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Abstract

The stability theory of difference schemes is mostly a linear theory.
To understand the behavior of difference schemes on nonlinear dif-
ferential equations, it seems desirable to extend the stability theory
into a nonlinear theory. As a step in that direction, we investigate
the stability properties of Euler-related integration algorithms by
checking how they preserve and violate the dynamical structure of
the logistic differential equation.

We find that partially implicit rational schemes are superior to
explicit schemes when they are stable and the blow-up time has not
passed. When such a rational scheme turns unstable, however, it has
much less desirable properties than explicit schemes.

As a side product of these investigations, we found a map with
two branches of stable fixed points. Both of them lose stability to a
Feigenbaum sequence of period doubling bifurcations and chaotic
trajectories independently of each other. To our knowledge, this is
the first such example.




1 Introduction and summary of results

Textbooks on the numerical treatment of initial value problems formulate conditions under
which the solutions of initial value problems can be approximated arbitrarily well by
solutions of difference equations. Also well-known, however, are conditions under which
the approximation of continuous dynamical systems by discrete dynamical systems is
quite poor. Two examples:

1) Explicit difference schemes can produce spurious solutions [9] and have a tendency to

go unstable, i.e. the discrete analog of a stable stationary state of
i=f(Au), XER, wu=u(0)e R (1)

is stable only for “sufficiently small” h < hg. For h > h,. the discrete trajectory can
be chaotic, though the underlying differential equation does not have chaotic solutions
- ([16. 11, 8] and section 4).

2) Implicit difference schemes are known to have better stability properties. But they can
produce non-chaotic discrete images of chaotic solutions of differential equations. This

was shown for the backward Euler scheme on the Rossler system [3].

The stability theory of difference schemes is mostly a linear theory, i.e. the stability

properties of difference schemes are mostly investigated on linear model problems

U= pu, peC, ul0)=u€C. (:

o
—

In many applications. the principle of linearized stability is valid both for stationary states

of (1) and for fixed points of the discrete analog
Ynt+1 = g(’\:yn)a A € IR'. yU = lRN : (3)

of (1) for almost all values of the parameter A (see sections 2 and 3 for more details).
Most stationary states thus have neighborhoods where the stability analysis of a linear
svstem provides the correct answer. If eq. (1) has only a finite number of stationary
states for fixed A, there is often a common neighborhood of all stationary states in which

local linearization is adequate (see [1] and section 3).

In recent years, there have been quite a number of investigations heading towards a

nonlinear stability theory, [1, 10, 16, 6, 17, 11, and the references therein]. Nevertheless,

o




it seems that not only have answers to be found for a satisfactory nonlinear theory, but

also new questions have to be formulated.

In this paper, we take a close look at some very simple model problems and pursue
the following questions:

e Given a dynamical system (1) with several stationary states. what can be said about

the fixed points of corresponding discrete systems?

e How large are their neighborhoods in which linearization is adequate?

How do the domains of attraction compare for the continuous and discrete problems?

¢ What exactly happens when difference schemes go unstable?

We investigate these questions on several variants of Euler's method for the logistic dif-
ferential equation

u = Au(l —u), u(0) = ug, (4)

which has two stationary states: a stable one and an unstable one. All trajectories are
monotonic, some are blow-up solutions (section 2). The stability of both stationary states
changes when the parameter A changes sign. Only for A = 0 does the principle of linearized

stability not apply to this differential equation.
The difference schemes investigated are:
(a) the explicit forward Euler scheme,

(b) the explicit midpoint Euler scheme, and

(c) two partially implicit rational Euler schemes which are adjoint to each other.

We only consider the fixed-step-length case. It is less favorable than the case with step-size

control since step-size control has a stabilizing effect (17, p. 253f].

Briefly. the results are:

(a) With the forward Euler scheme. the discrete analog of the unstable stationary

state is an unstable fixed point for all Ah. The discrete analog of the stable




(b)

stationary state is a stable fixed point for —2 < Ah < 2. For A > 0, it turns
unstable in a flip bifurcation at Ah = 2. This flip bifurcation is the beginning
of a Feigenbaum cascade of period-doubling bifurcations [19, 11, 8]. Already
for Ah > 1 the discrete scheme is a very poor model: there is no neighborhood
of the stable fixed point with correct dynamic behavior. For 0 < Ah < 1
such a neighborhood exists, i.e. it depends on the inital value yo whether the
dynamic behavior of the discrete solution is qualitatively correct (Fig. 1 and
section 4). It should be noted that the curves separating the different regimes
for the initial values y, are either branches of fixed points or closely related to
the branches of spurious fixed points for the midpoint Euler scheme (section

5).

