MAX-PLANCK-INSTITUT FUR PLASMAPHYSIK

GARCHING BEI MUNCHEN

Whistler dominated quasi-collisionless
magnetic reconnection

Dieter Biskamp and James F. Drake

IPP 6/328 May 1995

Die nachstebende Arbeit wurde im Rabmen des Vertrages zwischen dem
Max-Planck-Institut fiir Plasmaphysik und der Europaischen Atomgemeinschafl iiber die
Zusammenarbeit auf dem Gebiete der Plasmaphysik durchgefiibrt.




Whistler dominated quasi-collisionless
magnetic reconnection

D. Biskamp! and J.F. Drake?
IMax-Planck-Institut fiir Plasmaphysik,
D-85748 Garching, Germany

Institute for Plasma Research, University of Maryland,

College Park, Maryland 20742, USA

Abstract

A theory of fast quasi-collisionless reconnection is presented. For
spatial scales smaller than the ion inertia length the electrons decouple
from the ions and the dynamics is described by electron magnetohy-
drodynamics (EMHD). A qualitative analysis of the reconnection re-
gion is obtained, which is corroborated by numerical simulations. The
main results are that in contrast to resistive reconnection no macro-
scopic current sheet is generated, and the reconnection rate is inde-
pendent of the smallness parameters of the system, i.e. the electron
inertia length and the dissipation coefficients. At larger scales the
coupling to the ions is important, which, however, does not change
the small-scale dynamics. The reconnection rate is only limited by
ion inertia being independent of the electron inertia scale and the dis-
sipation coefficients. Reconnection is much faster than in the absence
of the whistler mode.




1 Introduction

It has been realized since some time that fast magnetic reconnection pro-
cesses may occur in nearly collisionless plasmas. For instance the observed
time scales in the sawtooth collapse in tokamak plasmas [1] are much faster
than could be accounted for by the weak collisional effects such as resistivity
or electron viscosity. Even more stunning are the rapid processes observed in
the extraterrestrical environment, magnetospheric substorm, which seem to
be caused by reconnection in the magnetotail plasma, and solar flares with
reconnection occuring in the solar corona, both plasmas being virtually col-
lisionless.

Recently several theoretical and numerical investigations indicate that the
nondissipative terms in Ohm’s law usually discarted in reconnection theory
[5], in particular electron inertia [2] and electron pressure [3], may give rise to
very high reconnection rates. Numerical simulations have also shown, that
the Hall term, which introduces the whistler mode, may lead to rapid recon-
nection [4]. These processes are, however, not yet well understood. What is
the mechanism for the high reconnection rate, and what is the structure of
the reconnection region in the limit of almost vanishing dissipation? In this
paper we consider the generalized Ohm’s law for low-3 plasmas including
both electron inertia and the Hall term but neglecting the electron pressure
effect. (The latter, which is important in high-# plasmas, has recently been
studied [6].) In section 2 we introduce the equations of electron magnetohy-
drodynamics (EMHD), which are valid at sufficiently small spatial and time
scales, where the ions can be considered immobile. In section 3 we develop
a qualitative theory of reconnection in the framework of EMHD, which ac-
counts for the possibility of fast reconnection independent of the smallness
parameters, i.e. the electron inertia length ¢/w,. and the dissipation coeffi-
cients. Section 4 gives the results of numerical simulations of the coalescence
of two flux bundles, which essentially confirm the theory outlined in section
3. For sufficiently weak dissipation the electron flow along the layer excites
small-scale whistler turbulence, which leads to finite energy dissipation in
the collisionless limit. The properties of the turbulence are discussed in sec-
tion 5. In section 6 the coupling of the EMHD equations to the ion fluid is
introduced, for which we derive a simple set of equations. Numerical simula-
tions at finite ¢/w,; show that the EMHD reconnection dynamics for scales
< c¢/wy; is essentially preserved. The reconnection rate depends only on the




ion inertia, being independent of ¢/w,. and the dissipation coefficients. The
importance of the Hall term is demonstrated by repeating the simulations
with this term switched off. Section 7 sumarizes the results.

