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Abstract

In this paper, 6 ansatzes are investigated for their potential to allow three-
dimensional (3-d) ideal magnetohydrodynamic (MHD) equilibria. The ansatzes
are based on a Clebsch representation for the magnetic field, B = VH x Vk,
and a “generalized Clebsch representation”, B = V X (VK X Vk), with Vk
being one of the coordinate directions of a cylindrical coordinate system. Three
classes of equilibria, all with a straight magnetic axis, were obtained. Equilibria
of the first class have a purely poloidal magnetic field of the Clebsch type with
k = z and include the 3-d equilibria already known. Equilibria of the two other
classes have a purely toroidal (i.e. here longitudinal) magnetic field and pressure
surfaces which can be chosen such that poloidal sections are closed. The second
class is based on a Clebsch representation with £ = #. Solutions contain a free
function of # which determines the poloidal sections of the pressure surfaces at,
say, z = 0. The behaviour in the toroidal direction is then fixed but not periodic.
For the third class the generalized Clebsch representation with & = z is used. The
equilibria are similar to those of the second class with two important differences.
They contain no free function and field lines are not plane. Finally, 3-d vacuum
fields, which exhibit 3-d magnetic surfaces. are presented. They have the same
geometry as the equilibria of the third class and, in fact, can be obtained as a
certain limit from these equilibria. Possible applications of the equilibria found

are mentioned.




1. Introduction

The governing equations of ideal MHD equilibria are

1B = ¥F,

(1)
] = VXB,

V.B =0, (2)

where B, j and P denote the magnetic field, current density and pressure, respec-
tively. Solutions of Eqgs. (1), (2) have a broad range of applications in thermonu-
clear fusion research, geophysics, solar and astrophysics. In most cases symmetric
equilibria furnish a correct model or at least a satisfactory approximation of the
true situation; in many cases, however, a 3-d model is desirable and in some
cases, e.g. for stellarator-type configurations in fusion research, 3-d equilibria are
absolutely necessary.

Yet, the construction of 3-d equilibria 1s notoriously difficult. This is be-
cause Eqgs. (1), (2) represent a system of partial differential equations of mixed
elliptic-hyperbolic type, for which there is no general theory on the existence and
uniqueness of solutions available. It is not even clear what a well-posed initial-
boundary value problem in general looks like. Only if additional assumptions
are made can the problem be rendered tractable. If equilibria are required to
exhibit plane, axial or helical symmetry, Eqgs. (1), (2) can be reduced to a single
quasilinear elliptic equation, for which an elaborate existence theory as well as
many explicit solutions are known [1, 2, 3]. These symmetries, furthermore, are
known to be the only continuous symmetries which allow such a reduction [4].

On the other hand, nonsymmetric magnetic fields in a bounded volume (e.g.
a sphere or a torus) generically exhibit field line chaos connected with island
formation and ergodic regions [5, 6, 7]. As a consequence of the equilibrium
equations (1) magnetic lines lie entirely in surfaces of constant pressure. Chaotic
field lines therefore do not seem to be compatible with a smooth pressure function
and, consequently, 3-d fields are unlikely candidates for well-defined equilibria.

The subject has been more closely investigated for configurations of fusion
interest. These have closed toroidal pressure surfaces nested around a single mag-
netic axis. The axisymmetric case is governed by the well-known Grad-Shafranov
equation (8], which satisfactorily settles the existence problem. If axisymmetry is

lost, however, only partial results are known. For example, if the magnetic axis




lies in a plane, configurations with purely poloidal magnetic field (symmetric with
respect to the plane) are virtually ruled out [9]. Other nonexistence results refer
to quite special configurations such as the “isodynamic” [10] or the “quasihelical”
[11] stellarator. In the general 3-d case with finite twist of field lines all we have is
Grad’s conjecture that well-defined equilibria do not exist [12]. From a practical
point of view nonaxisymmetric fusion devices like stellarators obviously tolerate a
certain amount of fine-scaled field line chaos. It is nevertheless of general interest
whether Grad’s nonexistence conjecture holds true or not.

Inspite of the negative expectations just mentioned, there are two classes of
3-d equilibria without continuous symmetries. The first is a toroidal configura-
tion with purely toroidal magnetic field which is mirror symmetric with respect
to a poloidal plane. The mirror symmetry prevents ergodization of field lines.
The existence of such equilibria has been proved for low plasma pressure [13].
Note, however, that the pertinent pressure surfaces are in general not poloidally
closed. Whether such equilibria having, additionally, closed toroidal pressure sur-
faces exist at all is not quite clear; only for configurations far from axisymmetry
(“bumpy” configurations) is existence plausible [14]. The other class comprises
equilibria with straight magnetic axis and field lines lying in planes orthogonal to
the axis. Poloidal sections of the pressure surfaces exhibit mirror symmetry with
respect to two, mutually orthogonal, planes and are either closed [15] or open
[16]. In the closed case the ellipticity is an arbitrary function along the axis. In
particular, a periodic function can be chc:en, a case often referred to as “topo-
logical torus”. Recently, the closed case was generalized so that mirror symmetry
is lost [17]. To our knowledge, this is the first example of a 3-d equilibrium with
the geometry of a (topological) torus without any symmetry.

As explained above, there is no general procedure available yet for construct-
ing 3-d equilibria and, in order to make progress, one has to fall back on certain
ansatzes for the magnetic field. The aim of this paper is to explore such an
ansatz thoroughly and with some degree of completeness. As a result, we re-
covered the known straight axis equilibria and also found two new classes of 3-d
equilibria. The ansatz is based on the poloidal/toroidal decomposition valid for

any solenoidal vector field B (see, for example, [18]):
B=VHXVEk+V X (VK X Vk). (3)

Here, H and K are arbitrary scalar functions and Vk is a particular (general-

ized) coordinate direction to be specified which can be completed to a nonsingular




(generalized) coordinate system in the domain considered [19]. In most applica-
tions the decomposition (3) is used in Cartesian or spherical coordinates [18]; we
used it in cylindrical coordinates (7,8, z) instead. More precisely, we investigated

the 6 ansatzes

B=VH X Vk, k= yil e, (4)
and

B=V X (VK X Vk), k=02 (5)

Note that the terms “poloidal” and “toroidal” have different meanings in the
decomposition (3) (there (4) is called a toroidal field and (5) a poloidal one) and
in torus (or cylinder) geometry. In order to avoid confusion, in the following (4)
is called a Clebsch representation and (5) a generalized Clebsch representation.

