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Abstract

The relation between the Fourier transform (in the poloidal and toroidal coordi-
nates) of the ion current density and the electric field of a Vlasov plasma in a
tokamak is a matrix — the resistivity matrix — for which no approximated form ap-
propriate for analytical and numerical problems yet exists. Here an approximated
form is deduced by assuming that a Fourier component of the ion current is given,
and then solving for the electric field the first moment of the Vlasov equation. The

matrix elements thus obtained have a simple form suitable for the applications.




Introduction

The relation between the ion current density and the electric field of a Vlasov plasma in
a tokamak, although first derived long ago (Cattanei & Croci, 1976). and then rederived
many times, has not yet received the attention necessary to give it an approximated
form suitable for analytical and numerical problems. Usually, the Fourier transform
in the poloidal and toroidal coordinates of the fields are used; in this case the rela-
tion (sometimes called constitutive relation) is a matrix — the ion resistivity matrix —
that becomes tridiagonal when the ion thermal velocity wv; is zero. The elements of
the resistivity matrix are given in Cattanei & Murphy, 1991, as series of Bessel func-
tions whose indices and arguments depend on the parameters. The authors use it only
when a symmetry condition (the resonance surface w = £, where Q is the local ion
cyclotron frequency, goes through the plasma centre) allows a drastic approximation.
Otherwise the complexity of the representation makes it not very useful in practice,
also for numerical problems (cited paper and private communication). More usual is a
local approximation (see, for example, Brambilla & Kriicken, 1988), which avoids the
difficulties for the price of restricted validity.

Here an approximated form of the ion resistivity matrix is deduced by assuming that a
Fourier component of the ion current is given, and then solving for the electric field the
first moment of the Vlasov equation. In this procedure a function, G in the text, plays
an important role; partial results on the approximated form of G can be found in the
literature (Faulconer, 1987); however, they are not used to derive the elements of the
resistivity matrix. This paper generalizes the previous results by a different method; the
approximations, which cover all the range of the poloidal and toroidal wave numbers,
are then used to derive the resistivity matrix. Some insight into the range of validity
of the approximations and into the form of the current is reached by considering how
particles that are before or beyond the value of 6 for which their resonance condition
is fulfilled contribute to the current. The approximated matrix elements thus obtained

have a simple form suitable for both analytical and numerical problems.




1. Resistivity due to an elementary ion current

For our purposes only the contribution of the ions to f, need be considered since the

relation between electron current and electric field is well known; thus, in the expression

0
e ‘fMﬁ? / [vr(t’)Er(B(f’).f 1) + v, (1)E, (6('). +t')} dt' (1)

m is the ion mass; f,, is the Maxwellian velocity equilibrium distribution function.
The quantities in the integral of (1) are the projections of the vectors on the axes of
an orthogonal system. The toroidal plasma is approximated by a straight cylinder; it is
postulated that all quantities are periodic in z, with period 27 R. The toroidal effects
considered are those due to a magnetic field described by Q(f) = w + Qor/R(cos 6 —
cosb,), with w = Qe(1 — (r/R)cos 6,). The value of the magnetic field encountered
by an ion at a point (r,#) is approximated by the value at the gyrocentres: this should
be sufficient for the derivation of approximations of the resistivity. Moreover, when
r < R trapped or quasi—trapped particles can be neglected. Then for the gyrocentres
6(t') = 6 + (v:/qR)t'. Along the characteristics one has

v(t') = vz cos N(t') — vy sin N(t'), vy(t') = vz sin N(t') + vy cos N, (3)

l

where N(t') = fﬂ(z‘ )dit'. With s =vt'/qR, N is evaluated by expanding 6(s) for

s € 1. (a procedure equivalent to the assumption that the resistivity, although not
local, is independent of the value of the fields at a poloidal distance comparable to 7:
since for # = 1/ one has s = p/gR < 1, in the time interval considered the ions
gyrate many times). The result is (with a = gqr/p)

N(s) = (qR/ve)(QU8)s + (v:/20)Q (8)s")
= w(R/Qr)as + (cosf — cos b: Jas — sin @ (v, [ve)as® /2. (2)
Suppose that the elementary ion current
jpr sin(wt — pf — k:2), ._;'py cos(wt — pb — k)., (4)

is given; our problem is then to deduce from (1) an approximated form of the electric

field. Let us try with the ansatz
E.=(EY(9) + £7(0)) cos(-), Ey= (€7(8) — £€7(8)) sin() (5)

where €% is the coefficient of the electric field component that rotates as the ions. The

results for the complex representation of the electric field are given in the next section.
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With (3), (4) and (5) the integrand of (1) becomes (with the notations n, = p+ k.qR
and P = w(R/Q,r)as — (v /vy)n,s) :

