MAX-PLANCK-INSTITUT FUR PLASMAPHYSIK

GARCHING BEI MUNCHEN

Collisional Drift Fluids
and Drift Waves

Dieter Pfirsch and Dario Correa-Restrepo

IPP 6/329 May 1995

Die nachstehende Arbeit wurde im Rabmen desVertrages zwischen dem
Max-Planck-Institut fiir Plasmaphysik und der Europdischen Atomgemeinschafl iiber die
Zusammenarbeit auf dem Gebiete der Plasmaphysik durchgefiibrt.




Abstract

The usual theoretical description of drift-wave turbulence (considered
to be one possible cause of anomalous transport in a plasma), e.g. the
Hasegawa-Wakatani theory, makes use of various approximations, the ef-
fect of which is extremely difficult to assess. This concerns in particular
the conservation laws for energy and momentum. The latter is important
as concerns charge separation and resulting electric fields which are possibly
related to the L-H transition. Energy conservation is crucial for the stability
behaviour; it will be discussed via an example. New collisional multispecies
drift-fluid equations were derived by a new method which yields in a trans-
parent way conservation of energy and total angular momentum, and the law
for energy dissipation. Both electrostatic and electromagnetic field variations
are considered. The method is based primarily on a Lagrangian for dissipa-
tionless fluids in drift approximation with isotropic pressures. The dissipative
terms are introduced by adding corresponding terms to the ideal equations of
motion and of the pressures. The equations of motion , of course, no longer
result from a Lagrangian via Hamilton’s principle. Their relation to the ideal
equations imply, however, also a relation to the ideal Lagrangian of which
one can take advantage. Instead of introducing heat conduction one can also
assume isothermal behaviour, e.g. T, (x) = const. Assumptions of this kind
are often made in the literature. The new method of introducing dissipation
is not restricted to the present kind of theories; it can equally well be applied
to theories such as multi-fluid theories without using the drift approximation
of the present paper.

Linear instability is investigated via energy considerations and the impli-
cations of taking ohmic resitivity into account are discussed. A feature of
the results is that for purely electrostatic perturbations the second spatial
derivative of the density profile plays a role, contrary to the usual approxi-
mations.

For a class of systems with 7; = 0, it is shown that linear instability
can occur only when the resitivity is sufficiently large, while the Hasegawa-
Wakatani theory predicts instability for arbitraryly small nonvanishing resis-
tivity.

It is shown that for essentially electrostatic instabilities magnetic pertur-
bations in resistive systems may not be negligible even for 7 << 1.




to theories such as multi-fluid theories without using the drift approximation
of the present paper.

Linear instability is investigated via energy considerations and the impli-
cations of taking ohmic resitivity into account are discussed. A feature of
the results is that for purely electrostatic perturbations the second spatial
derivative of the density profile plays a role, contrary to the usual approxi-
mations.

For a class of systems with 7; = 0, it is shown that linear instability
can occur only when the resitivity is sufficiently large, while the Hasegawa-
Wakatani theory predicts instability for arbitraryly small nonvanishing resis-
tivity.

It is shown that for essentially electrostatic instabilities magnetic pertur-
bations in resistive systems may not be negligible even for << 1.

An example which will be treated in a future paper indicates in addition
that in systems with vanishing ion temperature electron temperature profiles
should strongly influence the stability via resistive effects. This is in addition
to effects leading to 7.-modes. It demonstrates also that in general it is not
possible to do an expansion with respect to the resistivity n near 7 = 0.

The new formalism is interesting not only from a theoretical point of
view, but also in particular as a useful tool for numerical calculations.
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I. Introduction

Drift-wave turbulence is considered to be one of the possible causes of
anomalous transport in a plasma. An exact theory describing these phenom-
ena would be extremely complicated. It is therefore desirable to simplify the
theoretical description. An attempt in this direction is the widely used the-
ory of Hasegawa and Wakatani.!* While the steps leading from a two fluid
theory to this approximate theory appear to be plausible to a certain extent.
there may be problems, as can be illustrated by considering the relation in-
terpreted as the time derivative of the energy. In dimensionless variables
the Hasegawa-Wakatani equations, describing quasi-neutral two-fluid plas-
mas with massless electrons of constant temperature, cold ions, constant
magnetic field in the z-direction, unperturbed density gradients in the z-
direction and electrostatic perturbations, have the form

1
dwt+v-Vw = —Vﬁ(én—ap),
v

Obn+ Oy +v-Vén = =Vj(én —¢) ,

ve=z2xNe , W = Vicp. (1)

In contrast to the usual notation we have introduced a dimensionless collision
frequency v in order to indicate which terms relate to dissipation. The right
hand sides of the two first equations result from Ohm’s law for the parallel
current density

|
an=-Vién o). (2)
Equations (1) yield the relation
1 71 . 1 g ..
;;Z = ((Vig)? + (6n)?) dV = —ftﬁ?zaygodv - ;f (Vi(6n — )" dv
) (3)

The second term on the r.h.s. is ohmic dissipation. The first term on the
r.h.s. is nonzero for v # 0. It is the driving term for turbulence. Since it is
proportional to the momentum of the plasma in the z-direction, it should be
a constant of motion for the system considered, i.e.

/6n2XVp dV = const. (4)
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If this vanishes initially, the above driving term would be zero for all times.
This is at variance with numerical solutions.

A dicussion of a class of systems which includes the model corresponding
to Egs. (1) within the framework of the theory presented in this paper is
found in Section VIIL.

The main part of this paper presents a derivation of collisional drift-fluid
equations by a new method which guarantees and enables one to prove in
a concise and consistent way conservation laws such as for energy and total
angular momentum and to obtain the law for energy dissipation for cases in
which the dissipated energy does not remain in the plasma as thermal energy.
Energy conservation is of relevance for the stability behaviour, in particular
for nonlinear instabilities relating to negative-energy perturbations®™®. The
method consists of three steps:

1. Consideration of single particle motion in drift approximation; descrip-
tion in terms of Littlejohn’s Lagrangian for particles in drift approxi-
mation!? in the form given by Wimmel?®;

o

Obtaining, from the single particle Lagrangian, the Lagrangian for dis-
sipationless fluids in drift approximation with isotropic pressures;

3. Introduction of dissipative terms such as resistivity, thermal forces,
viscosity, heat conductivity and energy transfer between the different
particle species.

Both electrostatic and electromagnetic field variations are considered. The
dissipative terms are introduced by adding corresponding terms to the ideal
equations of motion and of the pressures. These equations result, of course,
no longer from a Lagrangian via Hamilton’s principle. Their relation to
the ideal equations imply, however, also a relation to the ideal Lagrangian
of which one can take advantage. Instead of introducing heat conduction
one can also prescribe T'(x) = const or B - VT = 0 initially and take the
adiabatic coefficients 4 = 1. This preserves then the initial property of T'(x)
for all times. Such kind of assumptions are often made in the literature
(Hasegawa et al."??! and related papers). In this case the dissipated energy
is not retained in the plasma as thermal energy, which means that the time
derivative of the energy does not vanish and is negative.




This new method is not restricted to the present kind of theories, it can
equally well be applied to theories such as multi-fluid theories without using
the drift approximation of the present paper.

In order to be flexible in introducing approximations relating to the
masses without destroying the Hamiltonian nature of the theory, we replace
the masses by mass tensors which distinguish between masses for motions
parallel and perpendicular to the magnetic field. This allows different ap-
proximations for the parallel and perpendicular motions. We start by making
no assumption as to the ratio m./m; of the electron to the ion mass. Later
we also let this ratio go to zero. If in addition to this one also requires, as in
the Hasegawa-Wakatani theory, m; — oo, the component of the ion velocity
parallel to the magnetic field goes to zero, but the corresponding momentum
will stay finite and non-zero.