It turned out that in 4 cases, namely for all Clebsch representations and for
the generalized Clebsch representation with k& = z, the problem can be reduced
to a 2-d elliptic equation, perpendicular to the particular direction specified, and
certain nonlinear compatibility conditions. In 3 out of these 4 cases nontrivial
solutions of the reduced problem, i.e. 3-d equilibria, could be found. The first class
is based on the Clebsch ansatz with k = z and comprises the known equilibria
(15, 16, 17]. In this context the extension of the open equilibria of [16] to the non-
mirror-symmetric case is also discussed. The second class is based on the Clebsch
ansatz with £ = 0. The magnetic field is purely toroidal and field lines lie on
surfaces 0 = const. The solution contains a free function of # which determines
the poloidal sections of the pressure surfaces at, say, z = 0. In particular, poloidal
sections can be chosen to be closed; the behaviour in the toroidal direction is then
fixed but not periodic. The third class uses the generalized Clebsch ansatz with
k = z. The magnetic field is again purely toroidal but field lines are no longer
plane. The solution does not contain a free function. The pressure surfaces again
exhibit closed poloidal sections and are not periodic in the toroidal direction. Two
points should be noted in connection with the third class of equilibria. First, it is
an example of a 3-d equilibrium with non-planar field lines. So, plane field lines
are no prerequisite of 3-d equilibria as could be assumed from the examples so
far known. Second, the equilibrium has a well-defined vacuum limit; the vacuum
field is also 3-d and has 3-d magnetic surfaces.

The first two classes of equilibria, based on the Clebsch ansatz, are discussed
in section 2. The third class, based on the generalized Clebsch ansatz, is discussed
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in section 3. In section 4 some conclusions are drawn and possible applications
of the new equilibria are mentioned. For the sake of completeness, the remain-
ing ansatzes which did not lead to 3-d equilibria, are briefly dealt with in two

appendices.

2. Clebsch representation
2.1 Ansatz B = VH X Vz
With the ansatz
B = VHXV:z (6)

for the magnetic field B the divergence constraint (2) is automatically satisfied

and the equilibrium equations (1) reduce to
(AzyH)8,H+03.P =0,

(7)
(AyyH),H +8,P = 0,
9. [(9:H) + (9,H)* +2P] = 0. (8)

Here, we work for convenience with Cartesian coordinates (z,y,z), i.e. H =

H(z,y,z), P = P(z,y,z), and A;, denotes the 2-d Laplacian in the z-y plane,

Npy = 02,402, . (9)
The integrability condition for P, see Egs. (7),

0z0,P — 0,0.P = (0.H)0,A;yH — (0,H)0:AzyH = 0, (10)
requires that A, H satisfy locally the relation

B = F{HE) (11)

with arbitrary profile function f. Equation (8) is solved by

P(e.y.2) = Qa,y)— 3 [(BH +(0,H)] | (12)




where Q(z,y) is an arbitrary function. Equations (7) yield
%.Q = (9,H)d%,H - (8,H) 02, H ,

(13)
0,Q = (0.H)0% H — (9,H) 0% H .

In order to ensure that () does not depend on z, H has to satisfy in addition the

relations following from Eqgs. (13):

(14)
9.[(8,H) 82, H — (8, H) 2, H] = 0.

So, instead of solving Eqs. (7), (8) for H and P direct, one can first solve the 2-d
elliptic problem (11) with arbitrarily given function f and then try to satisfy the
compatibility conditions (14) for the z-dependence of H.

Those few MHD equilibria known so far which depend on three space coor-
dinates independently [15], [16], [17] not only fit into this scheme, with a linear

ansatz for f,
I = ao(z) + ai(2) H , (15)

with ao(z) and a;(z) being arbitrary, but naturally follow from it. In the next
section further 3-d solutions are obtained iiom a different ansatz but with the
same scheme. Since Eq. (11) with f given by Eq. (15) is linear, the general
solution is in the form of a sum of an inhomogeneous part H; and a homogeneous

part Hj. The homogeneous part has to satisfy
();ZJTH}! + Bngh = a Hy, . (16)

A product ansatz with respect to x and y is made, while the parametric depen-

dence on z is kept without restrictions:
Hy = afz,z) By, 2) . (17)
Equation (16) then yields the conditions

2o = —k¥(2) e, 2B = =X(2)8,

(18)

H2+)\2:*CII.

to which we return below. The general homogeneous solution is, eventually, an

arbitrary superposition of solutions of type (17).
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In dealing with an inhomogeneous solution of Egs. (11), (15) a distinction has
to be made with regard to a;. This leads to the consideration of two classes of
solutions of the full system of Egs. (11), (14) and (15):

Case 1

a;(z) = 0: In this case an inhomogeneous solution of Eqgs. (11), (15) is
H; = a(z)z® + 2(z)zy + c(2)y*, (19)

where a(z), b(z) and ¢(z) are arbitrary functions. (The relation a + ¢ = ao/2,
which follows from Eq. (11), does not restrict a or ¢, since aq is arbitrary.) In-
serting the sum of this H; and the most general solution Hj from Egs. (17) and
(18) in the compatibility conditions (14) produces rather unwieldy expressions.

The simplest way out is to take Hy =0, i.e.

H = H . (20)
In this case Eqs. (14) merely yield the condition

[a(z)e(z) = b*(2)] = 0, (21)

where the prime denotes differentiation with respect to the single argument in-
volved. Of the three coefficients a(z), b(z) and ¢(z) this leaves two of them free.
If Eq. (12) for the pressure is combined with Eqs. (13), (19) and (20), one obtains

P = Py — 2[a(2) + ¢(2)] [a(z)2® + 2b(z)zy + c(2)y7], (22)

where Py = const is the (arbitrary) pressure on the axis z = y = 0. Provided
that ac—b% > 0, the surfaces of constant pressure have concentric elliptical cross-
section. At fixed P the half-axis ratio of the ellipse and the orientation of its
major axis with respect to the x axis, for example, can be chosen as arbitrary
functions along the axis. In the case ac — b* < 0 the cross-section consists of a
pair of hyperbolas, thus leading to open pressure surfaces.