2 The EMHD equations

On spatial scales smaller than the ion inertia length c¢/w,; the ions can no
longer follow the dynamics. They form a static charge-neutralizing back-
ground, which can be assumed homogeneous. Under these conditions the
dynamics is only due to electron motions in their selfconsistent magnetic
fields, which in the simplest approximation is described by the equations of
EMHD, the main assumptions being isotropic pressure, homogeneous den-
sity and the omission of the displacement current. EMHD has recently been
discussed in several articles [7], [8],[9]. The equations consist of the electron
equation of motion for v. = —=j/en,
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and Faraday’s law

BtB =—cVXE 5 (2)
where D, represents resistive and viscous dissipation, and j and B are coupled
by Ampere’s law

4
VXB:-CTEj. (3)

Eliminating E, assuming constant density, gives
8. (B - d’V?B) = V x [v. x (B - ?V*B)| = ¢V x D, (4)

with d. = ¢/wp.. Note that the pressure p. does not appear in the final
equation (4). Linearization about a constant magnetic field Bo yields the
dispersion relation of whistler modes

Wt = QKR (14 28) (5)

where €, = eBy/m.c is the electron cyclotron frequency. For kd. <1 eq. (5)
describes modes with high group velocity v, = dw/0k ~ k, the whistler
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mode proper, while for kd. > 1 the whistler frequency approaches w ~ 1.,
such that the group velocity becomes very small. Hence a behavior basi-
cally different from incompressible MHD is possible, where linear modes are
nondispersive Alfvén waves w? = klv?%.

Whistler modes are destabilized by a strong current density gradient [10].
In the presence of a large field By (low-/3 plasma), where electric currents are
essentially parallel to By, the most unstable modes k are in the plane per-
pendicular to By. This behavior suggests to study whistler-related processes
in this plane. Choosing By = Byz, the 2D version of eq. (4) can be written
in terms of the flux function v for the poloidal field B, = z x V4, and the
axial field fluctuation B, — By = ., where the notation indicates that ¢,
acts as a streamfunction of the poloidal electron velocity, v. = z x V.,

O (b —&j) +ve-V(p—d%) = n(-V)) 'y, (6)
0 (e — d’w) — dve -V, +BL-Vj = 1, (=v?) ¢, (7)
=V, w.=V,.

Equations (6), (7) are written in nondimensional form, where we have used
the normalizations # = z/L, t = t/(L*/aBio), $e = pe/Byo, CEC =0 Wl
= nu/aBJ_gL2("“1), finally leaving off the hat in the notation. a = ¢/4mne
is the Hall constant, By = d*§Q). , Byg is a typical poloidal field (the axial
field By does not appear in the 2D equations) and L a typical poloidal scale.
Note that the time unit, the whistler time tw = L*/aB,,, differs from the
Alfvén time t4 = L/va, va = Bio//4wnm;, conventionally used in MHD
theory, tw = t4/d;.

In egs. (6), (7) we have introduced generalized dissipation coefficients 7,,
where 7, corresponds to the normal resistivity, 2 to (perpendicular) electron
viscosity. The equations are formally similar to 2D incompressible MHD.
Equation (6) expresses the conservation of the canonical momentum in z
direction replacing that of the magnetic flux in the MHD case. . and w,
are streamfunction and vorticity of the electron flow v., analogous to ¢; and
w; = V?p; of the ion (=mass) flow in MHD. It should also be mentioned that
in eq. (6), which results from integration of eq. (4), a gradient corresponding
to Vp. is neglected.

