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Abstract

Comments on the nature of turbulence in macroscopically confined
plasmas, in contrast to turbulence in hvdrodynamics, are made in the
introduction. It is suggested that equilibrium statistics may be a rea-
sonable approach for plasma fluctuations. For that purpose, nonlinear
drift wave equations are derived from two-fluid theory. This helps to
construct continuous plasma models with simple Hamiltonians, which
allows canonical distributions to be defined explicitly. Partition func-
tions and correlation functions can be calculated analytically in the
one-dimensional case as functional integral averages over canonical
distributions. This leads to a Lorentz spectrum in k-space. which has
the observed plateau behaviour for small k, but disagrees with the k=>-
dependence for large k. Though explicit calculations of the correlation
function are not feasible in the two-dimensional case, the reasonable
assumption of its exponential behaviour leads to good agreement with
the experiment. In particular, the observed £~? behaviour for large k
is now confirmed theoretically. The open problem of saturation levels
of fluctuations is discussed in the conclusions.

1 Introduction

Macroscopically confined plasmas are not quiescent in the small and display
a complex structure of fluctuations in space and time. These fluctuations




are the result of small-scale instabilities which saturate due to the effects of
sources. nonlinearities and dissipation. The picture is somewhat similar to
turbulence in fluids at high Reynolds numbers. It is important to under-
stand turbulence in order to be able to explain observations and improve
engineering designs in. for example, astrophysics or fusion plasmas.

Anomalous heat conduction observed in fusion plasma devices limits the
energy confinement time. This effect has to be compensated by increasing the
size of the plasma and the device itself. This calls for extensive outlay and re-
duces the economic attractiveness of fusion reactors. Anomalous conduction
is caused by the fluctuations mentioned above. which are a manifestation of
turbulence. This means that understanding instabilities and turbulence is a
crucial question for fusion as an energy source.

There are two basic difficulties in understanding turbulence quantitavely.
First. the dynamics is highly nonlinear. Second, the statistics is not at equi-
librium as in thermodynamics. More precisely, complex nonlinear and dissi-
pative dynamic systems have, usually, several complex attractors. The statis-
tics on such attractors is not an equilibrium statistics, unless special condi-
tions are met. An instructive example of complex but analytically tractable
dynamics is given by a large system of van der Pol-like oscillators interacting
through coupling matrices [1]. The location of attractors in a finite region of
phase space can be established, the attractors themselves being inaccessible
to analysis. When the finite region shrinks to a hypersurface containing the
attractor. an equilibrium statistics is then possible. At the same time a Li-
ouville theorem in phase space becomes valid and compensation of driving
and damping becomes local.

Usually. turbulence in hydrodynamics is investigated for the case of well-
separated sources and sinks. The sources are active at long wavelengths or
low k-vectors. and the sinks are effective at large k. The main interest is then
focussed on the inertial range, which lies in k-space between the sources and
the sinks. This is justified by the fact that, usually, either the boundaries or
large-scale instabilities are the cause of sources, and the viscosity is respon-
sible for the sinks. The inertial nonlinearity causes a cascade of energy from
the low k to the large k.

In macroscopically confined plasmas the situation is quite different. The
sources are due to small-scale instabilities perpendicular to the magnetic
field. but large scales along the magnetic field, and the sinks are due mainly
to the "shear damping” which occurs at low k-vectors parallel to the magnetic




field. The role of nonlinearities lies in the redistribution of the modes. It is
then not too bad an approach to consider the driving and the damping as
canceling each other locally, and to try to look for continuous, conservative
plasma models and their equilibrium statistics. The paper is structured as
follows: In Section 2, continuous plasma models are introduced. Section 3
deals with the construction of Hamiltonians for those models. Correlation
functions and spectra are the subject of Sections 4 and 5. The conclusions
are presented in section 6.