[(8“' + &7 )(vzcos N —vysinN)cos P + (€Y — £7) (v, sin N + vy cos N) sin P] cos(-)+

- [(8++ E7)(—vzcos N +vysin N)sin P + (€Y — £7) (v, sin N + v, cos N) cos P] sin(-).
(6)

Hence the coefficients of cos(wt — p#) and of the sinus of the same argument are
vz (E1 cos(N—P) + £ cos(N+P)) — vy (€7 sin(N—P) + £ sin(N+P)),

v (ET sin(N—P) — £ sin(N+P)) + vy (€T cos(N—P) — £ cos(N+P)). (1)

With v =v,/v; and A = cosf — cosf, one has |

N+P=|A+(1t1DwR/QWr+(A's/2F (p+ kzqR)/a)v] as. (8)

After the obvious integrations over v, and v, the components of the ion current that

follow from (1) are (the remaining integration over v is not indicated)

0

jpesin() = %}2 / [£+ (6 + (v:/ve)s) (cos(N — P) cos(-) + sin(N — P) sin(-)) +
+£7 (6 + (ve/v)s) (cos(N + P) cos(-) — sin(N + P) sin(-))] ds,

ipycos(-) = %:%Z; /0 [£+ (6 + (vs/ve)s) (— sin(N — P) cos(-) + cos(N — P)sin(-)) —
—&7 (8 + (vs/v4)s) (sin(N + P) cos(-) + cos(N+P) sin(-))] ds. (9)

These equations are equivalent to (again without the integration signs):
e’ [~E~ sin(N+P) + E* sin(N = P)] = v,.Cipz,
™" [€7 cos(N+P) + E* cos(N —P)] < vCljpz,
e~V [-€ sin(N+P) — £* sin(N—P)] = v:Cjpy,
e~ [€™ cos(N+P) + €* cos(N = P)] < v,Cljpyl, (10)
where C = 167%/?/qR ‘-‘-’g;‘- Equations (10) can be written in the simpler form
e~V €X (8 + vs)sin(NFP) = (& jpr — jpy)0:C,
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i |Ei (6 4+ vs) cos(NFP)| < |(Jpz»Jpy)|v:C . (11)

An approximation for € is obtained (in the spirit of the initial expansion in powers of
s) by writing £(6+vs) = £(0)+vsE'(6). It is now appropriate to define the following

functions:
0

F= fexp (—ias —iaA'vs? [2)ds, (12)

where a is the part proportional to s in N £ P;

0
F
f vs sin(as + A'vs? [2)ds = _OFg ; (13)
on,
and finally G = [Fdv. The first of (11) then yields
0G : :
G €+t R E& = (L jpc — ipy)iC. (14)
on,

A form of G useful in the following is obtained by first integrating over v, leaving an

integration over s (upper sign for £7):

0
G =n'/? f e % exp (—( £ n, + ad's/2)’s [4) ds, (15)

where b= (A +2wR/Qor)a for €7, or b=aA for £t

The function G is particularly simple for £~ because it is (almost) independent of 6
for all n,; then (14) yields the result (already known to the lowest order in vy) :

G, = —(jpz + py)0iC- (16)

Approximations for G, are easily obtained from (15) by partial integrations (b is the
dominant parameter).

The function G for £t has the symmetry properties G(—A) = —-G,(A) and Gp(—A) =
Gp(A). Since far from 6, one has |G| > |8Gg/0n,|, but G/(6r) =0, one immediately

obtains for £ the approximation far from 6r

£+ (Jpz — Jpy)viC

: (17)
G,
and in the neighbourhood of @,
i W C
£+~ e dB (- 0r). (18)
rl O
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The discussion that follows is mainly based on known properties of the function F that

are now summarized. First, F 1is given by
—1
F==X2(), (19)

where Z is the plasma dispersion function and ¢ = a/2(iad'v/2)'/2.
When a? > 2a|A'v| one has

for (>0: Fri/a —adv/d®;