In cylindrical coordinates (r, ), where z = rcosf, y = rsind, the pressure
assumes a particularly simple form, provided that a(z), b(z) and ¢(z) are written

in terms of two arbitrary functions u(z), v(z) and an arbitrary constant c;, in




the form
a(z) = —T‘\/f—l?[l—u(z)cosv(zn,
b(z) = ﬁu(z)sm(z), (23)
o2) = == [l+u(z)osu(a)]

namely

2

T
P="PF-4——
P, dey = 2(2)

This form shows that w(z) and v(z) correspond to the deviation of the cross-

{1 = u(z) cos[20 —v(z)]} . (24)

section from a circle (v = 0) and to a helical twist, respectively. For u? < 1 the
cross-sections are ellipses. An example is shown in Fig. 1. The functions u(z)
and v(z) were taken arbitrarily as u(z) = 0.6 +0.1sin 2z and v(z) = 0.2(z — 3.5).
The z axis extends from —1 to 3.5. Two nested pressure surfaces with P =
(P — Fy)/(4¢}) = —1.44 (inner surface) and —4 (outer surface) are presented. (In
the figure captions, for the sake of simplicity, hats are omitted.) The grid lines
which are closed around the axis coincide with magnetic field lines. They are
plane ellipses of constant ellipticity at fixed value of z.

An open pressure surface, requiring ¢? < 0, is shown in Fig. 2. It has u(z) =
—6 —0.3sinz, v = 0 and P =9. The z axis in the middle extends from —14 to
+14.

The MHD equilibria with magnetic field B and pressure P, given by Eqs. (6),
(19), (20) and by (22) or (24), respectively, were obtained in [17], while the
subcase b(z) = 0 (or v(z) = 0) was already discovered in [15]. Finally, a nontrivial
harmonic polynomial for Hj either does not give a physically distinct solution or

does not solve Eqs. (14), as discussed in [17].

Case 11

ay(z) # 0: In this case an inhomogeneous solution of Eq. (11) is
H; = — ao(z)/ai(2) . (25)

According to Egs. (6), (7) and (8) neither the magnetic field nor the pressure is
changed if an arbitrary function of z is added to H. Nothing is lost, therefore,
by putting ag = H; = 0. Hence, from Eq. (17), it follows that

H = afz,z) By, 2), (26)



with a and f subject to Egs. (18). A further restriction follows from the com-

patibility conditions (14), namely
(8.0)® = —k2a?, (8,8)° = —A2p2. (27)

For real-valued H Eqs. (18) and (27) are only compatible provided that x? <
0, A\ < 0 and a = ag(z) exp(£|x(z)|z) and an analogous § (disregarding solu-
tions with kK = 0 or A = 0, which are independent of = or y, respectively). It
turns out, however, that the pressure depends on = and y in the combination
|| 2 4 |A| y, so that the cross-sections of the surfaces of constant pressure are not
closed curves. Physically more relevant solutions are obtained if the ansatz (26)
is replaced by an ansatz containing the sum of two less general product terms

instead of one more general product term:

H = a(=)g(z) + c(2)h(y) (28)
In this case one obtains from Eqs. (18) and (14)

F) = —%g, Ay) = —sh, [aE@e)] = 0, (29)
where k2 = —a, is now an arbitrary constant. For positive as well as negative

k? there exist solutions of Eq. (29) with closed poloidal contours of P and with
one free function of z, say a(z); these solutions correspond to the second class in
Ref. [15]. For ? > 0, for example, pressure suifeces which are closed around the

axis at * = y = 0 are obtained for ¢(z) = 1/u(z) and

g@) = Leos(rz),  h(y) = * cos(ny) | (30)

K
where ¢; is an arbitrary constant. In this case

P = Py — ¢{d*(z)sin*(kz) +2[1 — cos(kz) cos(ky)]

+ 2(z)sin*(ky) }/2 . (31)
An example is shown in Fig. 3, where a(z) = 0.6 + 0.1sin 2z and £ = 1 is chosen.
P = 2(P — Py)/c? is —1.96 (inner surface) and —3.8025 (outer surface). The
poloidally closed grid lines again coincide with magnetic field lines. It is evident
that farther away from the axis they deviate from an elliptical shape. In fact, since
the pressure surfaces repeat periodically in x and y, the field lines tend towards
a rectangular shape at the separatrices z, y = (2n + 1)7/2, n = 0,£1,+2,---.

The pressure P tends toward P, = —(1 + a?)?/a? there.
In the case k% < 0 results analogous to those of Egs. (30) and (31) are obtained.
The trigonometric functions are replaced by hyperbolic functions [15]. There

again exist pressure surfaces which close around the axis.
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2.2 AnsatzB = VH x V4
Here, the following ansatz is made for the magnetic field:
B = VHXV. (32)

It is practical to switch from polar coordinates (r,#, z) to modified polar coordi-
nates (p,f,z) where p = r?/2. We thus consider H = H(p,0,z) and, similarly
for the pressure, P = P(p,0,z). The MHD equations take the form

La,.maH +a,p =0,
2p

1 (33)
g(épzﬂjazlf +0d.P =0,
_ 1
P | (0,H)* + % (.H)?*+2P| =0, (34)
where A, denotes the 2-d Stokes operator in the p-z plane,
A, = 2p02 + 82, . (35)

The analysis of Egs. (33) and (34) proceeds analogously to that in the previous
section. The integrability condition 9,0, P — d.9,P = 0 for P yields

with arbitrary profile function f. Equation (34) is solved by

1 L, _
P(p,é),z) = Q(P-z)_ﬁ[(apH)z“{”%(azH)zJ ) (34')
where ()(p, z) is an arbitrary function. Equations (33) yield

9,Q = % [(OzH)BiH_(BpH)é)fSH = Qi(a:H)ﬂ] ,

(38)
0.Q = (9,H)02,H — (0.H) 9 H .
In order to ensure that @) does not depend on #, H has to satisfy the relations
Do [(azH)a,?gH — (0,H) 0. H — 2i (azhf)?] =0,
P
89[(8pH)6§2H —(0;H)92,H] = 0.