With the midpoint Euler scheme, the discrete analog of the unstable station-
ary state is an unstable fixed point for all Ah. The discrete analog of the
stable stationary state has a neighborhood with correct dynamic hehavior for
—92 <« Mh < 2. With X > 0, it loses its stability for Ah = 2 through an exchange
of stability with an unstable spurious fixed point. There is another spurious
branch of stable fixed points. Both branches of spurious fixed points lose sta-
bility to a Feigenbaum cascade of period-doubling bifurcations. independently
of each other. To our knowledge, this is the first such example (Fig. 2).

This time, the difference equation is a good model up to Ak = 2, but only in a
small domain Q owing to the spurious fixed points. As a consequence of Beyn'’s
theorem [1], both spurious fixed points become unbounded for Ah — 0 (Figs.

2-6 and section 5).

The rational Euler scheme (27) is globally stable for Ah < 1, i.e. it gives the
correct dynamic behavior for all initial values y, € IR for which the blow-up
time associated to y, has not passed: the discrete analog of the stable stationary
state is stable, the discrete analog of the unstable stationary state is unstable.
and the scheme provides the correct blow-up behavior.

Though the scheme has most desirable properties for Ak < 1, it has most
undesirable properties for Ak > 2: Both fixed points change their stability for

M = 2. blow-up is disguised. and the spuriously stable fixed point is globally




attractive. The dynamics of the scheme is thus completely wrong for Ah > 2,
but ‘looks perfectly alright’ if blow-up solutions are not expected (section 6).

That the dynamics is wrong is much harder to detect for this scheme on a ‘real
life problem’ than for the other two schemes investigated here: in the other two
cases. the stable spurious solutions are h-dependent and can thus be revealed
by two computations with the same scheme and different h. In this case here,

a different scheme should be used for confirmation.

A comparison of the three schemes shows:

With the two explicit schemes, the discrete analog of an unstable stationary state is an
unstable fixed point for all Ah. The discrete analog of a stable stationary state is stable
only for a limited range of Ah-values. ‘Stability of the scheme’ is thus a local property
that can differ from fixed point to fixed point at the same Mh-value. It has to be verified
in the neighborhood of each fixed point separately.

Only in the limit A — 0 (X fixed) is the domain of attraction of the stable fixed point iden-
tical with the domain of attraction of the approximated stable stationary state. Explicit

schemes cannot model blow-up.

With the partially implicit schemes, the discrete analog both of the unstable and of
the stable stationary state show the correct stability behavior for the same limited range
of Mh-values, and change stability simultaneously. ‘Stability of the scheme’is thus a global
property.

In the whole Mh-range of stability of the scheme, the domain of attraction of the stable
fixed point is identical with the domain of attraction of the stable stationary state, as

long as the blow-up time has not passed.

Also in their way of going unstable the investigated explicit and implicit schemes
differ substantially: With the explicit schemes. the branches of (proper or spurious) stable
fixed points eventually undergo a Feigenbaum sequence of period doubling bifurcations
and become chaotic lateron. The partially implicit scheme does not feature such period
doubling bifurcations or chaotic trajectories on our model problem. This was ‘shown by
extensive tests” by Twizell et al. [19]. We proveitin section 6 by determining the domains

of attraction for all fixed points and for all parameter values with help of inequalities.
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It remains to check how these partially implicit schemes act on differential systems
with chaotic trajectories: Do they alwayvs reproduce chaotic trajectories faithfully, or
can thev suppress chaos, as the backward Euler scheme sometimes does? We conjecture
that they will reproduce chaos correctly for all systems with quadratic nonlinearity (this
includes the Lorenz equations and the Rossler system). An answer to this question is

bevond the scope of this paper. Further investigations are under progress.

In the next two sections, we recall basic definitions and facts. Some of them have
alreadv been used in this introduction. In the other three sections, we treat the three

examples in detail.

2 Continuous dynamical systems

In this section we consider continuous dvnamical systems and recall basic definitions and

facts used in later sections. Consider
i = f(u), u(0)=u€ R, (5)

f continuously differentiable. For such fs eq. (5) has a unique solution u(t;u,) which
exists in some maximum interval (0, T (uo)).