for ((<0: Fwifa—aA'v/d®+(2r'/2¢)/aexp(—(?);
when a? < 2a|A'v| one has

Fr~afaAv 4+ (7/2¢/a)exp (—(?). (20)
The easiest way to determine the sign of (; is to note that an exponential term appears
in the asymptotic form of F when ¢, < 0. This term arises when the integrand
of (12) has a point of stationary phase; since such a point is given by the condition
s = —a/aA'v, and since s <0, one finds that (, <0 when a/aA’v > 0. Equivalent
to this is the remark that @ = 0 determines the value of € for which a particle
is at resonance with the field (velocity and other parameters being given), and that
a/A'v > 0 characterizes the region after the resonance. By taking these results into

account, ¢ for €' can be conveniently written as

, n,v+ aA
(= (1-1(A'v/|4%]) W (21)
We are now in a position to discuss the contribution of a group of ions to the current,
without explicitly evaluating G. Consider the group of particles that meet the condition
|C] <1 (resonant particles), for definiteness with » > 0 and n, < 0; when the interval
(v1,v2) which defines this group is such that v; < 1 and (v —v;)21, the resonant
particles determine the current due to v > 0. For the ions moving toward 6, (i.e. those
with vA > 0), the equation (n,v+ aA)? = 2a|A'|v shows under what conditions the

resonant particles determine the ion current in the corresponding direction:
for n, =0 : v; =aA?/2|4'| and v; — co; hence only where aAd? < |A'|;
v =1 for n, =n; = ad — (2a|4'|)}/?; then v; = a?A%/n?, and therefore
only where aA? < |A4|.

for |n,A| > |A'| : v~ —ad/n; va— v = 2a(24]A4"))1/?/In,}/?; this is never
possible.

Hence, the resonant particles moving toward 6, determine the ion current in the corre-
sponding direction where aA? < |A'| (the resonance zone), if 0 < || < n;. The equa-

tion for the particles with |[(| <1 comingfrom 6, (vA <0) is (n,v+ad)? = 2a|A'|v;
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|¢| reaches its minimum 2n,A/|A'| for v = aA/n,. Hence it must be |n,| < |A'/24].
A discussion similar to the previous one yields the same result, namely that the particles
with |¢| <1 determine the ion current only in the resonance zone aA? < |A'| and if,
moreover, |n,|%(2alA’ [)1/2. The ion current is determined by the non-resonant ions
(|¢| > 1) either outside the resonance zone or, for |n,|2 (2a|A'|)}/2, in the resonant
zone.

The expression to be evaluated is

: 2 CZ(()
G=- gt T 292
: / ‘ aA+nv dv, (22)

-0

with ¢ given by (21). The previous discussion allows us to use the approximation for
|| < 1, where ad? <1, if |n] < (2A")}/2. Then (22) becomes

G g 771/2 /e*vﬁ 1 — 2’_.-4_".’_‘/!‘4_"14 d,U + /e_vg OtA. + nl v

2]aAlv|1/2 aAlv
(23)
rl/2 ,2 dv [y
_} ——
a!A’| v1/2 aA’ ¢ v
or
G~ 71/20(1/4) 7/7n, (24)

4(alA’])1/2 aA’
Thus the quantity needed in (18) is

0G,\ T .
ony )4y @A’ 29)

which is proportional to v and independent of n,.
The approximation for G in the resonance zone for n, > (22A")'/2, and outside the
resonance zone for every n,, is obtained with the asymptotic approximation for the
function Z, integrated over the appropriate interval of v, defined as follows: let (for
definiteness) A’ < 0; then (; <0 in the intervals

when n, > 0: outside (—aA/n,,0), or (0, —aA/n,);

when n, < 0: inside (—ad/n,, 0), or (0, —ad/n,).
Since the term —1/( in the expansion of Z is present for both signs of (, the

approximation is (with obvious symbols)

‘171/2 6—1'2 5 = 6—1'2
~ —1 ) — j el — dv 2
G =~ TCTUNE ][ 172 (1 —iv/|v|)exp(—C°)dv —1 / o dv . (26)




Clearly the last term in (26) is —i(7!/?/n,)Z(aA/n,). Outside the resonance zone
the first term (which is due to the ions that have already passed the resonance) is
exponentially small. Where «A4? < 1 the integration interval for n, < 0 disappears,

whereas for n, > 0 all particles contribute. Then the first term becomes

(1417) Ooe—’“'?
(22412 [ p1/2
0

exp (in,*v/2aA’)dv + c.c. = 27/n,. (27)

The quantity needed in (18) is now

oG 37 :

(32) =35 nmif na <o), (28)
which is independent of wv;.