(39)
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By analogy with Eq. (15) the following linear ansatz for f is made:
[ = a(d) + «(0)H , (40)

with arbitrary functions ao(f) and a,(8). Again, we seek solutions of Egs. (36),
(40) as the sum of an inhomogeneous solution H; and homogeneous solutions Hj,.
The latter have to satisfy

200° Hy, + 2. H, = 2pay Hy . (41)
The product ansatz

Hy = a(p,0)B(z,0) (42)
yields the conditions

Ba = —r¥p0)a, OB = —N(0)B. (3)
While A(#) is arbitrary, the dependence of & on p is fixed and is given by

20k + N = —2pa, . (44)

Postponing the treatment of Eqs. (43), we again consider the two possible cases

with respect to a,.

Case I
ai(0) = 0: In this case an inhomogeneous solution of Eqgs. (36), (40) is
p ,
B = “"; ) o (45)

In contrast to the previous section, here H; does not depend on all three coordi-
nates. It is possible, however, to bring in the missing z dependence via a simple
solution of the homogeneous part. For A = 0 & also vanishes and Eqgs. (43) are
trivial to solve. The sum of H, and H; is then a polynomial of the form

ao(ﬂ)

if = T’pz + a(@)p + b(0)z + (0)zp (46)

where a, b and ¢ are arbitrary functions of . (An irrelevant additional term which
depends on @ alone was omitted.) From the nonlinear compatibility conditions
(39) one obtains
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Jp(bag — ac — 2z) =10,

(47)
Jg (b* — *p*) = 0.
This finally yields b = const, ¢ = const and
bay(0) — cad'(8) = 0. (48)

Thus, the solution in general contains one free function ag(#) or a(8). In confor-
mity with the switched roles of z and @ in relation to the last section, the freedom
in the present configuration refers to the angular dependence around the axis and
not to the dependence along it.

From these results for H and from Egs. (37) and (38) one obtains for the
pressure
a’(0)

2

ol 0
— ao0) |t g a0 + b+ oezp| , (49)

P:PO—

where F, is an arbitrary constant. The terins in the brackets are nothing but H,
so that with Eq. (32) B- VP = 0 is confirmed. On switching back to the radial

variable r the magnetic field components (B,, By, B.) are found to be

b cr
B = —2— g
By = 0, (50)
B, = @7,2 + a(f) + cz.

In order to make the magnetic field nonsingular on the axis, it is necessary to
have b = 0. According to Eq. (48) this implies a(f) = const. In consequence,
the pressure on the axis p = r*/2 = 0 is independent of the polar angle 8, as it
should be. ao(#) is the remaining free function of the solution. The components

of the current density j are
9% = PoL(0)Y/2, de = —rag(l), 3. = 0. (51)

The surfaces of constant pressure are most easily discussed by solving Eq. (49)

for 2 = a+ cz. With Pyg = Py — a*/2 being the pressure on the z axis, one has

L [¢P=Fow | HO (52)

Alrst) = ~ 4ao(9) r2

If the pressure decreases away from the axis, i.e. P < Py, then Z(7) at fixed @ is

a monotonic function of r, ranging from —oo to co. These limits are reached for
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r — 0 or 7 — oo, respectively (depending on the sign of ag). At fixed z = const
the distance r to the axis is univalued and for periodic ao(f) the curves () are
closed. Thus, the surfaces P = const wrap around the axis and are more and
more radially compressed in one z direction and blow up in the opposite direction.
This feature is rather unphysical globally. With proper boundary conditions at
two values of z, however, the solution could be physically relevant for the region
in between.

An example of this configuration is given in Fig. 4. The pressure P=8(P-—
Poo) on the two surfaces shown, nested around the z axis, has the values —0.4
(inner surface) and —0.9 (outer surface). The free function ao(f) is chosen as
ap(#) = =1+ 0.1cos 0 + 0.1 cos 20. 2 extends from —2.6 to 0.6. The longitudinal
grid lines correspond to constant values of the poloidal angle  and thus coincide
with magnetic field lines.

If the pressure increases away from the axis, Z(r) is no longer monotonic.
Starting from small values of r, |Z(r)| first decreases and then increases again
as r goes to oo. In other words, the pressure surfaces start close to the axis,
then increase their distance from it until at some point z = z they turn around
and, still increasing in distance from the axis. continue back in the direction from
which they started. This gives a kind of arcade-like surface with a specific “head”
or turn-around region. Figure 5 shows an example of such a configuration. It has
P = 0.8 and ao(f) = 14 0.2cos 0 4 0.2cos 20. The distance to the axis extends
from 0.38 to 2.1. Again, the longitudinal grid lines correspond to magnetic field
lines.

It remains to discuss the case A(#) # 0. Here, the regular solution of Eq. (43)
1s

o(p,8) = /o 1 (M0)V2p) |
3(z,0) = c1(0) sin (A(0)z) + ca(f) cos(A(0)2)