@ is a stationary state of (5) iff* f(z) =0 forallt > 0.

e

£

is a stable stationary state of (5) iff for any given ¢ > 0 there exists a ¢ > 0 such that
u(t;ug) € Ue(@) for all up € Us(%) and all ¢ > 0.
Uu(@) = {u € BY :u—1| < p}.

@ is an asymptotically stable stationary state of (3) iff @ is stable and
Ilim lu(t:up) — | =0 forall wup€ Us(a) for some § > 0.

i is a hyperbolic stationary state of (3) iff Re p # 0 for all eigenvalues p of the Jacobian
f'(@).
For hyperbolic stationary states a Principle of Linearized Stability is valid:

Let @ be a hyperbolic stationary state of (3) w = f(u). Then there are neighborhoods U ()

Lff" means ‘if and only if’




and V(0) such that the dynamics of = f(u) in U(w) and of © = f'(@w)v in V(0) are
equivalent, i.e. there is @ homeomorphism between U(w) and V(0) which preserves the

sense of orbits and can also be chosen to preserve parametrization by time.

For more details see Guckenheimer/Holmes. where this is called the Theorem of

Hartman-Grobman [5. p. 13].

If @ is a hyperbolic stationary state,
it is thus asymptotically stable if Rep; <0 for all eigenvalues p; of f'(@), 1=1....,V;
it is unstable if one pu;, satisfies Re pi, > 0.
If @ is a non-hyperbolic stationary state, it might be a bifurcation point (stationary-
stationary or stationary-periodic (Hopf bifurcation)). In this case a nonlinear analysis is
necessary to decide on the stability of u and on the dynamics of (3) in a neighborhood of

u.

Example: The logistic differential equation

1 = Au(l — u), u(0) = uo (6)
has the solution
u, e )
u(t) 1+ u(eM—1) (7)
Ug

(1 — e+ U,

It has two stationary states forall \: a=0and u = 1.

The principle of linearized stabriiity reveals that

@ = 0 is asymptotically stable for A < 0 and unstable for A > 0,

7 = 1 is unstable for A < 0 and asymptotically stable for A>0.

For A = 0. every constant is a stationary state. They all are non-hyperbolic.

For A < 0.

all ug < 1 lie in the basin of attraction of & = 0 and convergence is monotonic;

all up > 1 lead to trajectories that grow unboundedly in finite time, i.e. to blow-up
solutions. The blow-up time is

g—l 1/A
T:—l—}\-ln g :1n(u ) > 0. (8)

- g1

(98]




. 0

For A > 0,
all ug > 0 lie in the basin of attraction of & = 1 and convergence is monotonic;

all up < 0 lead to trajectories that tend to —=c in finite time T. The blow-up time is

1 - e 1/)
T:Xm” 1:111(“' ) > 0.

U, U,

—
w

The logistic differential equation (and its name) were introduced by Verhulst in 1338 to
model the growth of populations in environments with limited resources. Under certain
conditions (no major wars, no epidemies (the plague) or other catastrophes inside the
country), it is indeed a very good model. See for instance [3, p. 103], where the values
computed for the US population by Pearl and Read in 1920 are compared with census

data for the yvears 1790 to 1950.

3 Discrete dynamical systems

In this section we consider discrete dvnamical systems and recall basic definitions and

facts used in later sections. Consider
Yns1 = 9(Yn), v € RY, (10)

with continuously differentiable g. Such difference equations are uniquely solvable.
7 is a fized point of (10) iff g(7) = ¥

7 is a periodic point with period m of (10) iff § = g™(¥)-

7 is a stable fixed point of (10) iff for any given = > 0 there exists a § > 0 such that

g™ (yo) € U(y) for all yo € Us(7) and all n 2 0.
7 is an asymptotically stable fized point of (10) iff § is a stable fixed point of (10), and

,}LIE, lg"(vo) — 7l =0 forall yo€ Us(y) for some § > 0.

7 is an (asymptotically) stable periodic point of (10) with period m iff §, g(§)..., g™~ (¥)
are (asymptotically) stable fixed points of Yot = ™(tn )

7 is a hyperbolic fixed point of (10) iff |u] 2 1 for all eigenvalues  of the Jacobian a(g)-

Bv the implicit function theorem. hyvperbolic fixed points 7 have a neighborhood U(g)

in which g—id is invertible. If the local inverse is differentiable. it is a diffeomorphism. For
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hyperbolic fixed points and sufficiently smooth g a Principle of Linearized Stability
is valid:

Let §j be a hyperbolic fized point of (10) yn+1 = g(yn) and let g be a diffeomorphism. Then
there are neighborhoods U(§) and V (0) such that the dynamics of yns1 = g(yn) 10 U(y)

and of vnsy = ¢'(F)vn in V(0) are equivalent.