The paper is organized as follows: In Sec. II the single particle Lagrangian
for the guiding centers is introduced. In Sec. III we construct the Lagrangian
for dissipationless fluids in drift approximation. In Sec. IV, expressions for
the total variations of the Lagrangian densities are derived. Then, in Secs.
IV A and B, Hamilton’s principle is applied to obtain, respectively, implicit
and explicit forms of the Euler-Lagrange equations. The conservation laws
for energy and momentum in nondissipative systems are derived in Secs. V A
and B, respectively, using Noether’s formalism, while dissipative systems are
treated in Secs. VI A and B. As an illustration, a class of examples, which
includes the Hasegawa-Wakatani example presented at the beginning, is con-
sidered in Sec. VII. This is done within the frame of a general discussion
which includes several problems: 1) To what extent does finite resistivity im-
ply that the systems are not isolated, so that energy is fed into perturbations
or removed from them by coupling to an external circuit? 2) To what extent
does an electrostatic approximation imply a kind of coupling to something
similar to an external circuit? This has to do with the question whether the
neglect of magnetic perturbations is justified in systems with § << 1. 3)
Linear instability is investigated via energy considerations and the implica-
tions of taking resistivity into account are discussed. The results are then
summarized in Sec. VIII. Some useful results are derived in the appendices:
in Appendix A the free energy term which appears in the Lagrangian density
of an isothermal plasma is derived from thermodynamical considerations. In
Appendix B the equations of motion of the quasi-neutral guiding center fluid
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are used to derive in a way alternative to Noether’s formalism the local and
global energy conservation laws in nondissipative systems. The properties of
symmetry displacements, which are needed to derive momentum conserva-
tion laws using the Noether formalism, are derived in Appendix C. Finally,
in Appendix D, a simple example is presented to illustrate how a hermitian
operator which is made nonhermitian by a widely used approximation can
be the source of artificial instabilities.

II. Single particle Lagrangian

Littlejohn’s Lagrangian for particles in drift approximation'® in the form
given by Wimmel* is

L,= %x AT — 0" (5)
with
A* = A+ ”—Zf(q4b +vE),

e®” = e®+uB+ (g2 +Vh),

2
ExB
vE = e
10A B
E = -vo--22 B-VxA, b==
_ cat’ B R B’
g = magnetic moment. - (6)

gs is an additional variable to be varied indepently of x.

III. Lagrangian for fluids in drift approximation

With indices for particle species suppressed, the following expression, as
explained below, should be the Lagrangian of a multi-fluid plasma in drift
approximation:

LT—jﬁgds.’E,Eg: Z ﬁ,

particle species




L = n(x.t)i, - L —i(Bz—Eﬁ)

¥y—1 8«
n(x.t) = density of quasiparticles,
X € - A
L, = -v(x,t)-A—ed,
c
v(x,t) = velocity of quasiparticles,

A = A=A+ m (gx,1)b+vg) ,
pLC
= A+ £ (-;rn[|q4(x. )b + leg)
€

A

e®

I

-1
~—

1 ,
ed” — uB =ed + 5(m||qf +myvE) . (

where
m=myl+(my—my)bb |, Iyp=28x . (8)

Because of the quasi-neutrality condition, the electromagnetic potentials are

assumed to be single-valued, such that for instance in a toroidal system the
; : 10A
electric field corresponding to a loop voltage must be represented by T
c
This form of the Lagrangian refers to adiabatic systems. Isothermal systems
have a different pressure term. As shown explicitly in appendices A and B,

their Lagrangian density is

E:n(x,t)Lp-—pln%—;—ﬁ(Bz—E2) . (9)
where p, is an arbitrary reference pressure. Most equations below are written
with the adiabatic pressure term. For isothermal systems, one then simply
replaces this with the proper pressure term. A separate treatment is done
only when necessary. Here, the particle mass is expressed as a tensor with
different masses for the parallel and perpendicular motion. This 1s simply
an artificial measure which facilitates the discussion of different approxi-
mations introduced later. The usual representation is obtained by setting
m.“ =m; =m.

p(x,t) is the isotropic preassure for which an adiabatic law is assumed, re-
placing the adiabatic constancy of the magnetic moment x and a “thermal”
energy of the parallel motion. A closer relation to having ¢ = const. would
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Erratum

Page 7, Eq. (7):
The electromagnetic contribution to the Lagrangian density £ for each particle species
must be divided by the number 1V, of the particle species. Similar corrections have to be

made in a number of other equations, which should be obvious in all cases.

In a few equations one has to replace
M—-=M and P— P,

which should also be obvious in all cases.



be a double adiabatic theory like the Chew-Goldberger-Low theory.

When the quasi-neutrality approximation is used, no electric field energy
term E?/87 appears in L; there is only the usual coupling term en® for
charged particles in an electric field. This implies that one cannot require
within the framework of quasi-neutral theory that the total electric field en-
ergy be bounded. Only the thermal and kinetic energy, and also the magnetic
energy of systems surrounded somewhere by infinitely conducting walls must
be finite.

The notion “ quasiparticle ” is introduced for entities which perform motions
parallel to B with the velocity v(x.t), and perpendicular to B in the form
of drift motions consisting of EXB, polarization and centrifugal drifts, the
usual additional drifts related to the variation of the direction of B, and a
diamagnetic drift. This is in contrast to guiding center motion as concerns
the diamagnetic drift, which replaces the VB drift resulting from the Lorentz
force.

Quantities to be varied are

B 1) s plxd) ; vt}
and in addition independently
qs(x,t) , (x.1), A(x.t),

The reasons for the differences compared with the single particle Lagrangian
are:

1. g4 corresponds to v of a single particle. For a fluid q3 has to be replaced
by its average

<@ >=<(u—<qu>)>+<qu>";

2. then. the following replacement must be made for an isotropic fluid:

m .
() (4B + Sl < lgem <> >) = L
L ;' =
this replacement is analogous to the one leading from a Lagrangian for
real particles to the Lagrangian of an ideal normal fluid.
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3. the adiabatic constancy of y has to be replaced by an adiabatic law for
the 1sotropic pressure p:

4. the notation is simplified by
< qq >— qa(x,1) 5

this is done also in the quantity A which contains ¢4 linearly.

IV. Variation of the Lagrangian

It is straightforward to derive the total variation 6L of the Langrangian
density L. Since
1

L = nf,p—‘)il—S—ﬁ_(BQHEz)

— Env A+ nv- [m”q4b + mJ_VE] —en®
c

1 2 2 P 1 2 2
_571 [m”q4 + TTI_L.VE] — ‘)T], — 8: (B —E )
= L(g4,n,p,v,2, A E(®,A),B(A)) (10)
oL is given by
aLr aL L aL aL
oL 6q4aq4+6nan+6pap+6v 3v+ (I)BQ)
oL aL aL
C— —+ 6B — .
Sl TR TR L T o

Here, all the variations are not completely arbitrary but have to fulfill the
following constraints

bn = =V -(n) , (12)
ép = —C-Vp—pV-¢ (adiabatic systems) , (13)
ép = =V -(p€) (isothermal systems), (14)
v = C+(v-V)¢—(¢-V)v, (15)
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with ¢ an arbitrary virtual displacement for each particle species and
1 .
SE = —Véd — -0A (16)
c
6B = VXO0A . (17)

For perscribed magnetic field B = B(x,1), i.e. electrostatic perturbations,
one has

SA=0. (18)

In this case, A(x,t) and related quantities entering £ mean an explicit de-
pendence of this quantity on x and ¢. Usually, there is no time dependence of
the prescribed magnetic field, which then allows to have energy conservation.
An x-dependence will influence momentum or angular momentum conserva-
tion. In the following A will be considered arbitrary. For given magnetic
field, however, the Euler-Lagrange equation corresponding to §A, which is
Ampere’s law, need not be satisfied.

Upon insertion of Egs. (12)-(17) into Eq. (11), and performing some minor
transformations, one obtains for §£ the basic relation

L = a{c .(?_E_._lgA.a_ﬁ_}

9t|> dv ¢ OE
+V'{—HC2—§—7PC%+[C-%é]v—é@g—g-JréAxg—g}

+5qd%; +C'{”V {%ﬂ +(r- 1)%%Vp+7pv [%}% +vX [Vx-g%]
og-of--41)

+6@{g—g+v.[%]}

+5A'{g§+%[%g_§;] +VX§—§} - (19)

In the following, the quasi-neutrality approximation will be used so that there
is no field energy term -E? in L.
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A. Implicit form of the Euler-Lagrange equations

Hamilton’s principle,

t 1 t1
s [ Ldt=5s {Z/ﬁd%] dt=0=36 chd%] dt=0. (20)
to to

to

yields the Euler-Lagrange equations, which are obtained by the vanishing of
the factors of é¢q4 and ¢ in 6L, and of 6® and dA in 6Ly =3 6L.

