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Abstract

This paper describes a collision dominated and isothermal plasma consisting of N particles
species. Starting from the momentum balance equations of the plasma components the flux-
friction relations are derived for every magnetic surface. The plasma is considered in general
toroidal geometry, therefore the results apply to tokamaks and stellarators. Taking into account
inertial forces leads to non-linear equations which determine the poloidal and toroidal rotation
of the plasma within the magnetic surfaces.

In the first part the flux-friction relations are established in the one-fluid model. Further-
more, some integral relations of the stationary equilibrium are derived and the spin-up equations
of poloidal rotation are generalised to stellarator geometry. The main part of the paper deals
with the multi-fluid model and generalises the flux-friction relations to a multi-species plasma.
Because of the Coriolis forces the flux-friction relations become first order differential equations
instead of algebraic equations. The viscous damping is analysed for a collisional plasma showing
the influence of the magnetic field topology and Pfirsch-Schliiter currents on the spin-up mech-
anism. The similarity between the spin-up equations and the theory of circulation in planetary
atmospheres is indicated. Finally the effect of shear viscosity and gyro viscosity is considered.
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Chapter 1

Introduction

In the following paper a collisional plasma in general toroidal geometry is investigated. General
toroidal geometry means the absence of continuous symmetries like achsial symmetry or helical
symmetry. The aim is to analyse the relation between plasma gradients, radial particle fluxes
and poloidal and toroidal rotation tangential to magnetic surfaces. In particular, enhanced
poloidal and toroidal rotation in the boundary region and the development of shear flow, which
is of interest in conjunction with the transition to H-mode confinement, will be discussed in this
paper.

The rotational instability of a toroidal plasma has been studied for the first time by Stringer!
and the mechanism has become wellknown as Stringer spin-up. Rosenbluth and Taylor? included
the effect of viscosity, a further analysis of the role of viscous damping or magnetic pumping
in plasma rotation has been given by Hassam and Kulsrud®. The rotational instability of a
static equilibrium has also been anlaysed by Greene, Johnson, Weimer and Windsor?. Recently
the spin-up mechanisn has gained increasing attention in conjunction with the development
of shear flow in the plasma boundary and the transition to H-mode confinement. Hassam,
Antonsen, Drake and Liu have pointed out that the Stringer mechanism can be enhanced by
anomalous transport and thus overcome the damping effects®. These authors conclude that the
radial transport be poloidally asymmetric in order to provide the spin-up of poloidal rotation.
However, if the plasma is turbulent and exhibits anomalous transport further anomalous effects,
the turbulent Reynolds stresses, may arise and have some influence on the rotational instability.
Numerical calculations by Guzdar, Drake, McCarthy, Hassam and Liu® confirm this idea and
show that resistive ballooning instabilities in the boundary region of a tokamak can lead to the
evolution of a shear flow and to a reduction of the anomalous radial transport. These authors
find that both effects - turbulent Reynolds stresses and Stringer mechanism - lead to a poloidal
rotation with a predominence of the Stringer spin-up in the later phase of the simulation. The
role of Reynolds stresses on shear flow evolution has also been pointed out by Garcia, Carreras,
Lynch and Diamond”.

Another mechanism which often has been invoked to explain the evolution of poloidal shear

'T.A. Stringer, Phys. Rev. Lett. 22, 1770 (1969)

?M.N. Rosenbluth and J.B. Taylor, Phys. Rev. Lett. ,23, 367 (1969)

®A.B. Hassam, R.M. Kulsrud, Phys. Fluids 21 , 2271 (1978)

*I.M. Greene, J.L. Johnson, K.E. Weimer, N.K. Winsor, Phys. Fluids 14, 1258 (1971)

°A.B. Hassam, T.M. Antonsen, J.F. Drake, C.S. Liu ,Phys. Rev. Letters 66, No.3, 309 (1991)

6P.N. Guzdar, JI.F. Drake, D. McCarthy, A.B. Hassam, C.S. Liu, Phys. Fluids B5, 3712 (1993)