For more details see Guckenheimer/Holmes, where this is called the Theorem of

Hartman-Grobman [3, p. 18].

If 7 is hyperbolic, it is thus asymptotically stable if the spectral radius p of the Jacobian
¢'(7) satisfies p(¢'(2)) < 1: it is unstable if p(g'(7)) > 1.
If § is non-hyperbolic. it might be a bifurcation point (fixed point — fixed point or fixed
point — periodic point (flip bifurcation)). In this case, a nonlinear analysis Is necessary to

decide on the dynamics in a neighborhood of .

Example: The logistic difference equation

Uns1 = 1Yn(1=¥n), w0 €100,1], 0<p<4 (11)

For u € [0,4], all iterates lie in the interval {0, 1] if yo does.

v, = 0 is a fixed point for all x> 0. It is the only fixed point in [0,1] for 0 < # < 1 and
is asymptotically stable for 0 < p < 1. It is unstable for p > 1 =: a;.

For g = 1 there is a bifurcation with exchange of stability. A second branch of fixed
points, va(u), appears in the interval 0,1] : wvalp) = “L‘;l € [0,1] for p = 1. vap) 1s
unstable for x4 < 1 and asymptotically stable for 1 < g < 3. For 1 < pu < 2 convergence
to v, is monotonic, for 2 < p < 3 =: a, it is a damped oscillation.

In g = 3 this branch of fixed points loses stability in a flip bifurcation:

for3 <u< 1+1/6 =: a3 there is an asymptotically stable 2-cycle v3 = gu(ve), va = gu(va).
For p = a3 there is another flip bifurcation to a 4-cycle. This 4-cycle is asymptotically
stable for as < p < a4, etc.

The sequence of period-doubling bifurcations accumulates in a, & 3.5699... with an

aperiodic solution.
lim 22— 5~ 4.669... (12)

=P Gt — On

is the Feigenbaum constant.




For it > a., periods other than powers of 2 are possible: first even periods, then also odd
periods. For y =1+ /8 period 3 occurs. For g > 1+ /8 all periods m are possible, and
the iterates are chaotic in the sense of Li and Yorke [13, 5]. For u > 4. part of the iterates

leave the interval [0, 1] and converge to —zc.

4 Forward Euler scheme

We discretize (6) 1 = Au(l —u). u(0) = uo by Euler’s method with fixed time step A

and get

n+ = n Ah ntl—Yn

Ynt1 Yn+tAhya (1-y )‘ (13)
= Fia(yn)y  yo =u(0).

The fixed points  of (13) satisfy Ahg(l —7) =0 and are thusg=ua=0and y=u=1

for all Ah. The Jacobian is

Fi(ys) = 1+ Ak — 2\hy,. (14)

Let A = 1 for the following analysis. Analysis for arbitrary A > 0 only requires a rescaling

of h. Analysis for A < 0 is also similar, but 7 and § then exchange their roles.

We get F/(0) =1+ h > 1. Thus § = 0 is unstable for all h, as is & = 0.
Because @ = 0 is unstable, it has a neighborhood where trajectories sensitively depend on
the initial value u(0) = ug: If 0 < up < 1, then lim;, u(t;ug) = 1 and lim;—co u(t; —up) =
—oc, no matter how small |ug] is.
7 = 0 has a neighborhood with the same sensitive dependence on the initial value. Because
the two problems behave qualitatively in the same way, there is a neighborhood of 0 in
which rounding errors can produce completely wrong trajectories. This is another example

of “inherent instability of difference schemes™ .

We get F/(1) = 1 — h. Thus we get |[F;(1)] < 1for 0 <h <2 and @ = 1 is stable for
0<h<2
1) For 0 < h < 1 we get 0 < F3(1) <1.
If y, < 0. the iterates tend monotonically to —oc forn —  oo. Though the contin-

uous solution exists only for t < T as given by (9). the discrete iterates exist for all
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Fig. 1. Mapping properties of forward Euler in the (yn, Ah) plane:

Figure la shows to where y, is mapped after one iteration. The limiting curves are
Un=0; Yo =1i Yo =35 ¥n =1+ 35-

Figure 1b shows to where it is mapped after two iterations. The additional borders are
given by yn = o5 (1+ M /(=1 +M)(3 + Ah)).