1. Equation for the additional variable ¢,

oL
= 0. (9
a% ! =y
2. Equations of motion
oL aLr aL aL
nV l%] + ('} — 1)3—pr+7;:\7 l:a—p] + v X vXE
oL ac d |oL
T . RO . (RS 0. B 29
(Vev) 5y =¥ [V av} o [8v] 4 22)
3. Quasi-neutrality condition
ar 9L | _ 0Ls 0Ly _ "
Z{a_@J’v'aE}_ F W e =l (23)
4. Ampere’s law
ar o |oc oL dLs 0 |0Lx __0Ls
Z{Ca-f-gg I:@} +CVX-(%} —Ca—A-i-E [FE] +cVX 7B =0
(24)
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When these relations are taken into account. one is left with

d oL 1 aL
6Ly = 26E=Z{§lC'a—v—g5A‘3_E]
aL acr oL| - oL aL

(25)

valid for all {, 6@, dA. This relation will later be used to obtain conservation
laws. I
B. Explicit form of the Euler-Lagrange equations

1. The derivatives of £

The derivatives of L are, explicitly,

gL e

e = EHA +n [q,;m“b + Tn-J_VE] ’ (26)
oL ovg dL cmgn 7
9E ~ 0B 0vg 5 (vi=VE)xb="P. (27)

Here, v, is the velocity perpendicular to B, vy, = v — yb and P is a
polarization vector which appears in the explicit quasi-neutrality condition

below, Eq. (38).

aL . € 1
= - Ev A4V mygsb +myvE| —e® — 2 m”qf + mLVQE] , (28)
PE et (29)
dp v—1
for an adiabatic system. For an isothermal system with 5 replaced by 1, one
has ar 9
p p
— =—_—|-phh|=||=—=|141In|=|], (30
55 =35 o] == e 3] >




as shown explicitly in appendices A and B.

oL 1 d [nﬁp]

B - &=°T B
1 Bb 6vE

I

47 +@_P; JB

with

6\«’_.5‘ c 2
0B
and, therefore
oL 1
= ___B
0B 4w
where M is a magnetization vector defined by the relation

n
M = %(m”vj_ —m,VEg)+

2mn

B2

cman
B?

(VJ’ —VE)XE

[(vi—vE)-VvE]|B,

aLr
3_(14 =myn(v-b—gq4) =myn (v” — q4) .
oL
3% =
oL e

A=

—En: ,

vam @y + o - (V= vEg)nmy ,

-(v—vE)zﬁ(v—vE)xE——_ (v—vE)-vg]B.

Use of these expressions in Egs. (21)-(22) yields the explicit Euler-Lagrange

equations:

2. Equation for the additional variable ¢4

g1(x,t) =b-v=y.
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3. Equations of motion

By taking into account Eqs. (26). (28)-(30) and (39). equation (22) can
be written in the neat form

w .
- (E+;va) Ppeil (40)
with
~ € A ~
eE = ——A —€eVO
c
= &F 2 b ) l\_’ ( - g 41
= e¢E — T (771”1” +m, Vg — 3 my | - vaE) . (41)
°B = IZvxA
c c
= EB + VX(m”vﬁb + 771_|_VE) : (42)
The last relation yields
%VXB = EV)(B-{-V)( [VX(m“v“b—l—leE)] = (43)
c

Insertion of Eq. (41) into Eq. (40) yields

1 .
n (m”v“b + T??-J_VE)+§HV (m”vﬁ + m_Lv?E) == neE-i—n%vXB—Vp . (44)

at
Equation for the parallel motion

An explicit expression for vj results by taking the scalar product of
Eq. (44) with B, which yields the following equation

L 8 1 - 8vE 1 .
B- a (U”b) =—B. [ETLE . nmLW s §nV (m“vﬁ - mJ_VZE) — \_p:| 5

(43)
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or also

1 B OvE ab

: 1
v = - -[enE —nm, 5 n.m.”v”E — §n\_’ (-m”-t'ﬁ - T’H_LV%-) — \—’p} .

nm, (b : B)
(46)

Another more convenient form of the equation for v is obtained in the next
section, Eq. (56).

Equation for the perpendicular motion

The velocity v is obtained by crossing Eq. (40) with b and solving for v

~

B 1 ;
—_— S |enE — Vp| xb (47)

b8 B

or, more explicitly,

~

v v + . enE — nm ad n Lo
= = — = o= T N
H B enb-B ot TGy
1 2 2 o
51V (myoff +muvE) = V| xb. (48)
Crossing Eq. (42) twice with b yields
B = (bB)b—ng [bX V % (m||vub+mJ_VE)J . (49)

Insertion of Eq. (49) into Eq. (48) and some minor transformations result in
the following expression for the velocity v

v=yb+vy, (50)
where the perpendicular velocity v, is given explicitly by
c oveg 1 )
vy, = ———<bX |—-enE+nm;——+ -nm,Vvg —nmybXx (VXVE)
. en (b . B) l ot 2 E !
db 2 -
+ ) = + nmyyj (b-V)b+ Vp| ., (51)
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an expression which can also be written as

v = ——C—Abx [—enE-}-nmialv
en (b B)

1 :
% g §n [m”Va-‘ﬁ' - mLVv?E]
db , . ”
- nm.”v”*aﬂ? + Vp — ny b X [\_X [m”-v“b + mJ_VE” (52)

This form is used below to obtain Eq. (56), which is a more compact equation
for v than Eq. (46). An alternative and useful expression for v, is

d
Vi = VE+—CA__]D>< [nml ‘:E+VE‘v+l'||b‘v] Ve

en (b . B)
2 | ab
+nm”1‘“b -Vb 4+ n-”?J_?-'“(VE . v)b -1 ?1?72||1~||_a—i
+n(my —m”)v”VEX(VXb)-{“vP] . (53)

The perpendicular velocity consists of the EXB, polarization, centrifugal
and diamagnetic drifts and two additional drifts related to the change of the
direction of B.

Useful alternative equations for the parallel motion

Using Eq. (48) to express B through v one obtains an alternative expres-
sion for v, namely

. v E . aVE - 81’)
v = - lenk — —_— T =
I nm||| + ot I ot
1 .
_Env (m“vﬁ 4 mlvi») — Vp] < (54)
The following relation follows from Eq. (52)
ov 1 db
ny|vy - [b)( [VX [m”v”b - m‘.LVE]H . (55)
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Taking this relation into account in Eq. (54) vields another useful relation
for v

j ovg 1 _
v = n_n:ﬂ . lenE —nmy 5% 511.\_' (m”rﬁ + T??J_V?;) - Vp]
-V, - [b)( VX U”b_l-?:_zﬁvE]] ] ) (56)

4. Quasi-neutrality condition
Introducing the space charge density p of quasi-particles of each species,
p=en—V- P, (57)

the quasi-neutrality condition, Eq. (23) reads

> p=> [en—-V-P| = [Zen]—V-P:O.

particle species
where P=3% 7P. (58)

The term in addition to the particle-like contribution 3 en is a polarisation
charge density which does not depend on the charges e of the various par-
ticle species. Below a corresponding contribution to the current density is

obtained (Eq. (60)).
5. Ampere’s law

With Eqgs. (27), (31)-(35) and (38) Ampere’s law, Eq. (24), can be written
as
j= ZVxB, (59)
dr

with the current density j given by

j = Z[env-{-aa—?:—}-cVXM

= [Zenv]+%—lj+cVXM, (60)
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where P and P are the polarization vectors introduced in Eqs. (27) and (58)
and M is given by
M=) M. (61)

with g4 replaced by v) in M after Eq. (39). Besides the particle-like contri-
bution

=D env, (62)
with v given explicitly by Eqs. (50) and (53), which contains as the main
magnetization currents the usual diamagnetic currents ~ B x Vp, there
are contributions from polarization currents and additional magnetization
currents. The polarization current density together with the polarization
charge density in Eq. (38) satisfy the continuity equation for this charge
density,

. 3 cmn

but note that the total current density j is divergence free and the total charge
density is zero, corresponding to the quasi-neutrality condition, Eq. (58).