Let us briefly indicate the important conservation laws satisfied by egs. (6),
(7). In the dissipationless limit the following quantities are conserved : the



total energy,
W =1 [ [+ (V97 + & (Vo) +57)] @V, (8)
the “cross helicity”
K=1[(6-dh)(p—dio)av, = (9)
the generalized flux
@:/f(zp—dﬁj) dv (10)

where f(z) is an arbitrary function, and a quantity

G=1 [ (- &V — & (o2 + (Vi) aV (11)

the meaning of which is not obvious. We can, however, not exclude that
further invariant quantities exist.

3 Whistler mediated reconnection

In this section we consider the problem of stationary reconnection in the
framework of the EMHD equations (6), (7). The case of vanishing iner-
tia d, — 0 has recently been treated numerically by Mandt et al. [4], who
consider the coalescence of two flux bundles. It is found that the average
reconnection rate is fast independent of the value of the resistivity. Here
we generalize the result to finite d,. We present a qualitative treatment of
the stationary reconnection configuration around the X-point. The results
are essentially confirmed by numerical simulations in section 4. We start by
noting that for d. = 0, i.e. for |z| > d., the stationary equations (6), (7)

E4v.-Vy = 0, (12)
B,-Vy; =0 (13)
have the similarity solution
$ = L(a*-47) . (14)
_E |z+y
Pe = 2lnl__y‘ (15)




where £ = 0,1 is a free parameter. The upstream flow converges toward the
X-point and the downstream flow diverges away from it. Finite resistivity
is only needed to smooth the flow singularity on the separatrix @ = +y.
(By contrast in MHD the solution (14), (15) is found to be only valid for
sufficiently small reconnection rate [11].)

In the vicinity of the neutral point electron inertia in eq. (7) is no longer
negligible and the electron flow deviates from the similarity solution (15).
The magnetic flux, on the other hand, is essentially unaffected by the inertia
term, the X-point configuration (14) remaining valid also in the inertia-
dominated region close to the neutral point. This invariance of i, which
differs from the behavior in MHD, originates from Ampere’s law connecting
7 and v, since the electron velocity determines the current density. From the
canonical momentum F(z,y) = ¥ — d*V*) we find by integration using the
appropriate Green’s function, that

) ol ik
¢:]G(Td$ ,ydy)F(-’L’,y')dsz, (16)

which implies that i varies only on scales > d., i.e. is not affected by the
current distribution inside the inertia-dominated region. Hence 1 can be as-
sumed given by eq. (14). This allows a rather complete qualitative discussion
of the dynamic behavior in this region.

Let us first estimate the scale [, where the electron inertia term becomes
important in eq. (7). We assume that dissipative effects are sufficiently small,
such that the dissipative terms are negligible on the scale I. Hence eq. (6)
reads

Ve V(= V) = —E
For # ~ [ both terms on the left side are of the same order of magnitude, the
first one dominating at larger scales, the second at smaller scales,

ez By ~ Vegdo jfl, VexBy ~ E . (17)
Integrating eq. (7) and neglecting the electron pressure gives
dgvemarver ~ dg Vez [l ~ 1By . (18)

With B,(I) = from eq. (14) eqs. (17), (18) yield the scale
[~ (2E)" . (19)
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(A similar result has been obtained in ref. [12].) Inside the region [ the
current density increases toward the X-point until dissipative effects become
important forming a narrow layer § < [. It is important to note the electron
inertia does not prevent the formation of singular structures. The vorticity
is concentrated in the layer §. Hence for § < = < [ the flow is essentially
irrotational. Using the notations ve(I) = uo ,vez(9) = w1, the simplest
irrotational solution in this region is (see Fig. 1)

T

e = (uo — Ul)fy +wy, (20)
where ug is obtained from eq. (15)
E
Ug = T N (21)

and up6/1 < u; < up. Integrating eq. (6) in this region,
E = —ve; (¢ — &25) ~ veadii (22)

along the z-axis using expression (20) gives the current density j, in the
layer z < 6