¢t = n h, n— oo. This was already noticed by Dahlquist not later than 1959 [16].

If 0 < yo < 1, all trajectories {Yn }nenv grow monotonically to y =1 and thus behave
qualitatively correctly.

If yo > 1, some iterates “overshoot”and the trajectories tend to —oo for n — oo [7]. This
is the case for all (yo,h) values above the curve y, = 1 + . Or they enter the region
0 < y < 1 and continue monotonically. This is the case for all (y,,h) values satisfying
s 14 % But y, = 1 does have a neighborhood in which the discrete trajectories
tend monotonically to ¥ = 1 and thus behave qualitatively similarly to the continuous
trajectories (see Fig. 1). 7

2) For 1 < h <2 weget —1 < Fi(1) <0, and the iterates oscillate in all neighborhoods
of § = 1. Hence § = 1 does not have a neighborhood where trajectories behave qualita-
tivelv correctly. But they still converge to the correct limit for certain initial values. The
dependence of the limit on the initial value yo is illustrated in Fig. 1. The curves were

computed using Mathematica [12].




3) For h = 2 there is a flip bifurcation to the 2-cycle

h+24

+VRT =4
2h

UYsg =

€ RR. (15)

which is stable for 2 < A < /6. What happens for larger h can best be seen from the
map [19]

h
Un = ﬁ_h Yn, (16)
which is a homeomorphism for A > 0 and maps
Ynt1 = Yn + hya(l — yn) (17)
to
Un41 = (1 + h)vn(l — va), (18)

i.e. to the logistic map (11) with g = 1 4 h. The numerical parameter h can thus
produce all the peculiar behavior which is known for the logistic map, and which was
briefly described in section 3. For h > /8 we get chaotic trajectories. A Feigenbaum

diagram of (17) is shown in [11, Fig. 3].

Note that the homeomorphism (16) must break down for A = 0: the fixed points 0
and 1 of (17) are different from each other for all &, but the fixed points 0 and —I-_II‘-_F of (18)

meet in a bifurcation point for h = 0.

5 Midpoint Euler scheme

For smooth one-step methods Beyn proved the following

Theorem [1]: Let Q C RY be compact and assume that

0= f(u), u(0)=uo€R" (19)
has finitely many stationary solutions vi, 1 =1,..., K in the interior of Q, and that all v;
are reqular, i.e. f'(v;) is invertible fori=1,...,K. Let & be a smooth one-step method

of order p > 1. Then there exists an ho > 0 such that the discrete system

Yns1 = 0(h.yn). (20)

12

-




h < hg, has e;cact!'y K fized points vi(h), 1=1...., I in Q, and these satisfy

vi(h) = vi + O(R?), ge= 1y cony K. (21)

Moreover, if Rep > 0 for some eigenvalue p of f'(vi), then vi(h) is an unstable fized

point of (20); and if Re p < 0 for all eigenvalues p of f'(v:) then it is an asymptotically
stable fized point.

For Runge-Kutta schemes, (21) is too pessimistic: Runge-hutta schemes exactly re-

produce all stationary states of the differential equation (i.e. vi(h) = v;) [1, 9]. but they

often add some spurious fixed points. Bifurcation points between branches of proper fixed

points and branches of spurious fixed points are characterized by Iserles et al. [9].
We shall apply these results to the scheme
Ikl = f(yﬂ)v

k') = f(yn+

Ynt1 = Yn + hk2

o
il
—
—_—
8]
(8]
S

for equation (6). It is a Runge-Kutta scheme sometimes called ‘midpoint Euler scheme’
[8] since it is derived by using the midpoint rule (or first Gauss formula) for integration

(6, Chap. IL (1.4)]

Another formulation of (22) is

h
Ynt1 = Ynt hf(yn + ;):f(yn)) (23)
=: Fu(yn)-

Since f(u) = Au(l —u)isa polynomial of 2nd order, Fi(y) is a polynomial of 4th order.
The equation Fia(y) —¥ = 0 thus always has four complex solutions. These turn out to

be real for all h. They are [12]

‘ 1, - 1 2 24
';\T_L': ¥ T E (-‘ )

0,
The spurious fixed points -f—h, 1+ % converge to the proper fixed points 0, 1 for h — oc.
For h — 0. both of them become unbounded. Note the connection between these spurious
fixed points and the spurious curves governing the convergence for forward Euler (Fig.

la): the factor 2 is due to the factor % in the middle line of (22).
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Fig. 2. Feigenbaum diagram for midpoint Euler in the (y,h)-plane, A = 1. The 200th
to 700th iterates are shown. The lower part of this figure is already given in [11, Fig. 4].
The upper part is missing there.