V. Conservation laws

The derivation of the conservation laws for energy and momentum will
be based. in the sense of Noether’s formalism, on the total variations of the
Lagrangian densities, 6L and 6Ly, as given by Eqs. (19) and (25). This will
later prove advantageous also when dissipative effects are introduced.

A. Energy conservation

The local and global energy conservation laws can be obtained from the
expressions for 6L, 6Ly and 6L = [ 6Lsd*z using the Noether formalism.
To this effect, ¢, é® and §A are now taken to result from the dynamical
evolution of the system, and not as virtual displacements , i.e.

C=vét, 6@=06t, 6A=A6bt. (64)
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Since §L represents the variation of £ owing to the variations of n(x,?).

p(x,1), etc..., it holds that
ar

ol = 616— (65)

where ;the partlalagern ative is to be understood at constant x. The equal-
f,\" »

ity of 51 and 5 resulting from Eqs. (23) and (65) is the local energy

conservation law

0 g 1. @&
Z{a["'a—v*zf‘ 51?:—4

+V- [—”Va—ﬁ—"rpv%+ [v-a—ﬁlv—éa—EJrAxa—ﬁ]} .

an dp av 0E B
(66)
With Eq. (10) and the results of Section IV B 1 this relation is, explicitly,
d 1 0A
Z {ai [n (’m“v” - leE) —|— St + en® + S—B2 — ;P Y }
+V. [2 (mHv” + m_LVE) ¥ - e o7
1 0A

- - —— —47M]|» =0. 6T
+endv — P y—r X [B —4rx ]]} 0 (67)

In appendix B, the same result is obtained from the equations of motion.
Eq. (67) yields the following expression for the total energy

1 0A 1
&= Z/[ m[|t||+mlvE)+—+e @—EP 8t+¥B2] &£z .
(68)

If there are no contributions from the boundaries, £ is constant in time. A

special boundary contribution could be the Poynting flux owing to 5 0
the surface, corresponding to an externally induced electric field.
With the help of the quasi-neutrality condition (58), one can also write

dA 1., 0A

Zflenfb—%P 8t]d3 = jl@V.P_EP 6]d3
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= L/ [\_'fb + lO_A} P&
c ot

= /E Pd®x

= Z/m_,_n(vl —ve)-vg &z . (69)

The velocity combination in this expression is essentially the polarisation
drift. With the help of Eq. (69), the energy expression (68) takes the form

P
C_Z/[ mypf +muvi —my (vi—vE)) + Ly

B2] dx .
vy—1 8=

(70)
Eqgs. (68) and (70) are the correct expressions for the energy in adiabatic
systems. As mentioned above, and as it is explicitly shown in appendices A

and B, in the case of isothermal systems the term o has to be replaced
e
by pln 2, with p. an arbitrary constant, and the energy is
c

A= Z/[ ’m||1|+mj_vi TnL(VL_VE)2)+p1np£+SLTB2 .

B. Momentum conservation

Momentum conservation laws are most easily derived considering the
change of £ and Ly in the form given by Egs. (19) and (25), ¢ now be-
ing again not a virtual displacement, but a symmetry displacement having
the properties derived in appendix C, i.e.

¢=¢,,¢=0,V-¢=0. (72)

Also, 6@ and §A are the corresponding changes related to ¢,. According to
Egs. (C2) and (C4) they are

6 = —(, Vo,
A = —VI[(.-A]+( . x(VxA). (73)
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Since L is a scalar quantity, it is transformed also according to Eq. (C2), i.e.
6L=—(,-VL=-V-[LC,] . (74)

The case where A is a dynamical quantity (electromagnetic perturbations),
and the case where A(x,t) is prescribed, i.e. A = 0 (electrostatic pertur-
bations) are now treated separately.

1. 0A = 6A(x.t),1.e. A is a dynamical variable.
The system considered consists of a plasma surrounded by a vacuum and
superconducting coils of some symmetry.

a) Local momentum conservation law

The local momentum conservation law is obtained by setting §Lx = 3~ 6L,
as given by Eq. (74), equal to the expression for § L5, obtained from Eqs. (25)
and (72)-(73). This yields the local momentum conservation law

d ac aL
Z{é}'[CS‘B—V‘F%[V'(CS'A)—CSXB]'@}
oL oL aL ac
FV- [_nCs-; —’}'Pcsa—p + [Cs : El v+[(, - V] B
+[—V(C5'A)+C3XB]X%+£C5}}=U- (75)

Insertion of the relations given in Section IV B 1 for the derivatives of £
yields for this conservation law the form

Z {_g_t [Cs . [m”v”b i mJ_VJ_]] 4 F's {[Cs ‘n (m“vt!b + mle)] v

~(CE)P+2[C, (B X PV,

+BC, — 1 (¢ BB+ (¢, x B) x M} =0. )




b) Global momentum conservation law

This law is obtained upon integration of Eq. (76) over the plasma volume
V,(t) and the vacuum volume V;(¢). Assuming that the density n vanishes on
the plasma surface, then p, P, P and M, M vanish there as well. Since the
coils are assumed superconducting, there is no tangengial B at their surface.
It is further assumed that the coils have a symmetry, either plane or axial
symmetry. Then, ¢, - 8Scoil surface = 0 and one obtains

% - >z {Z ¢, n [m”i'”b + nuvl]} =
= [ @y [EB% - (. BB
V=Vp+1, oT 47
- as-v-[ B, - — (¢, B)B|
coil surface oOm 4r
—i) . (77)

2. Momentum conservation law in a given symmetric magnetic
field, 6A = 0.

When studying electrostatic perturbations, the magnetic field is consid-
ered as given, and it is assumed here that it depends on x, but not on ¢. As
was previously explained, a prescribed dependence A(x) and related quanti-
ties entering £ means an explicit dependence of this quantity on x, which will.
in general, influence momentum or angular momentum conservation. It will
be shown here that the variation ¢ Lexplicie caused by a symmetry operation
and resulting from the explicit x dependence vanishes when the prescibed
field has plane or axial symmetry, and the corresponding momentum conser-
vation laws will be derived.

In the case of a prescribed magnetic field B(x) = V x A(x), 6A and ¢B
vanish in Eq. (25). Then, instead of Eq. (75), one has

d aL
Z 6£exp1jcit + Z {E [CS s 5"';:]
' oL ac
+v- [0 2E e, B+ [e G| v e Vol g+ t[}=0.

22




where

oL oL
6£e\' icit = g % €% © oy 3 ¢!
xph 6A., aA+5B B (79)
with 6By =V x 6A¢ and §A ., given by Eq. (73). Then
oL ar aL
5£ex cuz—'_v o A - — |V .
e = =5V (6, A) 4 02 ((, x B) + o5 [V x (¢, x B)] . (50)

The symmetry displacement ¢, has the properties derived in appendix C. It
is now also required that ¢, corresponds to the symmetry of the prescribed
: ; ; . B?
magnetic field, in particular ¢, - VB? = 0. This means that the — term in

7
L does not contribute, in agreement with a possible alternative definition of
2

L which does not contain — since B is not a dynamical variable when the
™
magnetic field is prescribed.

Momentum conservation law in plane symmetry

In Cartesian coordinates z, y, z, a plane symmetric magnetic field is given
. A = Ay(z)e, + A(x)e. , B =—A(z)e, + A (x)e. . (81)
As a symmetry displacement (, one can take
¢, = const. = ¢ e, + c.e, (82)
Therefore
¢, xB=[cA, +c.Alle.=V((,-A) , Vx((,xB)=0, (83)
(6 VA =(A-V)(, =0, (84)
and
d Lexgiiicic = 1 (85)

By making use of the relations derived in Section IV B 1 one can write the
local momentum conservation law as

2 {%nc (b +muvi) + V- [pcs +(¢- V)P
—nmy [(,- (Vi —VE)|v+n [Cs : (mﬁv”b + mJ_vJ_)] v
-i-% [env + 36_7:} “(Cs A)]} =0. (86)
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Integration of this equation over the plasma volume V/(#), and again taking
the densities n to vanish on the plasma surface, vields the global momentum
conservation law

%/dsﬂ” Z ne,- ['m”l‘“b + m_,_vJ_] = %de;r Z ne.- [-m.”v“b + mlvl] =0.