"L.Garcia, B.A. Carreras, V.E. Lynch, P.H. Diamond, Proc. 14'* Int Conf. on Plasma Phys. and Contr.
Nuclear Fusion Research, Wiirzburg, 1992, paper CN-56/D-4-6




flow is the lost orbits effect® and the nonlinearity of neoclassical transport coefficients on the
radial electric field which may cause bifurcation and multiple solutions °. Lost orbits modify
the ambipolar condition of radial particle fluxes and as a consequence the radial electric field
changes. K.C. Shaing has extended the theory to stellarator configurations!®. One example of an
externally triggered ’lost orbit effect’ is the neutral beam heating experiment in the stellarator
Wendelstein VII-A'!, where a large fraction of highly energetic particles is trapped in local
mirrors and rapidly transported towards the wall. Onset of plasma rotation has been measured
spectroscopically. Applying a radial voltage by probes in the boundary region is another method
to generate poloidal flow and a reduction of anomalous plasma transport!?. Main interest,
however, is focused on the spontaneous onset of a poloidal shear flow since in a reactor plasma
there is only a little chance to apply these methods from outside.

One basic assumption in the following theory is the existence of closed magnetic surfaces
which are suited to confine a plasma in equilibrium. A necessary condition is the constancy
of §dl/B on rational magnetic surfaces which is satisfied in symmetric configurations like ax-
isymmetric tokamaks or helically invariant stellarators. This assumptions puts aside the still
unsolved problem whether an ideal MHD-equilibrium exists in non-symmetric toroidal geometry.
A real plasma is in stationary equilibrium, where the velocity v, which may consist of diffusive
velocity, convective velocity and rotation, has a feedback effect on the momentum balance and
decouples pressure surfaces and magnetic surfaces. Plasma equilibria taking into account inertial
forces have been considered by Zehrfeld and Green!3. Hazeltine, Lee and Rosenbluth extended
the work of Zehrfeld and Green and studied the formation of a weak shock in the poloidally
rotating plasma'!?. Recently conditions for existence and uniqeness of stationary equilibria have
been analysed by Spada and Wobig!®.

In the following paper we assume that such an equilibrium exists and that plasma losses are
maintained by particle and energy sources. Furthermore, we assume that the deviation from
ideal equilibrium is not too strong and that magnetic surfaces exist in lowest order. Therefore,
all quantities as pressure, density and temperatures are nearly constant on magnetic surfaces.
Once a stationary equilibrium is calculated self-consistently, all quantities are known and there
would be no need for further analysis. However, in view of the goal to confine a high tem-
perature plasma with small losses one is particularly interested in relations between integrated
losses through magnetic surfaces, plasma gradients and poloidal and toroidal velocities. Such
“flux-friction relations” have been derived by Hirshman and Sigmar!® for tokamak plasmas,
Shaing and Callen have extended the theory to non-axisymmetric stellarator plasmas including
neoclassical effects!”. Plasma momentum sources as provided by neutral beam injection have
been incorporated by Coronado and Wobig!®. In these papers the fluid equations of a multi-
component plasma have been set up based on the Hamada coordinate system. In the frame
of this theory the two base vectors e, and e¢ on the magnetic surface following poloidally and
toroidally closed coordinate lines are utilized. In the Hamada coordinate system magnetic field

*S.1. Itoh, K. Itoh, Phys. Rev. Lett. 60, 2276 (1988)

°K.C. Shaing, E.C. Crume, Phys. Rev. Lett. 63 2369 (1989)

'°K.C.Shaing, Phys. Fluids B5, 3841 (1993)

''G. Grieger et al. Plasma Physics and Controlled Fusion Vol. 28, 1A, 43 (1985)
2R.R. Weynants, G.van Oost et al. Nuclear Fusion 32, 837 (1992)

"“H.P. Zehrfeld, B.J. Green Physical Rev. Lett 23 No. 17 (1969) 961

MR.D. Hazeltine, D.P. Lee and M.N. Rosenbluth, Phys. Fluids 14, 631 (1971)
'*M. Spada, H. Wobig, J. Phys. A: Math. Gen. 25 (1992), 1575

'°S.P. Hirshman, D.J. Sigmar, Nuclear Fusion 21, 1079 (1981)

'"K.C. Shaing, J.D. Callen, Phys. Fluids 26, 3315 (1983)

'®M. Coronado, H. Wobig, Phys. Fluids 30, 3171 (1987)




lines and plasma current lines are straight. The Hamada coordinate system which can be defined
for any toroidal geometry is well suited to evaluate radial plasma flows, poloidal and toroidal
rotation and to investigate the effect of external sources on plasma losses and plasma rotation.