2 Continuous Plasma Models

In the search for continuous plasma models, the first idea which comes to
mind is to look for the well-known macroscopic descriptions such as ideal
magnetohydrodynamics (MHD), the two fluid theory or the Vlasov-Maxwell
system. These models are fine but the problem with them is that theyv
cannot be described by a "faithful” Hamiltonian formalism in terms of Euler
or Clebsch variables. In short, Euler variables give rise to degenerate Poisson
brackets and Clebsch variables are not a single-valued representation of Euler
variables. See Refs. (2] and [3] for a discussion of this question.

On the other hand, many scalar equations such as Korteweg-de Vries
equation do have essentially faithful Hamiltonians [4]. Fortunately, impor-
tant fluctuations in plasmas seem to be well approximated by drift wave
equations described by a single scalar, the electrostatic potential.

This leads us to concentrate on the latter kind of equations, which can
be derived from the two-fluid and Maxwell system. The equations of motion
of the two-fluid system read

av;
n.,-ﬂu(-é‘—;— +v:-Vv;) = en;(E+v; xB)—Vp,. (1)
ngmc(% +ve-Vv,) = —en(E+ v, xB)—- Vp.. (2)

Let us apply syvstem (1),(2) augmented with continuity, Maxwell equa-
tions and appropriate equations of state to the case of a slab of low-pressure
plasma immersed in a strong, homogeneous magnetic field B pointing in the
z-direction. Any time-dependent perturbation about the slab geometry is
restricted to being electrostatic, E = V¢, so that Maxwell equations reduce




essentially to quasineutrality if the perturbation wavelength is larger than
the Debve length. In addition, we assume low-frequency perturbation. for
which the inertia of the ions can be neglected in first approximation, and
the electrons can be taken as isothermal along B. The relevant equations for
a low-3 (3 is the ratio of kinetic pressure to magnetic pressure) plasma are
then given by
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dn;
—é:{_‘*'v‘(nivij.) = 0, (5)
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where n. and n; are the electron and ion densities, v, and v; are the elec-
tron and ion macroscopic velocities, T, is the electron temperature. ¢ is the
electrostatic potential, x is the coordinate perpendicular to the slab and v 1s
the coordinate perpendicular to both x and z, ng is the unperturbed density,
e is the charge of the proton, and k is the Boltzmann constant.

Equations (3) and (4) solve the equations of motions for neglected inertia.
The parallel motion of the ions is small in view of their large mass. The
continuity equations for ions and electrons are expressed by equations (5) and
(6). while the electrons behave along z according to a Boltzmann distribution
given by equation (7). Quasineutrality, easily restored by the electrons along
the field lines. is ensured by equation (8).

Elimination of v; and n; from equation (5) using equations (3) and ()
leads to the following equation for o :
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The subscripts as well as the explicit indication of x-dependence have been
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dropped in equation (10). The prime denotes the derivative with respect to
X.

Equation (10) is essentially the inviscid Burgers equation in which x ap-
pears as a parameter. It is the simplest model of a nonlinear drift wave
equation, and was discovered in 1967 by the author [5]. The nonlinearitv
is due to the temperature gradient of the electrons. which is present in any
confined hot plasma, and is called “scalar nonlinearitv™ in the literature.
In regions of flat temperature profiles. equation (10) becomes linear. In this
case, however, higher-order terms due to ion inertia produce a so-called “vec-
tor nonlinearity”, which is. in essence. two-dimensional and first appeared in
Ref. [6).

The solutions of the inviscid Burgers equation are known to develop in-
finitely steep gradients at finite times, which can be prevented by adding
some of the neglected physical terms such as ion inertia or gvroviscosity.
thus limiting attention to nondissipative effects.

A first attempt [7] to take such terms into account was to consider the
case of cold ions and concentrate on the first inertial term in equation (1).
On the assumption of solutions with weak x-dependence. the correction due
to 1on inertia is obtained by iteration of equation (1). inserting in the inertial
term the approximate solution given by equation (3) for zero ion pressure.
This leads to

Vox B o m; %0
b2 YeB2 gydt

Vii =Vio+ Vi = (11)

Let us insert v from equation (11) in equation (5), using equations (7) and
(8) to obtain
eB do n . i eo)ao m; o . € a_o d*é B
kT Ot n TkT 0y eB otdy* kT dydyot’

(12)

Equation (12) becomes identical to equation (6) of Ref. [7] if o is replaced
by —o. and if solutions of the form o(y — ut) are sought. The discussion of
such solutions led to the existence of drift solitons [7] and other nonlinear
waves.