(87)
If the magnetic field does not depend on z, but is constant, B = Bype.. then
also the = component of the momentum is conserved:

d
—]dstnmler‘vLZO. (88)
dt

as can easily be seen choosing {, = c,e; and A = —A (y)e,. Then ({,-V)A

= {A : V)CS =V X (Cs X B) =0 and 6£explicit =),

Momentum conservation law in axial symmetry

An axisymmetric vector potential A can be written in the form
A=Y (R,z)Vo+ F(R,z)e,, (89)

where R, ¢, = are the usual cylindrical coordinates. A symmetry displacement
¢, which describes a rigid rotation of the whole system about the z-axis is

¢ = R*¢Vey = Répe, , (, xB=38§VV. (90)
Therefore. one has
C; A =0p¥ , OLexplicit =0 . (91)

The local momentum conservation law is again Eq. (86), but now with
¢, = R?6¢Vy. The global momentum conservation law is obtained anal-
ogously to the previous case. Explicitly, one has

d(—i/ dSJ'ZRne¢ g [m”t‘”b + T??-_LVJ_] =0. (92)




VI. Collisional effects

The starting point is the formal relation for 6£ (g4, n, p, v. ®. A), as
given by Eq. (11). In this relation we insert the dissipative equations and vari-
ations. Of these, the following ones are not modified by collisions: 4= =

oc
B = 0 and én, év, 6@, §A as given by Egs. (12), (15)- (17).
q4
The effecs of collisions on momentum and energy are discussed separately.

The first mean a modification of the equations of motion; the second a mod-
ification of ép representing the time evolution pét. The method introduced
here makes use of the relations between £ and the dissipationless equations.

A. Equations of motion and momentum conservation
law in dissipative systems

The results obtained here will show that the global momentum conserva-
tion laws of the systems considered in the preceeding section are unchanged
when viscosity, resistivity and thermal collisional effects are introduced.

As in the preceding section, a symmetry displacement (, is considered.
The corresponding change in £ is given by

8L=—-(,-VL=-V-(L(,) . (93)

The changes in n and p can be written as
bn=—-(,-Vn=-V-(n(,) , §p=—C(,-Vp=—(,-Vp—1pV-(,. (94)

The change in v is, according to Eq. (C4),
Sy =—{C V) w—{v- Vil —v ) [V R L] , (95)

which with ¢, = 0 and Eq. (C19) can be written as

Sv =, + vV, - - V)v. (96)
These changes are altogether the same relations as in the ideal case. Insert-

ing Eqgs. (94) and (97) into Eq. (11), and proceeding as is Section IV, one
obtains the same expression for 6L as in Eq. (19), but now with a symmetry
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displacement ¢, instead of €. i.e. 6L = 6L ((,). Setting this expression equal
to 6L as given by Eq. (93) yields

L(C,, 6A, 80, 6n(C,),...)= -V -(LC,) - (97)

In the expression on the Lh.s. of this equation (which is valid also in the

isothermal case with ~ set equal to 1) ¢, appears, in particular, multiplied
by the L.h.s. of Egs. (.__) and (40), 1.e.

. 1T &
en (E+~VXB) - Vp. (98)
c

Without dissipation, the vanishing of this factor yields the equations of mo-
tion. With dissipation, however, one has

P 1 %
n(E+—va)—vp—v-ﬂ+R:0. (99)
- i}

where II is the (symmetric) stress tensor of each species and R is the mo-
mentum gain of the species considered by collisions with the other species.
The equations of motion are now given by Eq. (99) instead of Eq. (40).
This means that in Egs. (45)-(48) and (51)-(56) —Vp has to be replaced by
—Vp—-V-II+R.

Obviously. if one requires

., R=0, (100)

all species

then R does not contribute after summing Eq. (97) over all species. Similarly
to Eq. (75), one obtains

L aLr
S{g e Fe TV A -c Bl ]

5 -C’W & c [
oL ac aL
+V- {«—'ncs% - "YPCSBE + [Cs : a] +1¢,- Ve op

aLr
JE

+[—V(C5'A)+CSXB]X%§+£C cu! | C}} . (101)




where Eq. (C20) has been used. The local momentum conservation law in
dissipative systems thus differs from that in collisionless ones through the vis-
cosity term V- (II-¢,). Including this term in Eqgs. (76), (78) and (86) vields
the corresponding expressions for dissipative systems. Integrating these ex-
pressions in a way similar to that of Section V B eliminates the viscosity
term, and the global momentum conservation laws in the collisionless and
dissipative systems considered are the same.

The stress tensor II can be written as
it = —ptiktm Wim (102)
where gy ;m 1s the viscosity tensor and W), the strain tensor,

y oy v, 2
Wim=5—4+—F——=6mV-v. :
1 B, & 921 361 v (103)

Both tensors II and W are symmetric and have zero trace. More details
about this quantities in a plasma can be found in Ref.?? .

The friction term R of each species is assumed to split into two parts
R=R1+R2, (104)
where R; represents ohmic friction, and R, thermal forces which arise from
a gradient in the electron temperature.

Explicit expressions for R

A plasma consisting of electrons and one species of positively charged ions is
now considered. Resistivity is taken to be a tensor, 7.

According to Eq. (58), the total charge density of each species is p = en —
cmyn

V. P, with P = ——=

1s 3. p = 0. If one introduces the quasi-particle current density j,,

Jp= ZPV ) (105)

then the ohmic friction term R, of each species can be written as

(vi — vE) x b, and the quasi-neutrality condition

Ry =—pn-J, , (106)
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and. because of quasi-neutrality,
> Ri=0. (107)

The thermal friction terms R, for the electrons and ions are taken as

n ,

R,, = —can.(b-VT.)b—c b % {VI.) .,

WeTe

Ry = —Ra. (108)

and therefore
Y R,=0. (109)

w. is the electron gyvrofrequency, Te the electron collision time and T, the
electron temperature. ci, ¢z are two constants (e.g. ¢ = 0.7l 2 = 3 for a

hydrogen plasma)®? .

B. Energy balance in dissipative systems

In a way similar to that of the collisionless case, displacements ¢ and
changes 6L, én. ép, etc. .., which result from the dynamical evolution of the
system are now considered.

(=vét = (=vVit, (110)

dv = vt , §n=nbt=—-V-(nv)ét=-V-(ng) , (111)

which are of course the same as én and év from Eq. (12) and (15) when
¢ = vét is inserted there.

For an isothermal plasma, with T +v-VT = 0, the generally valid relation
p = —V - [nTv]4n[T + v - VT] yields

§p = pot = =V - [nTv]ét . L2}

which is the same as in the ideal case. For an adiabatic plasma, however, op
is collision-dependent. It can be broken down into two parts, separating the
ideal contributions piq from the purely collisional ones, padiss:

§p = pbt = (Pia + Paiss) 01 (113)
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where py=—v-Vp—pV-v. (114)
and .
Pais = (v =1)pV-v4n [T +v-VT] . (115)

Inserting Eqgs. (110)-(114) into Eq. (11), proceeding as in the derivation of
Eq. (19), and using Eq. (99), one obtains

oL
op

ot

6L (6£
— == (116)

) collisionless
. 6L )
where 6L oplisiontess 1S given by Eq. (19) with — =0, i.e. g1 = v and

4
Eqgs. (110) and (111) taken into account. The same procedure as that of
Section V A, applied to Eq. (116), yields the local energy balance:

d |n 1 1 JA

Z{at[ (m]]'i||+mJ.VE) L, +en‘1’+8—rB2—EP B
aL
+V - [2 (mHv”—}—mlvE) — o~ appv
1 0A
-f-en(I)v — (I)P — ET [B 47"M]] }
Ly
g Z{v. [uv.g+R] Piss 8;)} , (117)

where £, = —p/(y — 1) in the adiabatic case. In the isothermal case, £, =
—pln(p/pe), v 1s set equal to 1 and pgjes = 0.

Writing now the indexes v, p of the different particle species where it appears
appropriate to avoid confusion, the pgiss term for an adiabatic plasma is, more
explicitly,

e Bﬁp, _ Iz'dissv _ ny
Pl o, ~ (—1) ( ~1)

[T + v, - \_’T]+pyv-v,,

1.~ T,
=_vqu H vv —‘Uu Rlu_&u‘]p RZV_Z

pll pU u au,u
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with q, the heat flux of the species v and
Yam=l g Y =1 (119)

y — T,
and a,, =a, — Zz-—”

v QV.U

=0. (120)
o, and &, are the fractions of the ohmic and thermal friction energies, re-
spectively, gained by each particle species v. Usually, because m, << m;,

Oelectron = 1, Fel. = 1, Oion = 0 and 65 = 0. Again, more details can be found

in Ref.?2.