(53)

for A? > 0. The coefficients c;(#), c2(@) are arbitrary functions, and [; is a
modified Bessel function. For A*> < 0, A and I; of Egs. (53) are replaced by |A|
and J;, respectively. Also, the trigonometric functions are replaced by hyperbolic
ones. H(p,8,z) is the sum of Hy, Eq. (42), and H;, Eq. (45). It turns out,
however, that the compatibility conditions (39) can only be satisfied provided
that ao(8), A(#), ¢1(#) and cy(f) are constant. This implies an axisymmetric and

hence, in the present context, irrelevant solution.
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Case II

ai(z) # 0: In this case an inhomogeneous solution of Eq. (36) is H; = —ag(#)/
ai(#). Again, as in the last section, nothing is lost if H; = H;(f) is omitted by
putting ag(f) = 0. Thus, H = H,, is given by the ansatz (42) or, as will again
prove useful, as the sum of two such product terms. A case for which Egs. (39)
can readily be analyzed is A = 0. From Eqs. (43), (44) it follows that

o = ai(f) e, (54)

and (0, z) = b(#) + ¢(#)z, where b and ¢ are arbitrary functions of #. The equa-
tions (39), however, can only be satisfied provided that H - and, consequently,
the total configuration - is independent of @ or z. A three-dimensional solution,

however, can in fact be found from the two-term ansatz

H = [1(0,2) sin(kp) + B2(0,z) cos(kp) . (55)
where & = \/—ay, for a; < 0, and

H = By(6,2) sinh(|lp) + Ba(0, ) cosh(|xlp) , (56)
for a; > 0. Here

Bi(0,z) = b(0) + ciz, i =1, 2. (57)
The functions by, by, ¢1, ¢; are arbitrary. From Eqs. (39), (55) one obtains

Op{ [} — & + dcicarp] cos(26p) + 2[(c? — c2)kp — 2¢1¢5 ] sin(2kp)
—(@+a)} =0, (58)
89{(1-1[b161+b2C2+(C?+C%)Z]} = 1.

In consequence, &, a; and ¢;, ¢; have to be constant, and b;(#), by(8) are related

by
1 bi(0) + c2b4(0) = 0. (59)

The pressure is found from Eqs. (37), (38) to be

-2
P = P+ 5 {[Busin(wp) + Bacos(inp) [ ~ b~ 82} | (60)
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where P, is an arbitrary constant. Since P — Py is proportional to H? — b?(6) —
b3(8), the condition B-V P = 0, using Eq. (32), is again confirmed. The magnetic

field components are

B = ~l[clsin(1> + cycos®] |

T
By = B, (61)
B. = k[Bicos® — [psin®] ,

where ®(r) = xr?/2. The current density components are

Iy = E[b’lcos‘l) — bysin®]

r
jo = K7[Bisin® + Bycos®] (62)
Js = 0,

The field is nonsingular on the axis for ¢; = 0. In this case Eq. (59) implies
b (6) = 0. The remaining free function is by(#). The pressure on axis is then
Poo = Py — x2b2/2.

For a; > 0 the plus sign in Eq. (59) changes into a minus sign and the pressure

assumes the form

52
P=PR-7 { [ 81 sinh(]s|p) + Bz cosh(|s]p) |* — b + b2 } . (63)

The magnetic field is analogous to Eq. (61) with the minus sign in B, changed
into a plus sign, and & replaced by |k|.
The surfaces of constant pressure z = z(r,6) are easily discussed in terms of
Z = (by + ¢12)/b2(8). From Eq. (60) and ¢; = 0 one obtains
U—cos®
B e, (64)

sin ®
where

. P — Py
o)

) = 1+ (65)
Similarly to the situation in Eq. (31), the periodicity of the trigonometric func-
tions brings about an infinity of solution branches. Considering the branch which
comes close to the axis, ® — 0, it is evident from cos? ® < 1 that, for fixed 8,
the solution extends from z = —oo to +oo provided that 0 < |U| < 1. These

limits are reached for » — 0 and » — /27 /k, respectively (depending on the
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sign of U — 1). At fixed z = const the distance r to the axis is univalued within
the branch and for periodic b,(8) the curves r(8) are closed around the z axis.
Thus, the surfaces P = const wrap around the axis. They are more and more
radially compressed in one z direction but reach a constant extent in the opposite
direction.

An example of this configuration is given in Fig. 6. The normalized pressure
P = 2(P — Py)/(xb1)? on the two surfaces shown has the values —0.1 and —0.5
on the inner and the outer surface, respectively. The normalized free function
by(8) = by(8)/by is chosen as by(f) = 14 0.15cos @ + 0.1cos20 and k = /2 is
assumed. Z = 1+ ¢;2/by, on the axis, extends from —2.6 to 1.3. Again, the
longitudinal grid lines represent magnetic field lines.

For [U| > 1 there is no sign change of Z in the r interval quoted. |Z|, as a
function of r, first decreases and then increases again as r goes from small values
to its final value. This gives an arcade-like surface as also encountered in case I
solutions. Figure 7 shows an example of this configuration. It corresponds to
the choices P = 0.2, k = v/2 and 32(9) =1+4+0.15cos 8 + 0.1sin26. The region
r =0.3 to 1.6 is shown.

For a; > 0 the trigonometric functions in Eq. (64) are replaced by hyperbolic
ones. The pressure surfaces, instead of approaching the axis, blow up towards
r — oo at a finite value of z. An example 1s shown in Fig. 8. It corresponds
to P = 0.2, k = /2 and by(0) = 1 + 0.15cos § + 0.05cos 30. The region shown
extends from r = 0.3 to 2.6.

It remains to consider the postponed case A(0) # 0 as well. H(p, 0, z) assumes

the form
H = ai(p,0)sin(A(8)z) + az(p,0) cos(A(0)z) , (66)

where aj 3(p, 8), from Eqs. (43), (44), are confluent hypergeometric functions of
p, with # as a parameter. The analysis of Eqs. (39), focussed in particular on
terms with secular z dependence, shows that only axisymmetric solutions, i.e.
Og(ey. az, A) = 0, survive the compatibility conditions, just as with the Bessel

function analogue of case I.
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3. Generalized Clebsch representation

In this section the ansatz

is investigated. We are again working in Cartesian coordinates (z,y,z), i.e. K =
K(z,y,z2), P = P(z,y,z), and A and A,, denote the 3-d and the 2-d Laplacian
in the z-y plane, respectively. The Cartesian components of the magnetic field

B and current density j read

B = (02K, 92K, -A,K)" (68)
and

j=(-A§,K, Ad,K, 0)". (69)

The divergence constraint (2) is, of course. satisfied by the ansatz and the equi-

librium equations (1) reduce to
(Azy K)0:(Azy K + 02, K) + 0. P =10,
(70)
(Apy K)0,(Apy K + 92, K) + 3,P =0,

(02,K)0,(Agy K + 02, K) + (aﬁzl{)ay(AIy[{ + %K)+ d.P =0. (71)