In the present paper the theory in these papers will be reformulated using e, and B as
base vectors on the magnetic surface. This formulation makes use of internal symmetries of the
equilibrium and leads to a shorter and more compact formulation of the results. Besides these
formal changes several physical effects as bootstrap currents, momentum sources and impurity
diffusion are discussed in more detail. In a collision dominated plasma the bootstrap current is
small and has negligible effect on the plasma equilibrium. Nevertheless it is of interest to reveal
its dependence on the geometrical structure of magnetic surfaces, since this might give some
guide lines how to minimize the bootstrap current in the plateau regime or in the long mean
free path regime.

Besides momentum exchange by Coulomb collisions the viscosity is the dissipative mech-
anism of a collisional plasma. The Braginskii viscosity tensor 19 is linear in the plasma flow
velocity v and thus momentum balance equation, equation of continuity, equation of state and
energy balance equation form a closed set of equations for the plasma density, velocity and the
temperature. However, the differential form of the viscosity tensor inhibits to solve the system
explicitly, an ordering scheme, which neglects all dissipative terms in lowest order has to be
applied. In the first part of the paper we follow the procedure which has been developed in
Shaing and Callen’s paper. Furthermore, we include inertial forces and turbulent effects which
modify the flux-friction relations in various respect. Since the inertial forces are closely related
to the Stringer spin-up it is of particular interest to study their role in the flux-friction relations.
In order to clarify the basic feature of plasma rotation we consider at first an isothermal plasma
and neglect the energy balance. However, as will be shown in chapter 7, the energy balance can
be easily incorporated.

The applicability of a collisional model to a fusion plasma may be be questioned since in a
hot plasma the mean free path is large and neoclassical theory has to be applied. However in the
boundary regime the collisional model is applicable; there the plasma is in the Pfirsch-Schliiter
regime or at the edge of the plateau regime. In the boundary region the transition from L-mode
to H-mode occurs which is closely related to the build-up of a poloidal rotation and a radial
electric field. Therefore the radial electric field and its dependence on the toroidal geometry will
be extensively discussed.

A further modification of our collisional model is to take into account the full Braginskii
viscosity tensor with shear viscosity and gyro viscosity. As has been pointed out by Stacey and
Sigmar?® gyro viscosity may give rise to a radial momentum transfer and therefore leads to a
damping of toroidal rotation. It was suggested that gyro viscosity accounts for the enhanced
momentum transport observed in tokamaks. This has been critisized by Connor et al.2! who
showed that gyro viscosity does not contribute to the balance of toroidal angular momentum
in tokamaks. This theory will be generalized to non-axisymmetric configurations. Using only
parallel viscosity the condition of ambipolar diffusion results in an algebraic equation for the
electric field. Retaining the full viscosity tensor, however, leads to differential equations of the
second order, therefore the strong coupling of the E-field to the local pressure gradients , which
occurs in standard theory is removed by gyro viscosity and shear viscosity.

'°S.1. Braginskii, Rev. of Plasma Physics, Vol. I, 205, Consultants Bureau, N.Y. 1965
*°W.M. Stacey Jr., D.J. Sigmar, Phys. Fluids 27, 2076 (1984) and Phys. Fluids 28, 2800 (1985)
21].W. Connor,S.C. Cowley, R.J. Hastie, R.L. Pan, Report CLM-P795 (1987)
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Chapter 2

The One-Fluid Model

2.1 1Ideal Equilibrium and Pfirsch-Schliter Currents

Let us consider a magnetic field B with nested and toroidally closed magnetic surfaces ¥ =
const. This may be either a vacuum field or a self-consistent equilibrium field. The standard

equation of an ideal equilibrium is
JXxB =Vp (2.1)

The problem how to find a self-consistent B will not be discussed here, we restrict the investiga-
tion to the task how to calculate the macroscopic plasma parameters density, pressure, velocity
and plasma currents for a given field B. In the following we call a field satisfying Eq. 2.1 an ”
equilibrium field ”. It should be noted that p(+) can be any scalar function of the flux function
¥, whether p is a plasma pressure or not does not play a role in defining the equilibrium field.
In a realistic dissipative plasma the force balance differs from Eq. 2.1 and the magnetic field
will also differ from the ideal "equilibrium field”. The main task of introducing this field is to
provide a coordinate system and a lowest order approximation to the real field in stationary
equilibrium.