Applying the principle of linearized stability in the case A =1 gives:
7 =.0 is unstable for all A.
7 = 1 is stable for 0 < h < 2, and convergence is monotonic for Q) = 9, = % 7y loses its
stability to g3 = 2. This happens in a bifurcation point [11]: the two stationary states
g(h) =1 and gs(h) =% meet for A = 2 and exchange stabilfty there.
§s = % is stable for 2 < h <1+ V5 2 3.24 and loses stability to a Feigenbaum cascade
of period-doubling bifurcations.
gy =1+ % is stable for 0 < h < =1 + V3 =~ 1.24 and loses stability to a Feigenbaum

cascade of period-doubling bifurcations.

This example demonstrates how closely related are the size of the compact domain {2
and the step size ho in Beyn's theorem: if we choose = [—w,1 + g], then ho < 3. in

order to exclude the spurious unstable fixed point 73(h) = 2. Thus for small ¢ > 0. ho is

e

nearly given by the stability limit of the method. If we choose @ = [—w. 3]. then hg <

Figure 2 shows the stable fixed points of (22) with f(y) = y(1 —y), and their transition to
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Fig. 3. Midpoint Euler, A =1, h =038.
For y, = 2.4 < 2/h = 2.5 the trajectory converges to the proper fixed point y = 1.
For y, = 2.6 > 2/h it converges to the spurious stable fixed point §3 = 1 +2/h = 3.5.

chaos. The lower part of this figure was already given in [11, Fig. 4]. Iserles has already
pointed out very clearly that spurious fixed points are unwelcome. It requires at least
two runs with different h to detect their h-dependence and thus the fact that they are
spurious.

Figures 3 — 6 comment on Fig. 2. They show: in practical computations it depends on

the initial value, by which state the trajectories are attracted.

6 Rational Euler schemes

In the numerical treatment of systems of partial differential equations, it is common prac-
tice to solve initial boundary value problems for t — oo in search of steady-states. These
indirect methods need less storage but much more computing time than methods which
solve the steady state equations directly. Reasonable spatial discretization of spatially

3-dimensional problems is very often only feasible by time-dependent methods. It is thus
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Fig. 4. Midpoint Euler, A\ =1, h=15>v5 -1~ 1.24:
For y, = 1.3 < 2/h = 4/3, the trajectory converges to the proper solution y = 1.
For y, = 1.4 > 2/h, it converges to the stable spurious solution of period 4.
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Fig. 5. Midpoint Euler. A =1, h=1.9:
For y, = 1.4 > 2/h. the iterates first wander in the chaotic regime of the spurious stable

branch. then thev enter the basin of attraction of y = 1.
For y, = 0.9. they converge monotonically to y = 1.
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Fig. 6. Midpoint Euler, \ = 1. h = 2.5: For both initial values y, = 0.5 and y, = 1.4
the trajectory converges to the stable spurious solution ¥ = 0.8.

desirable to compute with the largest possible temporal step size h. The stability of the
method is the most severe bound on h. Also in the numerical modeling of magneto-
hvdrodynamic turbulence it is desirable to compute with step sizes as large as possible.
In this case, the step size Is limited by two considerations: the step size must be short
enough to model the phenomena of interest accurately, and the scheme must be stable. A
big advantage of implicit methods is that they usually allow much larger step sizes than

explicit methods without going unstable.

From our point of view, using the fully implicit backward Euler scheme does not make

sense for the model problem (6): The equation
Ynt1 = Yn t Ayns1(l — Yns1)

has two real (or two complex) solutions Yn+1 for any given Yn. Therefore each time step
would require a decision which one of the two possible Yn4+1-values should be chosen. We
think that su.ch a multiply solvable discrete initial value problem is not an acceptable
discrete model! of a uniquely solvable continuous initial value problem.