The integrability condition d,0,P — 8,0,P = 0 for the pressure P together with
Egs. (70) furnish, similarly to the Clebsch cases in the last section, a relation

between A, K and 9% K with an arbitrary profile function f:
B K = HE. K.7): (72)

Here, 92, K # 0 is assumed, the case 92, K = 0 being dealt with later on. Using
Eq. (72), one can integrate Egs. (70) and obtain

FUOK,2)+2F(82.K,z) + 2P = C(2) (73)
with C(z) being an arbitrary function of z, and F' an integral function of f,

F(u,z) = fu s, i, (74)
Equation (71) can be put in the form

(1 + auf|u:'agz,{) a,,[(a.izﬁ’)2 + (33:1\'\2] +28,P =0. (75)
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Differentiating Eq. (73) with respect to z, one can eliminate 9, P from Egs. (73),
(75):

(14 0uflumoz.i) 0:[(02.K)? + (0L, K )] = 0.(f* +2F) = =C". (76)

Analogously to the last section, Egs. (70), (71) are replaced by Egs. (72), (76),
which determine the functions C' and K once the profile function f is given. The
pressure P is then given by Eq. (73).

In order to proceed, a linear profile function
f=ao(z) + ar(z) 0K (77)

is once more chosen. In the case a; = 0, Eq. (72) is again a 2-d elliptic equation

and Eq. (76) can be integrated once with respect to z:
(02, K)? + (2K - 2a0() 0% K = C(2) + Q(x,v). (78)

Here, C(z) := a2 — C and Q(z,y) are arbitrary functions. The pressure function

is now given by

P = —ay(z) 0% K — éC(z). (79)
The general solution of Eq. (72) has the form

K = a(2)2® 4 ¢(2) ¥* + Kharm(z,y; 2), (80)

with 2(a + ¢) = ag and Kjurm being a harmonic function in 2 and y that, addi-
tionally, may depend on z. For Kj.mm, second and some higher-order harmonic
polynomials in  and y with z dependent coefficients have been tried. However,
no 3-d solutions satisfying Eq. (78) with poloidally closed pressure surfaces have
been found.

In the case a; # 0 the coefficient ag can again be made zero; furthermore, a;
is assumed to be independent of z and # —1. In that case Eq. (76) can again be

integrated,
(02.K)* + (95, K)* — a1 (82, K)* = C(2) + Q(a, ), (81)

and the pressure function P takes the form

P:_1+01

(a1 (92.K)? + C(2)) , (82)

where C(z) = —C(2)/(1 + a1).



The ansatz for K,

K = a(z) g(z) + c(2) h(y),

is now found to be successful. Equation (72) furnishes the equations

" "

9@ _, 2 _ e
g a
n 174

h"(y) _ alc (2) .Y
h c

which for a; < 0, for example, are solved by

g(z) = gocoskz, a(z)=expkz, ajk?®=—kK?,

h(y) = hocos Ay, c(z) = exp(=Az), a;A? = —\2.
Condition (81) is satisfied if & = A (and hence & = £)) and if one takes
C(z) := x*R? (gg exp 2kz + h? exp(—QF::)) + s,
Qo) =2 k2g? gohgo cos Kz cos Ky — é{],
where Cj is an arbitrary constant. Inserting (85) in (83), one obtains
K = goexp kz cos kx + hg exp(—FKz) cos ky,
and the pressure takes the form

1+(11
P=
2

(h‘,?fcz K C")
= Py — 3x*(K? — k?)[gd exp 2Rz sin® kx + h2 exp(—27z) sin® ky
+ 2goho(1 — cos kz cos ky)],

2

where Py = (k? — k?)(gohok? — Cy/2k? is the pressure on axis.

(84)

(87)

For |kz|,|ky| << 1 the cross-sections z = const of the pressure surfaces are

elliptical, provided that goho > 0, otherwise hyperbolical. For z — +co they

shrink to a vertical line on one side and to a horizontal line on the other.

The magnetic field components are
B, = —kRgoexp kzsinkz,
B, = kkhgexp(—kz)sin ky,

B, = r*(goexp Kz cos kz + hgexp(—&z) cos ky),
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while the components of the current density are

Je = K(K? — K)o exp(—FKz) sin Ky,

jy = —k(R? — k?)go exp Rz sin Kz, (90)

J= = 0.
Similarly to the configuration in (61), (62) the current is purely poloidal. The
magnetic field lines, however, are not plane any more. This follows from, for
example, the integration of the field line equations dz/B, = dy/B, = dz[B,,
which, for |gz| >> 1, can be done analytically. For £z — oo and £z = —o0 the
field lines approach = — 0, y — const and y — 0, & — const, respectively. The
connection between these asymptotic values requires a field line twist.

Figure 9 shows two nested pressure surfaces. Also shown as thicker lines are
three field lines, two of them at the symmetry positions z = 0 and y = 0 and one
in between. Note that the “longitudinal” grid lines in this figure are generated
by some auxiliary construction and do not correspond to constant polar angles
in the z-y plane or to field lines. Figure 9 is drawn with go = ho = 1, £ = 1,
% = 0.5, z € [-2.5,2.5]. The normalized pressure P =2(P — Pp)/(x*R? — 7))
has the values P = —0.2 and —0.7.

The case a; = —1 has been excluded so far. In fact, Eq. (87) with k = &
describes a 3-d vacuum field, which exhibits, moreover, 3-d magnetic surfaces

S(z,y,z) = const, i.e.
B VS5 =0, (91)
where S is given by
8 = i (I(Z — glexp2kz — h} exp(—ZEz))
= g2 exp 2Rz sin® kz + hj exp(—2kz) sin’ Ky (92)
+ 2goho(1 — cos kx cos KY).

Analogously to the equilibrium problemn 3-d vacuum fields generically show field
line chaos, which prevents the formation of magnetic surfaces. 3-d vacuum fields
with magnetic surfaces are, therefore, exceptions as rare as 3-d equilibria. The
vacuum field can, furthermore, be obtained as a continuous limit (a; — —1) of a
family of equilibria, a limit which is otherwise often singular [20].