In the following we assume that the magnetic field satisfies the equation of the ideal MHD
model. As introduced by Shaing and Callen ! in their pioneering paper on neoclassical transport
in non-axisymmetric equilibria, the Hamada coordinate system (s, @, ) is the appropriate system
to describe toroidal equilibria (s is the volume of the magnetic surface, # and ( are the poloidal
and toroidal angles on the magnetic surface). This coordinate system exists if a solution of the
ideal equilibrium condition j x B = Vp exists. With

ep=VsxV( and et =-Vsx V0l (2.2)
being the poloidal and toroidal base vectors on the magnetic surface, the magnetic field is
B = ¢/(s)es + X'(5)ep (2.3)
and the plasma current
i=T(s)et + J'(s)ep. (2.4)

¥(s) and x(s) are the toroidal and poloidal magnetic fluxes and I(s), J(s) the corresponding
currents. The ratio between poloidal and toroidal fluxes is the rotational transform defined by

us) = g{g (2.5)

'K.C. Shaing, J.D. Callen, Phys. Fluids 26 (1983), 3315




Some basic properties of the base vectors ep and et will be needed later. The property ey Xep =
Vs leads to

epXB=-Vy ; e;xB=.(¢)V¢ (2.6)
Using the equilibrium condition
I'(s)X'(s) = J'(s) ¥'(s) = p(s) (2.7)
the plasma current can also be written in the form:
¥(s)j = —p'(s)ep + I'(s)B (2.8)
or
j=-P(¥)ep + I'(¥)B (2.9)
\ Field lines
P /

Magnetic surfaces

\ = const 2 = 2
s

Poloidal plane

Magnetic axis

Figure 1 Magnetic surfaces and the coordinate system s,8,(. The 8=const. lines are
toroidally closed and the (=const. lines are poloidally closed. The label s is the volume
of the magnetic surface and v the toroidal fluz .

Since ¥'(s) = 1/s'(¢) # 0 we may either employ the volume s or the toroidal flux 3 as radial
coordinate. Averaging a scalar g over the magnetic surface is defined by

_ df df _ 1 df
<82 ‘fg|v¢|’/ Vol T V@) /9|V¢| @an)

df is the surface element on the magnetic surface and V() the volume of the magnetic surface.
For any vector a lying in the magnetic surface and V -a = 0 it can be shown that

<a-Vg>=10 {2:11)

for any periodic function g(f, ). The flux of a vector a through a magnetic surface is

P:fa-df:V'(¢)<a-V¢> (2.12)




The poloidal current p'(¥)ep consists of the diamagnetic current perpendicular to B and the
Pfirsch-Schliiter current

jps = —p'(¥)(ep - B)B/B? (2.15)

however there is no need to separate these terms. It should be noted that the definition of the
Pfirsch-Schliiter currents often used in the literature differs from the present one. Making use
of Eq. 2.6 the current j can be written as

Vs X B ,
and with

P(s)<j-B>=p(s)<ep-B>+I'(s)< B> (2.17)
VSXB '(‘Lb) e _<ep'B> <j-B> 2.18
2 (%) ¢’(s){ B? < B> 1B + <B?>B (o8

or using the representation of B = ¢/(s)et + x'(s)ep
§ 3 . V.SXB p’(?,b) et -B <et-B> <j-B> 2.19
-P(¥) ) B —5r5 1B+ o B (2.19)

The first term j, is the diamagnetic current and the second term jpg is called Pfirsch-Schliiter
current in tokamak literature (Hirshman 1978) ® which leads also to a different definition of the
Pfirsch-Schliiter diffusion flux (Hirshman, Sigmar 1981) 4. This decomposition of the plasma
current in components perpendicular and parallel to the magnetic field leads to comparatively
complicated expressions of the diffusion fluxes. This decomposition is also unnatural in the sense
that both components are not real currents, neither j; nor jpgs satisfy V - j = 0, only the sum
does. Furthermore, neither the net toroidal current of j; nor of jpg is zero, nor gives the sum
of both zero toroidal current. The representation used here ¢'(s)j = —p'(s)ep + I'(s)B needs
no separation in diamagnetic and Pfirsch-Schliiter currents. The implications of the various
definitions of Pfirsch-Schliiter currents have been discussed in a paper by Coronado and Wobig®.