The thermal friction heating term in pqjss summed over all species, Z fr:,‘]—'p* - Ro,.

; Pv
must be equal to the corresponding thermal friction term S v, - Ry, from the
equations of motion, and one has

Z[vy-Rzu—&u‘]—p-Rgu] —0. (121)
v Pv

Since for an isothermal plasma paiss = 0, the terms on the r.h.s. of Eq. (117)
are

- gy .jp+z[_v.v.g+v.[{2]

=

—js - -jp+Z[——V-[g~v]+_ﬂ_:Vv+v-Rg] . (122)

=

while for the adiabtic case there is also the contribution

>, Pl =jp-n-jp—z{V-q-i-g:Vv-i-&'-]ﬁRg] (123)
(v—=1) = p

so that the ohmic heating terms cancel, likewise the thermal heating terms,
and the contributions from the viscosity add to =3V - [_E V]. Integrating
Eq. (117) over the plasma volume and assuming that there are no contribu-
tions from the boundaries, one obtains the same expression for the conserved
energy as in the ideal case, Eqs. (68) and (70).

In the isothermal case, assuming again that there are no contributions from
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the boundaries, the integration of Eq. (117) yields the global energy dissipa-

tion law:
d& d n 1. 0A 1 _,
il EZ./[ (m||1||+ﬂ1LVE) +pln—c—|-en<I>—EP B S_WB] >z
: av;
= Z/ —Jo 1" Jp+HaLa +v-Ry| &’z (124)
or also
d€ d n 1,
- = 52/[3 (m“-ulzl-%-m_l_v%—nu_(w_—VE)2)+pln%+SrB'j| d*a
. dv; -
= Z/[—Jp n- J,,—!—H,La + v - Rz] r . (125)

The dissipated energy on the r.h.s. of these last two equations has to be

absorbed by the * heat reservoir " which is necessary to keep % L — 0.
The viscosity term II;; 2% .- is negative definite: one can write
dv; 1 |[dv; Oug
Ijpe—== —»-——V o; 126
ka:r.k 2 [amk T Jz; 3 b Fh)

Here, the first two terms are equal contributions because of the symmetry of
II, and the third term vanishes because I has zero trace. Since the quantity
in the brackets is W, one obtains

dv;

1
M- = =Wyl
Aalfk 2 kLllk

5 | -
= 5”/111—[11 + = 5 [” 11+ Waa] [Ty + s3] + 5”’331]33

+Wizlliz + Wisllia + Wasllas (127)
where it has again been used that II and W are symmetric and have zero

trace. In a coordinate system with the magnetic field in the direction of e,
the components of II are, expicitly #?

1 . 1 . .
Iy = SuoWas—Sm [2W11 + Waz] — paWhz ,
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I3 = —poWas ,

My, = —Wi+ %pg 217, + W) .
s = —poWia — pallas .
oz = —paWoy + pyWis . (128)
and, therefore
1 3

Wil = = oWV — T 2 + Was) — i Wh—pz [WE+ W3] . (129)

The thermal friction term ~ R; in Eqgs. (124) and (125) can have either sign:
it represents a reversible generation of heat (see*? . p. 233).

VII. Consistency Problems - Stability

The results obtained in the preceding sections are valid also for systems
which are coupled to an external circuit, e.g. via an electric field driving
the equilibrium current in a resistive plasma. As concerns the stability prop-
erties of such systems there is a problem that energy could be fed into the
perturbations or removed from them by this coupling. In an isolated resistive
plasma the driving electric field is generated by the decaying corresponding
flux, which does not eliminate the problem. This means that the investiga-
tion of the stability properties of resistive plasmas must take into account
these circumstances.

Another point concerns the electrostatic approximation. This approxi-
mation also implies a coupling to an - artificial - external circuit: éB = 0
requires, strictly speaking, that at least the currents corresponding to the
perturbations must be compensated locally by currents flowing in an artifi-
cial medium. Since there are also electric fields with components parallel to
these currents, the currents in the artificial medium must be driven against
these fields, and this means that energy is fed into the plasma or removed
from it. In order to find out whether this process could be relevant, let us
look into some details of the energy relation (125). For the present purpose
it is sufficient to consider resistive plasmas with no other dissipative effects
and neglect Joule heating such that the energy relation (125) for 1sothermal
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plasmas is valid also for plasmas with the adiabatic coefficient different from
1 when the thermal energy term is replaced by the corresponding adiabatic
one. For small perturbations the RHS of Eq. (125) is

- Z/ [ij 'E'jpﬂ + ijl 'E'jpﬂ + 2jﬁ2 'Z'jpo_‘i‘jpl 'i'jpl s ] &z .

(130)
For the discussion of the stability properties the second-order quantities are
of interest. The term which is bilinear in the first-order perturbation j,; is
negative semi-definite, whereas the term linear in the second-order perturba-
tion j,2 is not. This latter term contributes, however, only if j,» possesses a
nonvanishing average - say in a straight tokamak with j,o = const - parallel to
Joo- Since to such an average current corresponds a global perturbation of the
magnetic field, the magnitude of this average current depends on boundary
conditions determining the inductivity of the system. In a straight tokamak
with walls only at infinity the average of j,; must vanish and the second-order
dissipative term is negative. If one neglected the magnetic field perturbation.
the term with j,» could become an instability driving term overcompensating
the damping term bilinear in j,;.

A second point, where neglect of the magnetic perturbation can lead to
wrong results - independent of the strength of the unperturbed magnetic field
- 1s in the energy expression itself: For an illustration let us assume, as often
done,

me=0, Te=const, myy=00,T; =0, Egx 7. (131)

In this case the kinetic energy is the ion kinetic energy of the motion per-
pendicular to B only. Its zero-order contribution is proportional to 7°. The
potential energy is the thermal energy of the electrons and the magnetic en-
ergy. Their second-order expressions in terms of displacements £, for the
electrons can be obtained with the help of one of the methods introduced by
Pfirsch and Sudan?® in the following way:

The second-order contribution to the thermal energy results, with §(Mn, . §®)n,
being the first and second variation of the electron density, from

1 §Mn, 1 [6Wnp, % g §n,
(T?-Eg-f-é“)T?.5+36(2)HE+' i) (ln Neo + e += +--- ]

MNeo 2\ ng 2 N

(132)
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The second-order thermal energy of the electrons is then

(1), 42
W = T? / {(s%mnm (¢ n) } &z . (133)

Neo

The mentioned method of Pfirsch and Sudan®® consists in the following steps:
§Wn, = -V (nek,) , §¥n. = -V (£,6Wn.) — V- (no6VE,) . (134)

The variation of £, is obtained from representing the shifted position x of
an electron fluid element on the one hand by referring to the unperturbed
position x in the unperturbed system,

% =x+£&.(x,1), (135)

and on the other hand by referring to the perturbed position in the perturbed
system,
XK= E %) - (136)

Hence, )

£.(x,1) = €.(x,1) (137)
The Eulerian variation of &,(x,t) in Eq. (134) is given by
SVE (x,1) = £.(x,1) = £.(%,1) = £u(x = £.(x,1),1) = £.(x, 1) = €, - VE, .

(138)
With this result the second variation of the electron density becomes

§Pn = V- ((V - nek.)E.) + V - (neok. - VE,) - (139)
Twice the §®n, contribution in W(? is then
j §Pn, lnne dz = j [6Vn.€, - nuok. - VE] - Vinne da
= — [ IV (o). + ok, V&) Vinng &
. _/v- (neo€.£,) - Vinne dz
- / £.£. :noVVInng &z . (140)
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The general expression for the second-order thermal energy of the electrons
is therefore

) Te 6(1) . 2
I":e(?) = jT {(71#) + 56’66 : neovv lll neO} dSI : (141)
< 0

The second-order magnetic energy can be obtained easily for the limit  — 0.