K { 1 U
m - i1
J Up — U dg (‘UL(] — ul)% + 1
12 Ug
et E In u—1
E 2/3
= (—) i (23)
de Uy

using relations (19) and (21).
To calculate the variation of j along the the layer we use the conservation
of the canonical momentum 9,(¢ — d?j) = 0 and eq. (14) :

2

j(y)=jm—§d—2 - (24)

The length A of the current layer is defined by j(A) = 0, which coincides
with the point, where the outflow velocity reaches its maximum value vo (in

7




general the layer edge has a rather complicated structure with positive and
negative current density parts, see also section 5). Equations (23) and (24)
give
1/3
A~ (@E)"~, (25)
neglecting the logarithmic factor. Hence we find the important result that
the length of the layer decreases with d., which implies that there is no
macroscopic current sheet in contrast to the behavior in resistive MHD [11].
We now integrate eq. (7) over the area of the layer 6, indicated in Fig. 2.
By applying Gauss’s theorem we obtain neglecting the dissipation term

& j{ Venwedl = an jdi . (26)

Since w, = 0 on the paths 1 and 2 (exactly) and 4 (approximately), only 3
contributes to the integral on the left side, while the major contribution to
the right side comes from path 2.

& ]3 v,050,dz = /2 jO,pdy = & /2 38, jdy (27)

making use of 1 — d2j = const along the layer. Since the outflow velocity vg
in the layer is much larger than outside the layer, eq. (27) gives the relation

Vo 22 jm . (28)

This implies that the electron velocity v., = vo at the layer edge equals the
velocity v., = j in the center. This behavior, which is a consequence of the
conservation of the canonical momentum, can be interpreted as a gyromotion
in the field B, ~ d. perpendicular to the sheet. Equation (28) should be
contrasted with the MHD behavior vy o~ v4 in a Sweet-Parker sheet, where
v4 is the Alfvén speed corresponding to AB, the jump across the sheet.

Finally, the sheet width é can be estimated by considering eq. (6) at the
stagnation point

E= U, (_VZ)U¢ == nuﬁ )

hence :

o~ (nuE) £ 7]3( = 3 (29)




since 7 and E vary only weakly with 7,.

To summarize the results of this section, we have shown or at least made
plausible that the external solution (14), (15) can be matched to the internal
solution in the inertia-dominated region for any value of E. Hence the recon-
nection rate in EMHD should be independent of the smallness parameters
d. and 7,, depending only on the global magnetic configuration. Numeri-
cal simulations, considered in the following section, essentially confirm these
predictions.

4 Coalescence of flux bundles in EMHD

The coalescence of two flux bundles (lux tubes, magnetic islands) is probably
the best known paradigm of a fast selfconsistent reconnection process. We
consider two flux bundles located on the diagonal in a square box of linear
size 27 with periodic boundary conditions :

¢—_—G1GXP{_ [(T’—Tl) Qig(y_yl) } }

+ag exp {— [(T — @) + - y2)2} } — o,

(30)

2
2zg

where the constant g is chosen to make (1)) = 0, x1 = y1 = 7/2 4+ 0.2,
29 =ys = 37/2—0.2 and 2o = 1.0 or 1.1. To avoid perfect symmetry, which
tends to suppress certain turbulent motions, we consider also the case, where
the weight factors ai,a; are chosen slightly different a; = 0.9, a; = 1.1, and
in addition a low level random velocity field ¢.(z,y) is imposed initially.