It remains to consider the case 92, K = 0. In that case Eqgs. (70) can immedi-

ately be integrated to yield
(A, K)?+2P =C(z). (93)
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Differentiating Eq. (93) with respect to z leads together with Eq. (71) to
(02,K) Azy0: K + (02,K) Agy 0y K — (Azy K) A0, K = —C". (94)
The general solution of Eq. (94) under the constraint 9%, K = 0 has the form

K = Ky(z,y) + Ki(z,y) z,

(95)
C'=Co+ (2,
which inserted in Eq. (94) leads to
(0:K1)0: Ay Ko + (0y K1)0, Ay Ko — (Apy K1) AL, Ko = —Co, (96)
(0:K1)0:Ary Ky + (0, K1)0,A2y Ky — (A K,)? = —C. (97)

Equation (97) is a 2-d nonlinear equation for A’;. Once K is determined and
inserted in Eq. (96), this is a 2-d linear equation for A,,Ky. On switching to
cylindrical coordinates Eqs. (96), (97) read

1
(0 K)0:Bra Ko + (00 K1) 00 Ars Ko = (ArgK2)AraKo = —Co,
(98)
(0-K0)0: Ao Ky + (00K A K — (ArsKL)? = —Ch,

T

with A,y being the 2-d Laplacian in the r-0 plane,
| 1
Aig = ;ar(7~ar) 3 ﬁagg. (99)

An implicit solution of Eqgs. (98) is given by

r k"l -~2 df:
I\"l(r) = _f (Cl SinTT‘I‘CgCOS ]—i‘-?) _TI"

2 2 o
100
i kr? . kr? Lo
ArgKo(r,0) = —k [ b1(0) cos 5 by(8) sin 5 |
where ¢y, ¢z, by(8) and by(f) obey the relation
e1b] + exbly, = 0. (101)

Comparing the magnetic field (68) of the solution (100) with Egs. (61), one re-
alizes that the solution of section 2.2, case II, has been regained in a different
representation. This shows that the “simplicity” of an equilibrium heavily de-
pends on the representation chosen. Solutions of Eqs. (96), (97) (or Egs. (98))

representing new equilibria have not been found so far.
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4. QOutlook

Our primary interest in this study of 3-d MHD equilibria is not so much in
applications but is theoretical. It relates to the supposed nonexistence of 3-d
equilibria in toroidal geometry with sheared field lines, a problem which arises
in fusion-oriented MHD. Simplified equilibria such as those considered here may
help to distinguish the essential features from the irrelevant ones. Basically, it is
learned from the examples given in this paper that 3-d equilibria are not ruled
out per se. Closed field line equilibria such as those of the first class or equilibria
with infinitely extended field lines such as those of the second and third classes
do indeed exist. Neither is a discrete symmetry like mirror symmetry necessary
nor have field lines to be plane. All three classes include representatives with
poloidally closed pressure surfaces. The closing in the toroidal direction, however,
seems to cause trouble. For the purely poloidal equilibria, for example, pressure
surfaces can indeed be chosen to be periodic in the toroidal direction; but actual
closing requires distorting the straight axis, and this is ruled out [9]. In the purely
toroidal case not even periodic solutions have been found so far. To construct
such equilibria (whether of Clebsch or generalized Clebsch type or not) would
be of considerable interest. The main shortcoming of all known 3-d equilibria
is, of course, the missing field line twist. This property combined with double
periodicity carries the potential of field line chaos, which is at the heart of the
problem. So, the construction of a twisted 3-d equilibrium (periodic or not) or
proof of its impossibility would be an important step ahead. Note in this context
that any 3-d equilibrium based on a Clebsch representation with k = r (see
Appendix A) would be at least locally twisted. Yet, no such equilibrium has
been found so far.

Nevertheless, we want to mention some possible applications of the new equi-
libria. The open equilibria in section 2.1 (see Fig. 2), for example, might be
of some interest in the reconnection context. They generalize the well-known
2-d geometry for reconnection via X-points in that they allow variation of the
magnetic field in the third direction. In particular, rotation of the X-point and
variation of the angle of the intersecting field lines along the third direction are
allowed. Whether these new features do affect the reconnection process remains
to be explored.

Other possible applications concern the modelling of magnetic arcade struc-

tures in the solar corona [21] or the geomagnetic tail [22]. The former application
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ié supported by Fig. 5 and Fig. 7, which can be interpreted as 3-d generalizations
of an ordinary 2-d arcade configuration. Up to the second application 3-d equilib-
ria are useful for modelling magnetotail configurations under quiescent conditions.
In Ref. [23], for example, approximate 3-d equilibria were constructed on the basis
of a Clebsch representation for the magnetic field and a Taylor series expansion
in one variable and an asymptotic expansion in another variable.

Finally, it should be mentioned that for astrophysical purposes Low investi-
gated 3-d equilibria in a series of papers [24] (see also [25]). The basic difference to
our investigation is the inclusion of a gravitational field. This additional freedom
is crucial for his construction of 3-d equilibria. In fact, for vanishing gravitational

field these equilibria have no well-defined limit.
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Appendix A

This appendix investigates the ansatz B = VH X Vr. The problem is again
reduced to a 2-d elliptic equation on the cylinder r = const and two compatibility
conditions for the r dependence; 3-d solutions, however, have not been found.

Equations (1) here take the form

1 1
ar(;@(;H)2+-2—8,.(r83H)2+28,,P:0, (A.1)
r
(Ag.H)OgH + 04 P = 0,
(A.2)
(Ag.H)O.H + d.P =0,
where Ay, denotes the 2-d Laplacian on the #,z cylinder,
1
Ag; = T—zagg + 2. (A.3)

From the integrability condition 9.0;P — 940.P = 0 for P and Eqgs. (A.2) one
deduces in the usual way a 2-d elliptic equation for H with an arbitrary profile
function f(H,r):

Ag.H = f(H,r). (A.4)

a
L}




Note that, contrary to the previously considered cases, (A.1) is no longer a total r
derivative. The compatibility conditions are, therefore, derived from the remain-
ing integrability conditions for P, 9,0 P — 0,0, P = 0 and 9.0.P — 0,0,P = 0.

