requires the
numerical approximations of the elliptic integral of the first kind, F(¢|1/k?) and of
the Jacobi elliptic function sn(t|k%). We use the IMSL functions DELRF and DEJSN.
The function DEJSN calculates the Jacobi function. The function DELRF calculates
the function Rr given by

1 oo dt
):Efo JE+to)t+y)t+z)

RF(xayaz (46)




| | order | T | time |

h2 2 exact 12.34
h2r 2 exact 24.32
h2a 2 2nd order | 0.90
h2ar 2 2nd order | 1.13

h4 4 exact 36.57
har 4 exact 48.24
hda 4 4th order | 3.27
hédar 4 4th order | 3.89
rk4 4 - 2.08

hé 6 exact 109.89
hér 6 exact 120.21
h6a 6 6th order | 25.07
h6ar 6 6th order | 27.16

Table 1: Integration Subroutine Times

where z, y and z are positive. This function is related to the elliptic integral of the
first kind by

F(¢|1/k?) = singpRp (g, 7, 1), (47)

with ¢ = cos?¢ and r = 1 — 1/k? sin? ¢. To avoid r being negative due to round-off
errors, here we use

2(cos y + sinz)?

. 48
6 — 2cos? z 4 2cos?y — 4 cos T sin ()
Y

T =

3.2. Timing

We implement several symplectic integrators. In particular, we implement schemes
of order two, four, and six with both exact and approximate calculations of T;. The
r suffix means that we have reversed the subscripts 1 and 2 in equations (12) and
(13). Additionally we compare a fourth order Runge-Kutta scheme, rk4. The time
(in seconds) required for 100,000 time steps on an IBM RISC-60000, is shown in
Table 1. The large numerical cost associated with the elliptic functions and integrals
is clear.

3.3. Local Error

The quantity H satisfies the equation

dH
e e(siny + cos z)(z sin z + y cos z). (49)




We measure the local error of the scheme by comparing the numerical value of %
with its analytical one above. We use the relation

%(t) - %(H’(t _3At) — H(t + 3A8)) — %(H(t _2At) — H(t + 2A1)

+§-(H(t — At) — H(t + At)) + O(At7), (50)

and average over a time of length 10. Fig. 1 shows the local error for the second
order scheme. Of the second order schemes, h2ar is the most efficient with regard
to the local error. Fig. 2 shows the relative error of the fourth order schemes. The
most efficient of the fourth order schemes is rk4, and of the symplectic schemes h4ar.
The local error of the sixth order schemes is shown in Fig. 3. The cost in CPU time
versus the local error plotted in Fig. 6 shows that with respect to local error the rk4
scheme is the most efficient.

3.4. Long Time Behavior

Here we present two examples to show the stability of the symplectic methods. We
take e = 0.25, and (zo = 3.14,y9 = 2.77, zp = 0.0). The orbit beginning at this point
is contained in a stable region phase space. We follow the orbit for a time 1 x 10°
and examine the Poincaré section of the orbit in the zy plane (mod 27). In Fig.
4 we see that the h2ar scheme gives stable orbit for time steps as large as 7 = 0.5.
we note that Fig. 4 is typical of all the sympletic schemes. In Fig. 5 we see that for
large time steps the rk4 method fails completely. To judge the relative merits of the
schemes in a more quantitative manner, in Figure 7(a) we plot the quantity
|r; — riq]

=72

= 5H1
|ri + ;| (51)

where r; is final point of the orbit calculated using At = 27%, and in Figure 7(b)

|r — r|
Ir +r|’

where r, the converged value is (z, = 5.01523,y, = 4.88371z, = —63326.5054). The
quantity e; shows if the method is converging. For e; < 10~® round-off errors begin to
dominate. Because it uses fewer floating point operations, the rk4 method is slower
to be effected by round off errors than are the four order symplectic schemes. In
Fig 8 we see that the choice of the most economical method depends on the level of
accuracy desired. For low accuracy h2ar is best. For greater levels of accuracy h4ar
is better.

We calculate another example this time with (zo = 5.325,y9 = 4.7,z = 0.0).
Again we follow the orbit for a time 10°. In Fig. 9 we see that the h4ar scheme
produce stable orbits for time steps as large as At = 0.5. In Fig 10 we see that the
rk4 method gives a stable orbit only for At = 0.0625. Large time steps produce error
like those seen in Fig. 5 where the structure of Hamiltonian is lost as well error that
cause initially stable orbit to become enter the chaotic region of phase space. We

E; =2 (52)

9




plot the convergence and error at the endpoints in Fig. 11. In Fig 12 we see that for
sufficiently good accuracy rk4 is best, though for moderate accuracy hé4ar is more
efficient.

The study of orbits in the unstable region of phase space is considerably more
difficult. By definition, the Lyaponov exponents are positive and errors grow expo-
nentially. For times and time steps like those used above for the stable orbits, none
of the calculations converge. One would expect that many of the.good properties
of the symplectic schemes would also be found in the unstable case. For example,
one would expect that the sympletic methods to be less likely than the Runge-Kutta
methods to “drift” from the unstable region into the stable region. However, without
converged long time orbits, such comments are only speculation. Since many studies
are interested in statistical properties of the orbits rather then exact solutions, a
direction for future investigation would be to examine the statistical properties such
as diffusion coefficients, Poincaré recurence times and exit times for the approximate
solutions [7, 8].

4. Conclusions

Here we have constructed symplectic integrators for the ABC flow and have made
some preliminary test calculations. For moderate accuracy the second order sym-
plectic schemes are more efficient than fourth order Runge-Kutta. The symplectic
methods are stable even with very large time steps. We suspect that because of a
variable “time” step these symplectic schemes lack the usual benefits associated with
symplectic methods. It is not clear if it is possible to implement a method with
constant step size. The same methods could easily be applied to so called Q-flows

(1].
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Figure 1: Local error for second order symplectic schemes
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Figure 2: Local error for fourth order schemes
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Figure 3: Local error for sixth order symplectic schemes
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Figure 6: Cost in cpu time versus local error
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Figure 8: CPU time versus error at end points
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Figure 10: rk4 (a) At =0.5 (b) At =0.25 (c) At =0.125 (d) At = 0.0625
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Figure 12: CPU time versus error at end points
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