With these initial conditions egs. (6), (7) are solved numerically with a
pseudo-spectral method and dealiasing according to the 2/3 rule. The num-
ber of modes (more appropriately collocation points) N? is chosen suitably to
provide adequate numerical resolution, N varying between 256 and 2048. Nu-
merical resolution is controlled by inspection of the energy spectrum, which
should exhibit an exponential drop in the high-k dissipation range of at least
a factor of 10. Resistivity 7, is in general not sufficient to prevent the forma-
tion of singularities, since for v = 1 the dissipation terms reduce to friction
terms in j and w.. Hence we choose v > 1, in most cases v = 3 in order to
concentrate the dissipative effects to the highest wave numbers.
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A number of simulation runs have been performed with different values of
the parameters d. and 3. Figure 3 gives the time evolution of the flux () at
the X-point and the reconnection rate £ = 9y for three different cases. The
reconnection process is essentially identical in the three cases, £ increasing
in time and subsequently decaying as coalescence reaches completion. Figure
4 shows % and ¢, at two times { = 0.6 and ¢ = 1.1 during the coalescence
process for the case with d. = 0.03, 73 = 107%. The conspicuous feature
is that the flux surfaces appear to be pulled into the central reconnection
region instead of pushed against it as in the MHD case. This property is
due to the flow pattern with stream lines converging (i.e. velocity increasing)
toward the X-point, which agrees with the similarity solution (15). (In the
MHD case the flow is rather uniform across the flux bundle, even diverging
in front of the macroscopic current sheet.)

Table 1 gives the maximum value E,,,, for seven different cases. The
numbers confirm, that the reconnection rate is essentially independent of
both d. and the value of the dissipation coefficient (apart from a weak in-
crease with decreasing d.).

The properties of the reconnection region are illustrated in Table 2, where
the measured values of the characteristic quantities are given from three sim-
ulation runs taken at the same instant ¢ = 0.64. It can be seen that the nu-
merical results agree approximately with the theoretical predictions, [ seems
to depend on d. somewhat more strongly, [ ~ d>?, than predicted in eq. (19),
while A follows the predicted law A ~ d?/3. Relation (28) is well satisfied.
The increase of j,, with decreasing dissipation coeflicient can be related with
the decrease of § and hence u; in the logarithmic factor in eq. (23). Also the
E-dependence of j,, is approximately recovered considering the time vari-
ation of j,, during the increase of E(t) as seen in Fig. 3. The differences
between the analytical and the simulation results may be attributed to the
fact that the numerical configuration around the X-point is still affected by
the global current distribution and that the analytical solution is oversimpli-
fied neglecting for instance the current and vorticity contributions from the
separatrix.

Hence we find that the numerical simulations support the main results
of the theory of section 3. The electron flow is accelerated toward the X-
point; the reconnection rate is independent of the details of the reconnection
process, in particular does not depend on d. and the dissipation coefficients;
the layer length A shrinks with d., such that there is no macroscopic current
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sheet.

5 Whistler turbulence generated in collision-
less reconnection

It is known from MIID reconnection theory [11], that for sufficiently small
resistivity the strong collimated flow along the current sheet generates a com-
plex behavior, when entering the low-field downstream region. In EMHD,
where the flow is even much stronger compared with the adjacent mag-
netic field, strong whistler turbulence is generated, which propagates into
the downstream region. This behavior is illustrated in Fig. 5, which shows
results from a more general reconnection process developing from the initial
state A; from Ref. [14] (with ¢ — ¢.), with d. = 0.03, 73 = 10", Reconnec-
tion occurs in four points as seen in Fig. 5b. The remaining frames Fig. 5c-e
give blowups of the region around the lower right reconnection point, show-
ing v, j and w.. One can clearly recognize that the turbulence is generated
by V., the current along the sheet, and not by j, the out of plane current.

The mechanism of turbulence excitation can be identified with the Kelvin-
Helmholtz instability of the electron flow. Since turbulence wavelengths are
short k ~ 61 > d-', and w, > j, eq. (7) reduces to the 2D Euler equation.
Kelvin-Helmholtz instability arises, roughly speaking, if kl; < 1, where [; is
the scale of the velocity shear and k the wavenumber, and v ~ v/l is a typi-
cal growth rate. In our case v ~ vy and I, ~ §. Instability becomes manifest
if the sheet aspect ratio A/§ is sufficiently large. (In a more rigorous treat-
ment dissipation must be included, which is not negligible on the scale 6 and
which raises the instability threshold.) The instability first appears at the
sheet edge, but as § becomes smaller by lowering the dissipation coefficients
the entire sheet is affected.