The Réssler svstem treated by Corless et al. [3] by the backward Euler scheme does

contain quadratic terms and it is likely that the nonlinear discrete equations do have
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more than one solution in most time steps for most initial values in the parameter range
in which chaos occurs. The authors used Newton's method and continuation in A as their
strategy for picking the values in the n + Ist time step. It might have been this strategy

that suppressed chaos.

Another reason why fully implicit methods are not very practical is the following: If the
amount of work needed for solving the nonlinear system in each time step is so large that
the whole computation with the implicit scheme is as time-consuming as computations
with an explicit scheme of same accuracy with smaller time steps, it might not be worth
the effort. Hence partially implicit schemes are used a lot in the numerical solution
of systems of ordinary differential equations derived from systems of partial differential

equations [2, 4].

For our model problem (6), Twizell et. al. [18] introduced and analyzed the partially

implicit schemes

Yns1 = Yn + AYnp1(1 — yn) (25)
and

Yns1 = Yn + AYn(l = Yns1)- (26)

Both can be transformed into rational schemes

Un .
= == g (00 2
Yntt = T aR(I =gy = Wi AR (27)

and
_ (1 +AMh)ys
Ynt+1 = 1 —/‘\h(l _yn)

They are related to.each other in an obvious way: each of them treats one of the two

=: g1(yn; AR). (28)

stationary states implicitly, the other one explicitly. They are adjoint to each other in
the sense of Definition 8.2 of [6, Chap. II]: the map h — —h; Yni1 = Yn; Yn — Yns

replaces scheme (25) by scheme (26), and scheme (26) by scheme (25).

A substantial part of the analysis by Twizell et al. was done by “extensive tests carried
out in [18] for many values of Ak and y,"[19, p. 514]. Also, their way of considering
vanishing or sign-changing denominators was not adequate [14]. We thus fully describe

here the stability properties of schemes (27) and (28).
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As was shown in [14], the difference equation (27) has the solution

Yo
n = A 2
U = T AR (1= v) + Vs =)
and the difference equation (28) has the solution
o = e A0 10 (30)
Un = T (A + M) = 1) ?

Both (29) and (30) are approximations to (7), with e replaced by the first two terms of
their Taylor expansion. 1 = Mh is a qualitatively correct approximation to e=\" for those
\h for which 1Ak > 0, i.e. for +\h > —1. From linear stability theory and formulas (29)
and (30) it could thus be expected that scheme (27) converges monotonically for Ak < 1.
converges oscillatorily for 1 < Ah < 2, and is unstable for Ah > 2 (analogously for scheme
(28)). As was explained earlier, equation (6) has several different types of trajectories for
cach A. The performance of the scheme should hence be considered separately for each

type of trajectory.

We look at scheme (27) and give a review of all findings first.
For A <0, 1=0is stable for all h, and § =1 is unstable for all h. Trajectories with
initial value y, < 1 behave qualitatively correctly for all A. Trajectories with initial value
y, > 1 behave qualitatively correctly as long as the blow-up time T has not passed, l.e.

as long as
N

=1
tN::Znh<T=1ny . (31)

n=1 a

For A>0and Mh <2, §=01Is unstable and § = 1 is stable. Trajectories with arbitrary
initial value y, behave qualitatively correctly for Ah < 1 (as long as the blow-up time
has not passed in the blow-up case). For 1 < Ah < 2, convergence to the correct limit is
oscillatory. For Ah > 2, both fixed points have the wrong stability, blow-up is disguised.
and the spuriously stable fixed point § = 0 1s globally attracting. Hence the whole
dynamics is wrong for AR > 2. but ‘looks perfectly alright’ if there is no pre-knowledge of
the behavior of trajectories and if blow-up solutions are not expected. That the dynamics
is wrong is much harder to detect for this scheme on a ‘real life problem’ than for the
other two schemes investigated here: in the other two cases, the stable spurious solutions
are h-dependent (see (15), (24), --- ) and can thus be revealed by two computations with

the same scheme and different h. In this case here, a different scheme should be used
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for comparison. D. Dichs reported that, using a partially implicit method, he found an
h-independent solution which he did not expect from the physics of the problem treated.

This solution disappeared when he used a different difference method [4].