To go bevond equation (12). keeping the assumption of cold ions. it will
be necessary to go to higher-order terms in the expansion in the inertial
terms. In Ref. [6]. the so-called vector nonlinearity has been included as




another correction to equation (11) . which yields

Vox B m; %o
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). (13)
Similarly to the derivation of equation (12). we insert v from equation (13)
in equation (5). using equations (7) and (8). and obtain a two-dimensional
equation of the type
d 2 —y

a(o—\_ o)+ (Voxe.-V)V70o=0. (14)
The coefficients in equation (14) have been omitted. to give the equation the
same form as in Ref. [6]. The scalar nonlinearity of equations (10) and (12) is
absent in equation (14) because of problems of ordering. i.e. this nonlinearity
is of zero order and would dominate the vector nonlinearity.

Equations (12) and (14) are too simple to describe real situations. Since
the jons are not cold. diamagnetic and gyroviscous terms should be taken
into account. Also the parallel velocity of the jons could cause acoustic
waves along the magnetic field and. if different from the parallel velocity
of the electrons, contributes to the creation of electric currents and related
magnetic fields. On the other hand. the electrons do not need to behave "adi-
abatically™ as expected in equation (7). Friction between electrons and ions
decouples density and potential fluctuations. Finally. the slab geometry and
the homogeneous magnetic field are too simple an assumption to represent
real toroidal situations. A fair account of sophisticated drift waves models 1s
given in Ref. [8].

All these effects tend to complicate the approximate equations 1n such
a way that they become as difficult to handle as the the original two-fluid-
Maxwell system. The \asov-Maxwell or the Fokker-Planck-Maxwell system
would. of course. be much less tractable either analvtically or numerically.

Our aim is to extract statistical information about the system, but this
does not seem possible to achieve on such difficult equations. especially if dis-
sipative terms are included [1]. On the other hand. nondissipative equations
do not alwayvs have faithful Hamiltomans in useful variables. This leads us
to look for models containing an essential part of the physics and possessing
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faithful Hamiltonians simple enough to be able to carry. on canonical dis-
tributions constructed with them. calculations of statistical averages such as
correlation functions. Note that such correlations are functional integrals.
which can be very difficult to evaluate.

3 Hamiltonians

To construct canonical Gibbs distributions, first we need to have Hamilto-
nians. Usually Hamiltonians are derived from Lagrangians using Legendre
transformations. Lagrangian formulation has the advantage of ensuring in-
variance properties such as Galilean invariance of the original exact equa-
tions. The penalty. however, lies in the complexity. if not chaoticness. of
Lagrangian variables. This makes the corresponding Hamiltonian highly non-
linear and useless for evaluating functional integrals. It may be of a great
analytical advantage to remain in Eulerian variables [2], [4] and elaborate
drift wave approximations as we did in the previous section. The penalty
1s now that some of the model equations obtained may. for instance. not be
Galilei invariant. As long as we remain in the reference system in which the
approximations made are phvsically valid. we are safe.

Equation (10), as mentioned above, is the inviscid Burgers equation. In
reduced form it reads

du du
— bu)— = 0. 15
5 (et U)ay (15)
Its Hamiltonian in terms of Eulerian variables is given by the functional
w b _
H=/(a—+b—)(1y. (16)
2 6
so that equation (15) can be written as
du 0 6H
— e = 115 H; 17
dt  dy du [, #) (7

where the brackets denote the generalized Poisson brackets of two functionals
and are defined as [11]

oF 0 0G / (1
———dy.

du dy du v

on

[F.G] =
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Brackets (18). though noncanonical. have the property that their sym-
plectic operator. 1.e. % . is independent of the dynamic variable u. This
property is important for defining simple volume elements in phase space
and for satisfying the Liouville theorem despite the noncanonical formulation
[9]. The symplectic operator of brackets (18) is essentially nondegenerate.
i.e. the brackets possess few or none Casimir invariants [10].