One obtains

0, (90 H) 2. H — (3.H) 0}, H) - %((’LH) O2H =0,

1 2 )
0, (r_2 (8. H) 03, H — (95 H) ang]) ~ (0.H) % H =0
Assuming, as usual, a linear profile function,
f=ao(r) +a(r) H, (A.6)
one can again be distinguish the cases a; = 0 and a; # 0. In the latter case
b = — %) (A.7)

! ay(r)

is an inhomogeneous solution and the separation ansatz
Hy = o(r,0) A(r, 2) (A.8)

for the homogeneous part leads to

83301 - —m-2 «,
(A.9)
028 = —N(r) B,
with m?2/r? + A? 4+ a; = 0. This suggests the general ansatz for H,
Hy = uy(r)sin(mé + Az) + ua(r) sin(mf — Az)
(A.10)

+us(r) cos(mb + Az) + ua(r) cos(mb — Az).

Nontrivial (i.e. 3-d) solutions of type (A.10), which, additionally, satisfy the com-
patibility conditions (A.5) have, however, not been found.

In the case a; = 0 an ansatz of the form
H; = Ar) + pu(r) = + v(r) 2,
Hj, = (uy(r) sinh @ + uy(r) cosh ®) sin mb (A.11)
+ (ua(r) sinh ® + wu4(r) cosh @) cos mé,

with 2v = ao and ® := mz/r was tried. However, nontrivial solutions satisfying
Egs. (A.5) could not be found either. Whether more general ansatzes are suc-
cessful or 3-d equilibria of this Clebsch type do not exist at all remains an open

problem.




Appendix B

This appendix shows that the remaining two generalized Clebsch cases cannot by
treated with the method which has been successful so far. More precisely, none
of the integrability conditions for the pressure can be resolved.

For the ansatz B = V X (VK X V#) Egs. (1) furnish

1 1 2
S(8,.K) (a,(A,.sz) + r—zagaa,,k') ~ S(ORK) +0,P =0,

(B.1)
L 1 B
S(A,K) (az(A,zK) + r—zag,,azr{) +(O8K) %K +0.P =0,
1 1
(05 K) (3,(Arsz) + T—zagga,.f() + .
9
1 1 =
(02, K) ((’)Z(A,.ZK) - 393211’) + 8P =0,
with A,. being the 2-d Stokes operator in the r-z plane,
A =ra,(%a,)+ajz. (B.3)
For the ansatz B =V X (VK X Vr) we obtain
1
(Ap. K) (ag(a.ngc) + ar(ra,.(;agfc)))
+35(6§ZK) 0,(ro,K) + 0P =0,
'8
1 (B.4)
(Ag. K) (az(angf) 5 3,(—(9,,(7'62[{)))
T
~ 2 (OLK) B, (20 K) + 0.P = 0,
T T
1 1 R 1 N
~(8,(~BK)) (ag(Ag,,K) + 0,(r0. (-0 K ))) +
T T T
1 (B.5)

L(0,(r0. ) (Bz(AgzK) + a,(%ar(razﬁ’))) L8P =0,

where Ay, is the 2-d Laplacian on the 6,z cylinder given in Eq. (A.3). If one
tries to proceed as in section 3, one finds that, unfortunately, the integrability
condition 9,0.P — 0.0,P = 0 applied to Egs. (B.1) does not lead to a simple
relation between A,,K and 82,K, and the condition 9;0,P — 0.9; P = 0 applied
to Egs. (B.4) does not work either.

For these generalized Clebsch ansatzes one has, therefore, to solve Eqgs. (B.1),
(B.2) or Egs. (B.4), (B.5) direct. This is a formidable task, which is not followed

up here.
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Fig. 1: Nested pressure surfaces P(r,0,z) = —r?{1 — u(2) cos[20 — v(2)]}/[1 —
u?(z)]. Closed grid lines are magnetic field lines. With u(z) = 0.6 + 0.1sin(22),
v(z) = 0.2(z — 3.5), P = —1.44 (inner surface) and P = —4 (outer surface).
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Fig. 2: Two branches of open pressure surface P = 9, with axis in between. With
u(z) = —6 — 0.3sin z, v(z) = 0. P defined as in Fig. 1.
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Fig. 3: Nested pressure surfaces P(z,y,2) = —[a*(z)sin® z + 2(1 — cos  cosy) +
a=?(z)sin’y]. Closed grid lines are magnetic field lines. With a(z) = 0.6 +
0.1sin(2z), P = —1.96 (inner surface) and P = —3.8025 (outer surface).

Fig. 4: Nested pressure surfaces P(r,0,z) = —r2ao(0)[r?ao(0) + 4z], with z axis.
Longitudinal grid lines are magnetic field lines. With ag(f) = —1 + 0.1 cos 6 +
0.1cos(26), P = —0.4 (inner surface) and P = —0.9 (outer surface).
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Fig. 5: Pressure surface P = 0.8 with arcade geometry. With ao(d) = 1 +
0.2 cos f + 0.2 cos(26). P defined as in Fig. 4.

Fig. 6: Nested pressure surfaces P(r,0,z) = [zsin(r?) + b2(0) cos(r?)]? — b3(0),
with z axis. Longitudinal grid lines are magnetic field lines. With by(0) =1+
0.15cos @ + 0.1 cos(26), P = —0.1 (inner surface) and P = —0.5 (outer surface).
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Fig. 7: Pressure surface P = 0.2 with arcade geometry. With b,(0) = 1 +
0.15cos & + 0.1sin(26). P defined as in Fig. 6.

i

Fig. 8: Pressure surface P(r,0,z) = [zsinh(r?) + by(0) cosh(r?)]? — b2(8). With

b2(0) =1+ 0.15cos § +0.05 cos(30) and P = 0.2. Field lines tend towards r = co
at finite z.
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—[expz sin®z +2(1 — cosz cos y)

Fig. 9: Nested pressure surfaces P(z,y, z)

The middle one has

+ exp(—=z)sin® y] with three magnetic field lines (thick).

finite torsion. With P = —0.2 (inner surface) and P = —0.7 (outer surface).
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