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Abstract

Force free fields can be generalized to Trkal flows in magnetohydrody-
namics if a special velocity field parallel to the magnetic field is introduced.
Such flows decay exponentially in time in case a constant viscosity and a
constant resistivity are added. The stability of generalized Trkal flows is in-

vestigated and a sufficient condition for nonlinear stability is derived. For




low velocities. this condition reduces essentially to the nonlinear sufficient

stability condition for force free fields. previously found by the author.

PACS: 52.30.-q , 47.20.-k , 47.65.+a




Trkal flows' in hydrodynamics (HD) are decaying Beltrami flows. Thev
decay stably in that the structure of the Beltrami flow is maintained if the
Reynolds number is small enough. The analog of a Beltrami flow in magneto-
hydrodynamics (MHD) is a special force free field. In this note, we generalize
the Trkal flows of HD to MHD considering a decaying force free field com-
bined with a similarly decaying flow along the magnetic field lines. We also
analyse their nonlinear stability. The basic equations of resistive, viscous and

incompressible MHD are

g_¥+v.vv = jxB-Vp—vVxVxv-Vo, (1)
E+vxB = pj, (2)
V.-v = 0, (3)
V-B = 0, (4)
VxE = —%—?. L)
VxB = j (6)

where the mass density in front of the inertial term has been taken equal to

1 for simplicity. The viscosity » and the resistivity 7 are material constants.




® is an external or gravitational potential. p is the pressure. v and B are the
velocity and the magnetic field. E and j are the electric field and the electric

current density.

To construct generalized Trkal flows, we make the following ansatz

R = voe_"'\zi. (7)
B = Bge ™. (8)
V Xxvg = Avg, (9)
V x BO = ABO (10)
v = 3By, (11)
72
p+ ?—F(I) = h(t). (12)

with n - vo = n - Bg = 0 at the boundary. A and 3 are constants in space
and time. h({) is a function of time only. Equation (12} is essentially an
equation for the pressure. The Trkal MHD solution (7)-(12) can be verified

by inspection in equations (1)-(6). using the vector formula

\—’(a-b):a-Vb—}-b-Va-{-axTxb-}—bx\_xa (13)

in equation (1). We see that the Beltrami flow. the force free field and combi-




nation of them can be recovered from the equations (7)-(12) by annihilating
v and 1 . The Trkal flow of HD is recovered for By = 0.

In previous work of the author®? . the nonlinear stability of decaying force
free fields has been analysed by Liapunov methods resulting in an uncondi-
tional sufficient stability criterion independent upon the magnetic Reynolds
number or Lundquist number. Here, we generalize this stability analysis to
the MHD Trkal flows given by (7)-(12). Let us write equations (1)-(6) for
finite perturbations about the Trkal solution (7)-(12) after introducing the

vector potential perturbation A; with the vanishing electrostatic potential

gauge
?gf+v1-\_'v+v-Vvl+v1-\_’v1 = 1 xB+AB xB;+
JhxB—Vp =V, —
vV x V x vy, (14)
_A4vxBi+vi xB+v; xB; = 7j. (15)

Equations (3)-(6) for the perturbed quantities are not reproduced here since

they would be identical to the nonperturbed equations. We give, however,




the curl of equation (2) explicitly since it will be used in the construction of

Liapunov functionals
B,=Vx(vxB;+vixB+v;xBy)—79V xji. (16)

Taking the scalar product of equation (14) with vy and of equation (16)
with B; ., integrating over the volume of the fluid and adding we obtain.
omitting the volume element in the integrals

1d

33{](1‘3‘&'812) = ./Vl‘VXVXV1+/VXB1'V1XB1+

)\/V1XB'B1

—V/(v % vl)?-u/ﬁ. (17)

To cancel the surface integrals in the derivation of equation (17) we have
used equations (3)-(6), (10) and (13) and assumed that v, = B, = 0 at the
boundary of the fluid. The "nonslip” condition for By is rather unusual and
needs for its realization a good conducting boundary but, at the same time.
a high contact resistance normal to the boundary.

The third integral on the right hand side of (17) can be evaluated by

taking the scalar product of (15) with B; and making use of the boundary
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conditions to give

A d
A/vl><B-B1=3E]A1-\_’xA1+/\q/jl-Bl.

Inserting the left hand side of (18) in (17) leads to

1 d
S22 [0+ (¥ x ALY+ (1-0)(¥ x A1) = MA; -V x Ay) =
(—u/(val)?—I—]Vl-vxvl)—{-
(—an/(VxB1)2+/VxB1-val)

—n/((l —a)(V xB;)*—AB,-V x B,).

where a is some positive number between 0 and 1 .

The Reynolds number being defined as

Lv
R, =—.
1%
let us introduce
Lv
R,=—.
arn

(20)

(21)

in which v has been replaced by an . We can guess that if R, and R, are

small enough the two first brackets on the right hand side of (19) can be

made negative. This is, in fact. proved for the first bracket in Serrin’s paper*

7




for general bounded flows in HD. Since B; obeys the nonslip condition. the
proof automatically extends to the second bracket also. Note that if a is
chosen small, v will have to be accordingly small as well.

Now, assume that v is small enough so that the two first brackets on the
right hand side of (19) are negative. we can state that a sufficient condition

for nonlinear stability at all levels of perturbations is given by

A
f((VXAl)Q—(l—__“O—)Al'VXAl)EU i

o
[ S]
~—

for all A; and B; = V x A, satisfying the boundary conditions. The proof
of that statement is essentially given in Ref.> . Note that if the Trkal flow
becomes a force free field, a can be chosen null and condition (22) is the
same as the one found in Ref.® and Ref.> . As long as a can be chosen
small compared to 1. condition (22) gives a geometric limitation for A but
no limitation on the magnetic Reynolds number or the Lundquist number.
This proof goes bevond the arguments given in Ref.® and Ref.,” which are
valid for vanishing flows and in the limit of small resistivity only.

In summary. it is found that certain force free magnetic fields with parallel

4]




flows proportional to the magnetic field exist and that the field and the flows
decay exponentially due to finite resistivity and viscosity while the spatial

structure is maintained.
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