As discussed above. the solutions of equation (10) may contain infinite
gradients, which led us to introduce equation (12). Unfortunately. equation
(12) has mixed time and space derivatives toget her with nonlinearities. which
makes the introduction of a Hamiltonian formulation very difficult. In order
to proceed. we have to make assumptions in addition to the expansion in
the strength of the inertial terms. assumptions which cannot be justified by
expansions in small parameters.

We now state that equation (12) can be modelled by Korteweg-de \Tties
equation for the following reasons: First. both equations have solitary wave
solutions. Second. the time derivativein the two terms within the parentheses
of the last part of equation (12) can be approximated by the space derivative
for long wavelengths. Third. the second of these two terms is smaller than
the first for small amplitudes. Our model equation is then of the form [12]

w, — Cruny, + Cauyy, = 0. (19)

For the coefficients and further calculations see Ref. [13].
Equation (19) has the following Hamiltonian [11] :

I = f(%—uS + %ui)dy. (20)
together with bracket (18). so that
d ol .
thy = ?);E-'— (21)

Hamiltonian (20) is not bounded because of the cubic term and the fact that
u can have both signs. Note that. in some cases, unbounded Hamiltonians
can be used in equilibrium statistics. but at the expense of a rather difficult
analysis [14].

There is another [15] symplectic representation of equation (19) with
Hamiltonian

1 .
HE:;/UZJ”U (22)



and bracket

, 6F, _ PR 200 & 1 G
| ] 611( 257 3 udy 3 ttp_)é“(y (23)

so that equation (19) can be written as

93 2 3 & 6Hg
= [u. He] = —(Crog = 20
u; = [u, Hg| ( *0y3 3 dy 3 E

Representation (22)-(24) has a bounded Hamiltonian (22). but a rather com-

: , : ot o 9t 20,8 C e ,
plicated symplectic operator —(CgayQ_ — S3tug, — Ftuy). which depends upon

u. so that nice properties. such as the Liouville theorem and the simple vol-
ume element in phase space. are lost. Fortunately, a transformation [16]

() 1
u=—v2+ C3 vy (2

6

S}
Ut
~—

exists which induces a new phase space v with E% as svmplectic operator. v

obeys the modified Korteweg-de Vries equation, which can be written as

54 d 6Hy
v = vty = Cavyy = 7 en-E‘ (26)
with o2
1 .
He(v) = 3 /(%f“l + Cyvl)dy. (27)

which is formally identical to the one-dimensional Ginzburg-Landau potential
[17] . Note, however, that any solution of equation (26) is a solution of (19).
but the opposite is not true, which means that solutions of the Korteweg-de
Vries equation may be lost through transformation (23). This will have to
be remembered when averages over phase space v are taken later.

The last equation for which we would like to have a Hamiltonian is equa-
tion (14). In view of the problems already mentioned, concerning the Hamil-
tonian formulation of equation (12), one is discouraged from looking for a
simple canonical Hamiltonian. There is. however, a noncanonical formula-
tion for equation (14) [18]. The brackets in this formulation are noncanonical
and depend upon the dynamic variable, so that they are not veryv useful for
the calculation of averages.




Instead of equation (14). it is more practical to use an ad hoc model
containing terms reminiscent of the scalar nonlinearity of equation (10) as
well as two-dimensional dispersive terms reminiscent of the one-dimensional
dispersive term of equation (12) or (19). This ad hoc equation has. at the
same time. a simple Hamiltonian formulation and appeared for the first time
in Ref. [19]. It reads

_ 988 28
e dy du’ (25)

with a Hamiltonian of the type
i g /[71.’4 3 (%%)2 + (a—;)z]d.rdy (29)

and Poisson brackets identical to those given by equation (18). Hamiltonian
(29) is this time formally identical to the two-dimensional Ginzburg-Landau
potential [17] .