The resulting turbulence exhibits some interesting properties. We con-
sider again the initial state A; from ref. [14], but choose d. = 1, such that
long sheets develop, A 2, 1, with a particularly large aspect ratio A/é. These
sheets are violently unstable (Fig. 6a,b) leading to quasi-stationary turbu-
lence (Fig. 6¢) which occupies most of the area. The energy spectrum (Fig. 7)
has an extended inertial range, which follows the Kolmogorov law k=5/3 very
closely. The energy dissipation rate ¢ = —dW/dt is nearly constant for a
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time much longer than the formation period and is independent of the values
of the dissipation coefficients. In spite of the fact that in eq. (7) the term
B - Vj is in general much smaller than the convective term v, - Vw,, the
former plays a crucial role as a source of vorticity, which in the absence of
this term could only decay. To demonstrate this effect, we switch off 1) at
t = 4 and let w. develop freely up to time ¢ = 6. The vorticity field soon
assumes a state consisting of isolated vortices (Fig. 8), which is characteristic
of decaying 2D Navier-Stokes turbulence (the energy spectrum is about k=)
and is much different from the EMHD turbulence state in Fig. 6c.

6 Coupling to finite mass ions

In EMHD the ions are assumed to be infinitely massive. This approximation
is only valid for magnetic structures of scales smaller than the ion inertial
length ¢/wpi. In most practical applications, however, the global scales of
the magnetic eddies involved in reconnection processes are much larger, so
that the coupling to the ions cannot be neglected. On scales > ¢/w,,; ions
and electrons essentially move together, which justifies neglecting the Hall
term ﬁ_] x B compared with the ion contribution %V,‘ x B in MHD. It is
therefore important to investigate to what extend the coupling to finite mass
ions affects the reconnection dynamics of EMHD just discussed.

We introduce the ion streamfunction ¢;, vi = 2x Ve, w; = V2p;. Adding
the ion and the electron fluid equation gives

d? (Bw; + vi - Vw;) + &2 (Qwe + ve - Vw,) — B - Vj

31
_ (_l)u [ﬂyvz(”—l)w,‘ + nyv2(u—1)we] : ( )

using the normalization introduced in section 2, d; = ¢/w,; L. Neglecting the
out-of-plane ion motion (essentially the motion along the assumed strong
field By), the out-of-plane current density j remains unchanged and so does
the equation for 1, eq. (6). The current density in the plane is, however,
modified, j, = —2 x Vb =2 x Vy; — z x V.. Hence we find b = @, — ¢;
which must be substituted for ¢, in eq. (7). Noting that the electron inertia
term contains only the electron flow ., eq. (7) becomes

0 (@e oy dﬁwe) +v.:V (L,-oe — i — dﬁwe) +B, -Vj

L P
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The energy expression now also contains the ion contribution

W= [ [+ (V) + & (Ve + (V2)?) + d2(Vi)?] AV, (33)

where b = ¢, — ¢; is understood.

Since it is numerically difficult to combine the most interesting case
d; < 1 with a realistic ratio d;/d. = /mi/m. ~ 50, we choose values
d;/d. ~ 10, varying both d;, 0.4 > d; > 0.0, and d;/d., 13.3 > d;/d. > 6.6,
to obtain the relevant scaling laws. Figure 9 shows a typical state from a
simulation run with d; = 0.05, d. = 0.0075, 53 = 4 x 1071°. It can be
seen by comparing @, and ¢; contours, Figs 9b,c, that at large distances
from the X-point and the separatrix ion and electron flow patterns are very
similar. They differ, however, in the vicinity of the X-point (and along the
separatrix), where typical ion scale lengths are much larger than those of the
electrons, being connected with d; and d., respectively. For d; > |z| > d.
the electron flow behaves as in EMHD. We find that the maximum velocities
Vim, Vem Teached in the downstream cone roughly scale as Vem [Vim ~ difde
and so do the distances A;, A. from the X-point, where these velocities are
reached, A;/A. ~ d;/d.. Tt is also noteworthy that at the separatrix the ion
velocity changes abruptly in a shock-like way from the lower inflow to the
higher outflow values. This behavior is reminiscent of the Petschek configu-
ration, which can be set up in this fast reconnection process in contrast to
slow resistive reconnection.