In this case the magnetic field is frozen into the electrons. One can then again
apply the method of Pfirsch and Sudan, which yields

§UB = Vx(£.xB),
§PB = VX[ - VE)XB) + VX [E.X(VX(E,xB))] ,

B? 1 2 1
§— = — (VB —B-§%B .
87 4r ( ) + 47
=R U e -
- = 62 . 9
(SW) 2 87 (142)

When the last term 1s integrated in space, integration by parts leads to the
replacement

B6PB — — (VXB):[-(€, - V&)XB +£X(VX(E,XB))
1
- -Q—CuxB)-(ee-ve)+~1-(ee><j)-6‘“B
= 5(6.VE) Vp+ o (€,x)) 6B (143)

This yields for the second-order magnetm energy

) 2 1 .
w = f {g(é(”B) +(§E'V£E)-Vp-f-z(ﬁex.])-é(l)B} Pz (144)

It is important to note that this relation obtains only when the equilibrium
equations are satisfied exactly. The interesting point with this result is the
term with Vp. It is independent of the strength of the unperturbed magnetic
field and combines directly with the thermal energy of the electrons. This
“combined” thermal energy W% is

T. ((6MWn)?2 1
we = [ Onl L6, Vo (V- £) (€, - Vneo) | 'z
2 neO nEO
g8l 1 2 2| "
= [ne(lv : Ee G s (&e : vneﬂ) = o (ee ' vneﬂ) d’z . (145)
2’1"1.90 2 4
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It is remarkable that the term resulting from the magnetic field perturbation
canceld the term with the second derivative of the density profile. Only first
derivatives are left.

The total second-order potential energy is then
w2 = j{i (sMB)’ +Lexi) 6B
pal 87 et

T.
+;
2N

2
Hneov wEak %(EE : V??Eo)] - E(EE ' \_’neo)?]} d*x .(146)

The residual magnetic terms with §(UB are the same ones as in ideal MHD
with £ replaced by &,. It is again emphasized that relation (146) 1s. as
mentioned before, valid only for small resistivity.

For n = 0 the electrons behave “adiabatically” if in addition the effect
of the the electric field corresponding to the magnetic field perturbation is
neglected. This has the consequence that, for modes, £, - Vneo = 0 and
the “thermal” term resulting from the magnetic perturbation does not enter.
The kinetic energy is now directly of second order and the potential energy is
positive semi-definite and in fact positive for drift-waves for which §(n, # 0.
This result is in agreement with the physical mechanism behind drift-waves:
it consists in an oscillation of the second-order energy between the thermal
energy of the electrons and the kinetic energy of the ions. For  # 0 the
electron displacements can possess components in the direction of the density
gradient and allow therefore expansion with corresponding lowering of the
thermal energy. The total second-order energy to become negative requires,
however, a minimum resistivity. This would be necessary for instability if the
average of j,» vanishes, a result which contradicts the Hasegawa-Wakatani
theory.

VIII. Summary

Ideal and collisional drift-fluid theories were obtained starting with a La-
grangian for the drift motion of particles. The adiabatic invariant magnetic
moment and the “thermal” parallel energy are incorporated in a pressure
for which an adiabatic law combined with dissipative terms or an isothermal
law can be prescribed. Resistivity and thermal forces can be added in a
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transparent way such that energy laws and conservation laws for momenta
are immediately obtained. The final equations for quasi-neutral electrostatic
perturbations are similar to those, for instance, of the Hasegawa-Wakatani
theory and tractable numerically like these. Also electromagnetic perturba-
tions are possible. The only restriction involved is the validity of the drift ap-
proximation. The new theory avoids problems relating to conservation laws
and boundary conditions. This is of importance in several respects: energy
conservation is important for stability, in particular for nonlinear instabili-
ties relating to negative-energy perturbations. Momentum conservation. for
instance, is important in discussing the generation of radial electric fields
which are presently considered to be relevant for the L-H-transition. Bound-
ary conditions which do not introduce unclear “external” influences can be
imposed only when treating a complete system without approximating un-
perturbed density profiles and density gradients as contants. The latter is
dangerous also, because it can create artificial non-hermitian parts of an in
reality hermitian operator. Although such a non-hermitian part is possibly
small compared with the correct hermitian operator, it can lead to artificial
instabilities as shown via a simple model equation in Appendix D. The class
of systems considered in Section VII shows that for resistive quasi-neutral
electrostatic instabilities to occur the second spatial derivative of the equi-
librium density profile plays a role, a quantity which is neglected in the usual
drift-wave theories. It is shown that for essentially electrostatic instabilities,
magnetic perturbations in resistive systems may not be negligible even for
B << 1. An example which will be treated in a future paper indicates, in
addition, that in systems with 7; = 0 electron temperature profiles should
strongly influence the stability via resistive effects. This is in addition to
effects leading to 7.-modes. It demonstrates also that in general it is not
possible to do an expansion with respect to the resistivity n near 5 = 0.
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APPENDIX A

THE FREE ENERGY OF AN ISOTHERMAL PLASMA

The expression for the thermal energy of an isothermal plasma is derived
in this appendix from thermodynamical considerations. For isothermal pro-
cesses, the part of the thermal energy of the system which can be converted
into work is the free energy. The free energy density f of each particle species
is given by

f=u—Ts, (A1)

with u and s the internal energy and entropy densities, respectively. Explic-
itly, these are

_ 2 9
u= . (A2)
. 1 ¢ 3
s:n.[ln%+7_11ni] , (A3)
: .y e pT .
which, with — = . where n., p. are reference constant values, yields
n pl.
1 T
szn[—lnfg-l-”’_fllni] . (Ad)
Therefore, the free energy density 1s
'
f:pln-p—-{-L[l—‘rln—] . (A5)
Pe i 1 Tc

For an isothermal plasma, i.e. a plasma in which the temperature of the
individual plasma elements is time independent, one has
dT  dT d
ar_O gr_o, 2
dt ot ot
In this case, the second term in Eq. (A5) plays no role in the dynamics since
its integral is a constant:

4V (pv)=0. (A6)

: 7)e 0 (- )]+ - (1= e ) )] -
— —~vln = = - 1 —7ln=— V- l—~ln— 7
dt 1’(t)p(1 el Tc)d ‘ L(:) [Bt P : nTC T 3 ! nT,: M ;
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— ~ E e 7 o [ R 3
- ~/V(t) [(1 ==yl T) P+ V- (pv)]—vn [T+V TT]] d°r
0.

Adding this term to the Lagrangian would give no contribution when Hamil-
ton’s principle is evaluated. Therefore, only the term

pln 2 (A8)
Pe

has to be included in the Lagrangian density. The same result can be ob-
tained by direct integration of the corresponding term in the equations of
motion. This is explicitly done in appendix B.

39




APPENDIX B

ENERGY CONSERVATION

In this appendix. energy conservation is derived from the equations of motion
for adiabatic as well as for isothermal systems.

The equation of motion for each particle species can be taken in the form
given by Eq. (44). namely

0 1 5 A
L (m”-v“b + r??iVE)+§nV (m”-vﬁ + vaE) = neE+n%v xB-Vp. (Bl)

One can write

( 10 ) JB
V- ﬁ(m”vﬂb 4+ myvg) = 27 (m”-vﬁ - nuv%) + % (mﬁvl — ﬂqu) B
av
+my (Ve = VE) - (B2)
Scalar multiplication of Eq. (B1) with v = vyb + v then yields
d [n 2 2 1 2 2
52 |5 (mnf +mavi)| + 9 5 (i + mav2) v
-HITJ(m V) —myVv )-——+nm (vi—vV )_Q_V_E
P LVE) 5y 1YL 2y
=env-E—-v-Vp,
(B3)
where the continuity equation 7 + V - (nv) = 0 has been used.
From the equation vi = ¢(EXB)/B?, one obtains
ovg 1 0B? c OE c 0B
—_— = ——xB+ ZEX—. B4
o B e ErEa T (B4)

Therefore
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n% (m”vl —mlvE) . E +nmy(vy—vVvEg): é)(;r—f =
cnm oE nv JB
— [ B (VJ__VE)XB] 57 +?“(mﬁvl—mj_vE) vy
cmn 0B 7mln 0B
B2 [(VJ- XE] ai BQ [(VJ- VE] Hs (){
JE 0B »
=7 - E + M- "BT (B5)

When summed over all particle species, the term env - E can be transformed

with the help of Egs. (59) and (60):

> env-E = —aa—l;+i X[B—47.-‘M]]-E
oP c c
- _E. E-I-ZI-—{B—MM]-[VXE]—V-[EXE[B—ql:M]]
oP 1 0B 0B c
= -E- 5 - B 4+ M. -V [E —N[B—LLT.'M]].
(B6)
Therefore, one has ‘
) 0B Ovg
Z[n%(m”vl—mlv};) oy +nm, (vy —Vvg)- —g—t—env E]
d 3 é
[ B’+E. P]+v [Ex—[B—47rM}] .
ot 4

(B7)
This equation can be cast into a different form which is useful when studying

electrostatic perturbations. If E is replaced by —V® — A/r: in Eq. (B7), the
terms involving V& yield

%[—V@-P] +V - [-Vox-[B - 4rM]
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J - c .
= S [aV-P-V. (@P)}TY'(I)-[TXE[B—J;,.NI]]

d D . B B
=~ [oV-P-V. (@P)Hv[@'\‘xE[B—J“M]]

= %Icpv P+ V- [-6P+ endv| . (BS)

where Egs. (59) and (60) have been used.
In order to transform the term v - Vp. the adiabatic and the isothermal cases
are considered separately.