4 Correlation Functions and Spectra in One
Dimension

As stated above, statistical averages for continuous systems necessitate the
calculation of functional integrals. Functional integrals are the limit of mul-
tiple integrals when the number of integrations goes to infinity m a proper
way. It is known [20] that such integrations can usually be done explicitly for
one-dimensional problems and only occasionally for two-dimensional systems.
Though observations suggest two-dimensional behaviour of drift waves, for
technical reasons we would like to start with one-dimensional systems.

Following Ref. [21] and Ref. [13], we calculate first the partition function
7 for a svstem described by equations (26) and (27),

7 = _/D(i')exp(HBHE('t‘)). (30)

where 3! is the “temperature” or energy of the fluctuations. The Hamilto-
nian Hg(v) from equation (27) 1s rewritten as

= /5-1(51‘4 + ). (31)
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with

Iu'wr?g
e

= (32)

CAa i~

b
and the length ¢ will later be related to the correlation length. Expression
(30) is written first in discretized form as

U; — Ui.o <
bty +c(—E—7) (33

N
7= \h—me—\ /H dv;exp{— Ny

3Ay
1=—N ‘f
where N is defined by N = ALy . L being the periodicity length of the function
v. When N goes to infinity, Ay goes to zero with L fixed. The integration
can be reduced to a product of single integrals by using the eigenvalues of
the transfer integral operator [22] :

. ‘ Ay,
D" [ dvioy exp(=Af (vi, via[a(vin) = exp(—Be L punlv). (34)
q
Operator (34) reduces to the one-dimensional Schrédinger operator in the
limit of N — oc and Ay — 0 [22] . It reads

1 d? 3 -4 i
(—Im + "), (v) = .87 2t (v) = Enttn(v), (35)

¢

where 35! = b and £ has been chosen as . Obviously, it holds that E, =

enﬁf}?ﬂg%. A good approximation to Z is
£ ; o
A~ exp(—gﬂeo). (36)

where ¢ is the lowest eigenvalue of the anharmonic oscillator.
We can now proceed to the evaluation of the space (equal time) correlation
function. The definition is given by

exp(—/3Hg)

7 : (37)

Cly) =< u(y)bu(0) >= /D(r)éu(y)éu(ﬂ)

where o —3H
bu=u—<u>.<u>= ]D(r)éuehpTE). (38)
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and u is expressed in terms of v through equation (25). The explicit calcu-
lation of correlation function (37) closely follows the evaluation ol partition
function (30) using the transfer integral operator technique (34). It closely
follows the method given in Ref. [22]. One obtains

‘ Cr .= . Bo.2 ‘ ]
C(g) - ?)é n:l[< 'l-‘ﬂll'z‘l..'ﬂ > -(_C‘)T)?(Eh - EO)Z < t""lvll"o >J; .
y B
expl—H(ZINE, — Eo)l. (39)
£ 1

where the Dirac brackets denote scalar products in the Hilbert space of eigen-
vectors.

We are now in a position to calculate the k-spectrum of the fluctuations
by taking the Fourier transform of correlation function (39) :

of LY by oy = n
:;(A)_fdyem :c(y)fzg——kupn. (40)
where
-1 i-}O 1L
By = E (7)“(E,1—E0). {11)
Clz [ 2 2
gn = ¥[< P |02 |t0 > — < Unlv|to > (Pré)7]- (42)

To subject spectrum (40) to observation. it is first necessary to relate the
" constants”™ (' and C; of equation (19) to the experiment. For ('; we use the
coefficient in front of the steepening term of equation (10), originally discov-
ered in [5]. For ('; we can use the coefficient of the linear "dispersive” term
of equation (12) or think of some gyroviscous effect due to the finite gyroradii
of the ions [13]. The choices of 3 and L are related to the observed level of
fluctuations and to the large radius of the toroidal tokamak experiment [13].
respectively. This procedure yields essentially a Lorentz spectrum in k since
the terms for n > 1 are negligible in equation (40). For more details and a
plot see Ref. [13].

In the meantime. recent experiments [23] confirm the plateau behaviour of
the spectrum for small k but give a k=% behaviour for large k. in disagreement
with the k=2 behaviour of spectrum (40). In the next section it will be
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seen that the disagreement is due to the one-dimensional calculation. which
contradicts the two-dimensionality of the observed turbulence.