We now consider scheme (27) in detail. We shall first discuss the case A < 0 and then
the case A > 0.
Let A < 0. Then 7 = 0 is a stable fixed point of scheme (27) for all h and y = 1 is an
unstable fixed point of (27) for all A:

From (27) we get

1 — Ah
! (yn; AR) = 32
96 (ymi M) = T3 T My )2 (32)
and thus
1
(0 AR) = : 3:
0 < gg(0: Ah) 1—Ah<1 for all Ah <0 (33)
and
g(l;Ah)=1—=Ah>1 for all Ah < 0. (34)
Trajectories with initial value y, < 1 converge monotonically to y = 0:
Y <1=21-y>0=>-A(1-ys)>0=21-2(l —y,) > 1=
= |y .
Iyn-i-ll = 1— Ah(l _ yn) < |yﬂ] (30)

For y, > 1, the qualitatively correct behavior of the iterates depends on the size of |AR| and
of the iteration index n: If —Ah > 0 is small enough, it follows that 0 < 1—=Ah(1—y,) < 1,
and thus y; > y, > 1. For all Ah and n with 0 < 1 — Ah(1 —ys) < 1-we thus get ynt1 > Yn
and 1 — A(1 = yn) > 1 — Ah(1 = Yn41). For computations with fixed step size h, either

there is an N with
1—Ar(1—y,)>0 and l—Ah(l—yNH) < 0, (36)

or it happens that
1—-Ar(l-y,)=0. (37)

In the case of eq. (37), the iteration comes to a stop, blow-up has happened. In the
case of (36), the denominator changes sign without vanishing. The following iterates are

negative and approach § = 0 from below. This is a discrete analog of “a rational function
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passes a pole and returns from —asc”. In the case considered here, however, iteration for
n > N does not make sense. The iterates do not approximate the solution u(t:y,) of the
differential equation anymore. They do approximate the solution u(t:y.,,) with initial

value yy,, <0 forn 2 N+ 2

In [14], discrete and continuous blow-up times were briefly compared. The general

formula for case (37) is

(1= MY = -—“——1 =T,
U, —

If we choose h so large that one single step causes blow-up. we get an upper bound for
the continuous blow-up time T, and the error is of order A% < 1 [14]:

In the special case A = —1, N =1, u, >2 this results in T=h-=%++ % -+

Let A > 0. Then 7 = 0 is unstable and § = 1 is stable for Ah < 2.
For Ak > 2. both fixed points of (27) show the wrong stability properties: § = 0 is stable
and § = 1 is unstable.

From (32) we get

9(0;AR) = T3
and this satisfies
g,(0: Ah) > 1 for 0 < AR < 1,
g.(0; Ah) < —lfor 1 < AR < 2, and
g.(0: Ah) > —1 for Ah > 2.
Note that ¢,(0; AR) is singular for A= 1.
For g = 1 we get
g (1; k) =1—Ah (38)

and this satisfies
0< g, (lidh) <1lfor0< Ah < 1,
—1<gi(l:AR) <0forl < Ah < 2,
g.(1:Mh) < =l for 2 < Ah.
We now show that convergence is monotonic for 0 < Ah < 1 and all initial values Yo,

as long as the blow-up time has not passed. This readily follows by using formula (27)

Un .
= 39
y'n.-g-l ]_"'/\\h(], _yn) ( )
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and
(1 =ARK1 —yn)
= MA(1—gn) |

1 —ynp1 = (40)
Let 0 < yn < 1. Then yp < yny1 < 1:

0<l—y,<1=0<1=2AR(1 —¥y,) <1 and yns1 > yn from (39).

From (40) it follows that y,4+1 < 1.

Let 1 < y,. Then 1 < yn+1 < Yn:

Yn > 1= 1— (1l —yn) > 1 = Ynt+1 < yn by using eq. (39).

From (40) we now get 1 — yn41 < 0.

Thus the stable fixed point § = 1 attracts all trajectories with initial value y, > 0.
If y, < 0, it follows from (39) and (40) that
Yns1 < Yn 1 =A(1 —yn) >0 and yny >0if 1 — AR(1 —y,) <O.
What has been said earlier about approximation of blow-up solutions applies here analo-

gously.

As far as scheme (28) is concerned, everything is very similar. This follows from the fact
that both schemes are adjoint to each other. Scheme (28) thus converges monotonically
to the correct fixed points for Ak > —1 and all initial values y,, as long as the blow-up
time has not passed. For —2 < Ah < —1 the stable fixed point § = 0 has a neighborhood
of oscillating convergence. For Ah < —2 the stability of both fixed points disagrees with
the stability of the stationary states of the differential equation, blow-up is disguised, and

the whole dynamics is wrong.
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