Adiabatic case

The adiabatic law

dp '
a—[t = —v -Vp—vpV v
= {p=1)¢-Yp-5% - @Y (B9)
vields
0 p 4
V-Vp—a—[ _1l+\— ['ﬁlpv]. (B10)

Isothermal case

In this case ~ = 1. corresponding to infinitely many degrees of freedom. and
Eq. (B10) cannot be used to express v - Vp. Eq. (B9). however. is still valid

dp
— =V BIll
T (pv) (B11)
and one obtains
v-Vp
viVp = P
p
= pv-VlnB
Pe

= —[V-(pv)]n =+ V- [pln fw}
Pe P

c

42




dp . p P
= T hfi4+Vv.|plnLt
at npc+ lp o

d i dp P
= == 1 | - — l. —_
5 lp npj T +V [p In o v]

C

0 p
= In — l1+1ln— : 2
at {p HPC]JFY [ [ +an] V] e
The first term is just the time derivative of the thermal free energy, as ob-
tained in appendix A. Eqs. (B3), (B7), (B8), (B10). (B12) and the quasi-
neutrality condition

[>° en] — V- P =0 then yield the

Local energy conservation law for adiabatic systems

d |n
Z{Btl: (m“u“—l-mlvE)-{———l—{- B2+E P]

1
+V - lg (mﬂv“ - mlvg) \' + 1pv + E><— (B — 47‘M]} } i
(B13)
which can also be written as
d |n , 1 0A
Z{at [ (m“v” +mJ_vE) -+ o~ 1 —l—en(I)—i-S—lB - EP 81‘]
+V. l (m“v” - mJ_vE) v+ TPV
A
1 JA
+endv — P — _6’_ X [B — 47M] . (B14)
dr Ot

and the

Local energy conservation law for isothermal systems

d [n P | -
Z{—a—; [§(m||vﬁ+mlvf5)+pln—+8—rB -;—E-P]

c
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n p c
+V- {5 (myof + m vE)V+p [1 +1In ;}j v+Ex —[B- %M]H =0,
(B15)
which can also be written as
d [n p I 1 0A
Z {Et‘ [5 (m”vﬁ 4 TTLLV2E) +p IDE +end + g‘ﬁ"Bz — EP . -a—t]
+V - [% (m“vﬁ -+ mJ_VQE) v+p [1 +Iln pﬂ] v
- A
+en®v — OP — ;—_%—x B — 417M]]} =0. (B16)

If there are no contributions from the boundaries, the terms which are written
as divergenges do not contribute to the global energy conservation laws.
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APPENDIX C

PROPERTIES OF SYMMETRY DISPLACEMENTS

It is now investigated, how scalar and vector quantities are transformed un-
der symmetry operations corresponding to displacement or rotation of the
system as a whole. The transformations of interest here are described by a
symmetry displacement, ¢, e.g. a parallel displacement of the whole system.
or a rotation of the whole system about the z-axis by an angle §,». The prop-
erties of the symmetry displacements ¢, and the transformation properties
of the physical quantities are obtained from infinitesimal translational and
rotational invariance.

Let x, be the original position of a point of the system. Under a displace-
ment (., the point originally at x, has the new position x,, = x,+¢,(x,). An
scalar quantity W, such as the density or the temperature, remains unchanged
under such transformation:

Vo (Xn = Xo + (4(X0)) = o (x0) (C1)
To first order in (,, this yields
60 =T, (x,) — o (%) = =¢,- VT, . (C2)
The transformation properties of a gradient follow from Eq. (C2)
VU = VU, (x,) — VY, (x,)
= — (¢, V) V¥ - (VC,) VU
= —((,-V)VU¥ — (VU .V)(,-VUIX[VXC(,] .

(C3)
A vector w is transformed in the same way as a gradient
ow = —((,-V)w—(V({) w
= ={(, * Vwe—i(w='VJ(, = wi [VKC(]
= V[, w4+ x(Vxw), (C4)
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from which
Sw? = 2w-éw

= — (V)W =2w - [(w-V)(] (C5)

follows. On the other hand. the symmetry transformations considered here
(a displacement or a rotation of the whole system) do not change the absolute
value of w, and w? must transform itself according to Eq. (C2), i.e.

bw?=—(¢,-V)w". (C6)
Equations (C5) and (C6) are simultaneously valid only if
w-[(w-V)(]=0 (CT7)

for all possible vectors w. This implies a condition on the acceptable (,’s.
From Eq. (C7). it follows that

(Ww- V)¢, =a(x)Xw. (C8)

Scalar multiplication of this equation with a constant vector 3 yields

B-[(w-V)(]=w-V(B-()=w-[BXa(x]] . (C9)
Since this relation must be valid for all w, it implies
V(B-¢,)=BXa(x) (C10)

and also
0=Vx[V(B-()] = VX(Bxa(x))
= BV-a)-(B-V)a. (C11)
This must be valid for all 8 = const., and therefore
o = const. (C12)
Equation (C10) can now be integrated:
B-¢, = (BXa)-x+ const.
= B-laxx+c|, (C13)
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where the constant has been written as B - ¢. The possible symmetry dis-
placements are then given by

L, = XX+E; (C14)

where o and ¢ are arbitrary constant vectors to be chosen accordingly to the
problem of interest. Eq (C14) implies the following relations

V¢, =0, (C15)
VX, =aV - x—(a-V)x =2« (C16)
and
(w-V){,=axw , w-[(w-V)(,]=0, (C17)
wX (VX(,) = —2axw, (C18)
Le. 2(w-V)(, +wX [VX(,]=0 for any w . (C19)

Also, if Il 1s a symmetric tensor, then

¢ [v-Oj=v-[I¢] (C20)

since

¢ [VL) = o[t -ed - Ty o (x x e

= V-[g-gs]—aﬂﬁejxe,-
= v-[g-cs] . (C21)

For instance, to describe an infinitesimal rotation about the z-axis of the
usual cylindrical coordinates system R, ¢, z, one can choose

a=ébpe. , c=0, (C22)
Equation (C14) then yields
¢, = odpe.X[Re, + ze.]
= &épRe, = 8pR*Vy . (C23)




APPENDIX D

ARTIFICIAL NONHERMITIAN OPERATOR AND
INSTABILITY

Is it allowed to take no(x) = const. together with ng(x) = const # 07
Consequences of such approximations are discussed via the following exam-
ple equation

. : <
533()8— p>0. (D1)
dr

1 ac\’
;t {§+p(5§)}41=0- (D2)

The equation corresponding to the above approximations is

This yields

. 0 o
= p’a—n +p3_2 , 1 =const , p= gonst . (D3)
% T

This yields

d 1), an 3 377371 o .
E]'Z {’? +P(5T) }dl / lr = “driving term”.  (D4)

That the r.h.s. can in fact drive an -artificial- instability follows from the
eigenmodes:

—t.qut

£ xe |7 o e twtthE (D5)

..ug real and > 0 from the energy expression, Eq. (D2); (D6)

/

1p
wy = +1/pk? —ip'k = £./pk q:? f . (DT)

Hence. p’ “drives the instabilty”.
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