The Lorentz spectrum and the related exponential decay of correlation
function (39) seem to have a kind of universal character. Hamiltonians of
the form

H = /[g(u)-{—auj]dy. (43)

with g(u) higher than quadratic and H bounded or H > 0 give rise to an
exponential shape for the correlation function and to a Lorentz shape for the
spectrum [24, 10]. For example, equations of the type

wy — w Uy + Uyyy = 0, (44)

with n an integer, would belong to the "universality”™ class. This fact gives
us some freedom for modeling physical systems in two dimensions. as demon-
strated in the next section.

5 Spectra in Two Dimensions

As already mentioned above, it is important to have a model containing the
main physical effects and possessing a simple Hamiltonian formulation. It
turns out that the simplest two-dimensional extension is given by Hamilto-
nian (29) [19]. Unfortunately, functional integrals with Hamiltonian (29) in
the canonical distribution like

exp(—3H)
Z

are not tractable analytically for two-dimensional models. Note that fluc-
tuation du is defined similarly to the one-dimensional case as in equation
(38).

At this point, we have to guess the right behaviour for the correlation
function. Inspired from two-dimensional calculations in spin systems [25]
and from the one-dimensional result (39), we assume

Clz,y) =< ulz,y)6u(0,0) >= fD(u)éu(.r.y)éu(0.0) (45)

C(r) = exp(—pur). (46)

where r = /22 + y?. To obtain the spectrum we take the two-dimensional
Fourier transform of correlation (46), which according to theorem (56) of
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Ref. [26] 1s ‘
Sk} = / exp(—ur)rJo(kr)dr. (47)
0

where .J, is the zeroth-order Bessel function and kb =

2. Integral (47)
is known [26]. which gives

14
(Vi + k23

4

S(k) = (13)

Spectrum (48) has the observed 13 behaviour for large k with a plateau
for small k. in agreement with the experiment (23]. This result is quite en-
couraging for the pursuit of a macroscopic modeling of drift wave turbulence.
Though equilibrium statistics cannot deliver the height of the spectrum.
which is related to the saturation level of the turbulence and is responsi-
ble for the observed anomaly in diffusion, it gives a consistent picture of
the spectrum, which may increase our understanding of the scalings to large
plasmas.

6 Conclusions

Because of the special nature of drift wave turbulence. as discussed in the
introduction, it is possible to apply the equilibrium statitical approach suc-
cessfully. The introduction of approximate nonlinear drift wave equations
together with adequate model equations having simple Hamiltonians is a ba-
sic starting element of this approach. Basic difficulties relating to the explicit
analvtic calculation of functional integrals as averages over canonical distri-
butions can only be overcome for one-dimensional continuous systems. The
Lorentz spectrum obtained in this case disagrees with the &= fluctuation
spectrum observed in large tokamaks [23]. Though the two-dimensional case
is not completely tractable analytically. the reasonable assumption of expo-
nential behaviour of the space correlation function leads to a spectrum in
excellent agreement with observation.

This approach ignores the difficult problem of the saturation level of fluc-
tuations in assuming a local balance between driving and damping [1]. This
malkes the problem analytically solvable, but gives a partial answer. which 1s
the k-spectrum of fluctuations. The determination of the saturation level re-
mains an important open problem whose solution is crucial for a quantitative
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estimate of the observed anomaly in diffusion. Its solution must involve the
sources and sinks of turbulence. The statistical part of the problem will have
to be done out of equilibrium. This is a major question in turbulence which
seems to resist all attempts at solution, including the "Maximum Entropy
Principle” advocated in Ref. [27]. The application of this principle implies
the introduction of side-conditions compatible with the dynamics [1]. The
side-conditions are. in general, impossible to find and formulate for nonlinear
dissipative systems. The saturation level of drift wave fluctuations and the
related anomalous diffusion will have to be extracted from the subtleties ac-
companying the application of such a principle or any other nonequilibrium
approach.
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