As seen from Table 3 the reconnection rate depends only on d;, i.e. ion
inertia, while it is independent of d, and the values of the dissipation coef-
ficients. The fact that in Table 3 the reconnection rate, in particular Fqz,
increases with decreasing d;, is due to the normalization to the whistler time
tw, connected to the Alfvén timeby ¢4 = twd;. Hence the scaling [0z ~ d:!
obtained from Table 3 for the range 1 > d; 2 0.1 implies that reconnection
proceeds on the Alfvén time scale depending only on the global configuration.

It should be noted that the state shown in Fig. 9 illustrates the behavior
of the coalescence process for ¢ $t, with E(tm) = Emae, where the time
variation of E(t) is similar to that in the pure EMHD cases given in Fig. 3.
In this phase, where roughly half of the available magnetic flux is recon-
nected, reconnection is quasi-Alfvénic. At later times ¢ > i, E decreases,
while the flow velocities, i.e. the kinetic energy, is still growing, since the
magnetic energy continues to decrease until coalescence is complete. In this
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phase the inflow velocity is too high to be matched by the decreasing rate
of flux removal such that flux is piled up in front of the layer, the length
of which increases to macroscopic size. This stretched-out sheet becomes
unstable to plasmoid generation similar to the behavior in the resistive case
[11]. Reconnection in this second phase is not slow, since plasmoid genera-
tion is accompanied by the reconnection at newly arising X-points, which is
as efficient as at the original central X-point in the first phase. The quasi-
collisionless behavior in the limit d; — 0 is difficult to assess. The system
will probably be rather turbulent in the reconnection region involving both
electron whistler turbulence as discussed in section 5 and MHD turbulence.
In any case will reconnection be much faster than predicted by theories ig-
noring the Hall term.

To demonstrate the role of the whistler dynamics we switch off the Hall
term by setting ¢. = ¢; = ¢, but keep finite electron inertia in eq. (6).
This model has previously been used in studies of collisionless reconnection,
e.g. [2], [13]. Figure 10 illustrates the resulting behavior for a run with
d; = 0.2, d. = 0.015. (Note that neglecting the Hall term eliminates the ion
inertia scale ¢/w,; as an independent spatial scale, as can be seen by writing
the equations with the conventional Alfvén time normalization.) Compared
with Fig. 9 the flow pattern is changed significantly, the ions are now forced
into a layer of width d.. The reconnection rate is found to be much slower
than in the corresponding case including the Hall term. Varying d. we find
that the reconnection dynamics depends strongly on d., roughly FE,... ~ d..