The results deduced up to now generalize those obtainable from (15) and partly given

in Faulconer, 1987; the expression

9Gg _ (25)
ony, ) aeo aA'’

immediately follows when |n,| < 1, whereas the corresponding result (24) was deduced
under more general conditions. An approximation valid when |n,| is sufficiently large
is obtained by taking into account that the second exponential function in (15) has two
maxima: in s =0 and in s = —2n,/aA’' (the last one only if 0 < 2n,/ad’ <1
because of the initial hypothesis on s). They result from the equality of the reciprocal
phases of ions and electric field at the times ¢’ =t and t' =t — 2n,/aA’. Since
the minimum of the exponential function between the two maxima (when they exist) is
exp (n,*/16a?A"), the two maxima are well separated if n,? 2 4a|A'|. The integral can

then be evaluated as follows (the second integral appearing only if 0 < 2n,/aA’ < 1):

0 oo
G ~ 7!/? / et 4% exp (—n,2s?/4) ds + xl/2 /e_iaA’ exp (—=n,%(s — 2n,/aA’)? /4) ds
—C0 —0o0
: 12
— _2‘]‘{'1/ Z(QA/RH) + 2_7'{ 6_2£n|\A/A, 6_0‘2A2/"|!2 .
ny y

(30)
The first term in (30) can be obtained directly from (15) for A’ = 0, i.e. if the resistiv-
ity is considered as a local quantity. Again, (30) is in accord with (26) and (27), which

were derived under more general conditions.
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ERRATA

: instead of the equation number (25) read (29)

: equation (33) should read

SUy gisor

i
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2
2

3ad/

: the second line of equation (34) should read

isvy 'S0 2isv, e"i%0

METE (aGﬂ/anii)G, " 3272 (BGR/an")_er

(34)



2. Fourier components

The complex representation of the field is obtained by noting that the addition of 7/2
to the phase of the circular functions in (4) does not change & (9) An appropriate
linear combination of the solutions obtained in this way yields the following form of the

clectric field due to the ion current: jT(8) = Zj;"exp (i(wt — pf — k.z)) (with the

P
substitution ij,r for jpr in order to have a neater representation):
EX = 26T exp (i(wt — pf — k.2)) .

Here £T is given by the equations obtained before with the substitutions 1 _j‘+ for

(Jpz — Jpy)s and Up for —(jpz + Jpy)-
The Fourier components of £t can be evaluated as the sum of two parts:

1) The contribution of (17); for |n,| < a|A| from (26) one has

g;: it '7( 136
_ _ ~—0> F e Adf, 31
(Jpz — Ipw)C wl/2 (31)

where the integration :nterval does not include the resonance zones ¢ =~ * 6,. When the

integral is extended to (0,27) (as required when vy = 0), the result of the integration
is temperature independent (as it must be) because it is proportional to avy; it contains

the terms s = 0, =1 only. The correction to be subtracted is (when s < a!/? and
for 8 ~6,)

8-+¢€

22 e'*?(cos 6 — cosb,)df — —9% ¢?sin 6, €% — %t gt (32)

2
6,.—e¢
For |s| > a!/? it decreases as avi/s.
2) The contribution due to the effective value of the electric field in the resonance zone,
given by (18); that is, for [s| < a!/? and for 6 = 6,

vy 6336,

0:(('3(?3/6?11',”)(gr

(33)

This contribution is proportional to v¢ when n,? < 2a|A'|; otherwise, with (28) it is
proportional to v} and larger than the correction deduced in 1).
These results together with the contribution of —#, yield the required ion resistivity

matrix
27!'1/2

; 1 1
g; ~ (]pz ]py) |:_ cos 91‘ 53 + _2'53-1 + 558+1+

vy eisﬂr % vy e—isB,— (34)
Q'(aGR/ann ) 6, a(aGﬁ/anll) —8,

= (Jpz — jpy)Pps )




where 07 = wy;/4m(w + Qo) & w};/87w. It is important to note that the matrix p
has an imaginary part because the value of the derivative of G, with respect to n,

depends on the sign of 6., through A'. In conclusion, the Fourier components of
E*(6) (divided by exp (iwt — ik,z)) are

E:. = 28;:3—;3 = iEJ-;Pp,s—p : (35)
p p
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