7 Conclusions

We have shown that the Hall term in Ohm’s law has an important effect
on the dynamics of magnetic reconnection processes in almost collisionless
plasmas, leading to reconnection rates which are essentially independent of
the smallness parameters, the electron inertia length and the weak dissipa-
tion effects, depending only on the ion inertia. Neglecting the Hall term, but
keeping electron inertia, which has often been considered to be the most im-
portant collisionless effect in Ohm’s law, leads to a much slower reconnection
rate £ ~ d.. It is interesting to note that the Hall term, which contributes
to £, appears to be more important than )|, which is usually considered as
the essential mechanism for reconnection. Though reconnection requires fi-
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nite Ej|, the reconnection dynamics depends also on the dispersive properties
of the system which are strongly affected by the Hall term. In MHD theory
the only relevant linear mode is the nondispersive Alfvén wave w? = kfjv3,
where group and phase velocities are independent of & depending only on
the direction of k with respect to the magnetic field. Strong stationary field
gradients can be generated perpendicular to the field, since the group ve-
locity vanishes. Since along the field, i.e. along the current sheet the fluid
velocity increases, there can be no small-scale stationary spatial structure,
hence the sheet extends to macroscopic length. The Hall term introduces
a highly dispersive mode, the whistler, eq. (5). Neglecting electron inertia
d. — 0 an inhomogeneous stationary configuration is given by eqs (14), (15).
Since the fluid velocity decreases away from the X-point v ~ llYp the group

velocity v, ~ k can match the structure of this configuration & ~ Il?l This

is no longer true for modes kd. > 1 where v, ~ k™. TFor such small-scale
structures to be stationary v-has to increase, i.e. there must be a sheet of
length d..

We should mention that a similar situation arises when instead of the Hall
term the electron pressure term in Ohm’s law is taken into account, which
leads to a different dispersive mode, the kinetic Alfvén wave. In this case we
also expect a macroscopic X-point behavior giving rise to fast reconnection,
which is essentially confirmed numerically [3], [6].
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de 7?3 Ema:.':

0.1 107° 1.28
0.1 1078 1.30
0.06 1078 1.27
0.06 5x107' 1.36
0.03 1078 1.42
0.03 5x10710 1.42
0.01 108 1.53

Table 1 Maximum reconnection rate F,,,, for seven different EMHD runs.

d. 73 ) A Vo JIm

0.06 5x1071° 0.031 012 54 6.3
0.03 5x1071° 0.016 0.08 5.5 6.7
0.03 5x10"* 0.018 0.077 7.6 8.5
0.015 5x10" 0.01 0.05 81 1L5

Table 2 Characteristic quantities of the reconnection region for three differ-

ent EMHD runs.




d; de 73 Emaz tO

o 0.03 1078 14 15
04 003 4x107° 1.7 13
0.2 0.03 10" 2.5 1.0
0.2 0015 1078 24 1.0
0.2 0.03 4x107° 24 1.0
0.1 0.015 10-8 44 0.5
0.L 0015 4x107° 44 0.55
0.05 0.0075 4x107° 6.7 0.35

Table 3 Maximum reconnection rate F,,,. and time ¢, for complete coales-

cence for different simulation runs including the ion motion.




Fig. 1 Upstream velocity profile v.,(z) (schematic drawing).




Fig. 2 Integration domain in eq. (26).
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Fig. 3 Time evolution of £ = Oy and ¢ for d. = 0.03, 73 = 107% —
d, =0.03, 3 =5x 10710 —

- d. = 0.06, M3 = 1078 —--- —




Fig. 4 Coalescence of two flux bundles in EMHD, d. = 0.03, 53 = 1075.

Contours of 1 and . for two different times.




Fig. 5 Generation of whistler turbulence in EMHD reconnection, d, = 0.03.
Global view of (a) ¥(z,y), (b) j(z,y); blowups of the region around

the lower right X-point (¢) v, (d) 7, (e) we.
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Fig. 6 Generation of whistler turbulence, same initial configuration as in

Fig. 4, but d. = 1: w.(z,y) at t = 2.1 (a); t = 3.0 (b); t = 4.0 (c).
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Fig. 7 Compensated energy spectrum k*/°E, corresponding to the state

Fig. 6c.




Fig. 8 w.(z,y) at t = 6, for turbulence decaying from state Fig. 5¢ with the
Lorentz force B - Vj switched off.
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Fig. 10 Coalescence of two flux bundles neglecting the Hall term, d. =
0.015, 73 = 4 x 107'°. Contours of (a) ; (b) ¢(= ¢; = ¢.).