2D. Pfirsch, A. Schliiter, MPI-report PA/7 (1962). In this report a large aspect ratio expansion leads to the
following ratio between parallel and perpendicular plasma currents:

; 5 2
Jy = jL— cosf (2.13)
t
The same approximation holds for the base vector ep
2
ep - b= ep,1 ~cosf (2.14)

Due to these parallel current the classical diffusion is enhanced by the factor 142/¢2, the so-called Pfirsch-Schliiter
factor.

*S.P. Hirshman, Phys. Fluids 21, (1978) p. 1295

*S.P. Hirshman, D. Sigmar, Nucl. Fusion, 21, (1981), p. 1079

®M. Coronado, H. Wobig, Phys. Fluids B4, 1294 (1992)



As shown above the parallel component ep - B is a measure of the Pfirsch-Schliiter current
in a toroidal equilibrium. These are not zero locally, however it can be shown that in certain
conditions the average < ep-B > is zero. For the average values of ep-B and et -B the following
relations hold:

<ep'B>=-I(¢) ; <e-B>=Jw)+¢ B-dl (2.20)
s=0

where the integration is performed along the magnetic axis.
Proof:

In the classical paper on plasma equilibria by Kruskal and Kulsrud © the following
relations have been derived:

U'(4) (J =1 f;zu B- dl) —I(¥)u(¥)=V' < B >
(J + f;zo B. dl) r'(Y)-I$)J'($)=V' <B-j> (2.21)

Il

K'(4)

Here U = [ B*d3z and K = [j-Bd3z are the volume integral over the volume of
a magnetic surface. Using the the representation of B and j in terms of the base
vectors leads to

U = <e-B > +i(Y) <ep-B >

KE' = I'($) <et-B>+J'(¥) <ep-B> (2.22)
Inserting these equations into eqs. 2.21 yields the desired relations given in Eq. 2.20.

From these results we conclude that axisymmetric tokamak equilibria always have finite Pfirsch-
Schliiter currents whereas in net-current free stellarators the surface averaged Pfirsch-Schliiter
currents are zero. Locally these currents are finite also in stellarators, however, by a proper
choice of the magnetic surfaces these currents can be minimized to a large extent 7.

Usually the plasma current j = —p/()ep decomposed in j; and J

i= P T2 4 p(5)AB (2.23)

The last term in this equation is the Pfirsch-Schliiter current. Since the Pfirsch-Schliiter cur-
rents give rise to the Shafranov shift of the plasma column, equilibria with low Pfirsch-Schliiter
currents are to be favoured for this reason. The scalar A must be calculated by

V¢ xB 1
This equation can be modified to
VB 2 1

From this relation the following conclusion can be derived: If the Pfirsch-Schliiter currents are

zero, then

VB _

& — =0 (2.26)

®M. Kruskal, R. Kulsrud, Phys. Fluids 1 (1958)
"G. Grieger et al. Physics Optimization of Stellarators, Phys. Fluids B4,(1992) , 2081
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Vice versa the résult holds
VB o § 2 const.
¢ g = — =B (2.27)
The const. must be zero since otherwise A B has a net toroidal current. In tokamaks with a net

toroidal current /(%) the current density is
i=-r[W)e,+I'(¥)B (2.28)

in stellarators the total plasma current is j = —p’(1)ep. The current lines are the stream lines of
the base vector ep which are given by the lines { = const. The coordinate lines are the solutions
of the magnetic differential equation

B-V¢=19'(s) ; B-V0 = —19/(s) (2.29)

These equations must be solved with the self consistent magnetic field, however, using the vac-
uum magnetic field yields an approximation to the coordinate lines. An example is given below.

o R iy S

A2 T T~
T 1/22L 7 7 (] . Ny
- ,,ﬂ,;’/ll'fl,ﬂf'//ﬁsn
L 2
A 4 4 1 e e
A — ol —

";{.;({mir >
MR

\k‘\\\\-‘;&‘_k‘““

(L 77

—

Figure 2 Magnetic surface of a 5-period Helias configuration. The thin lines are the
magnetic field lines and the orthogonal trajectories to the field lines. The thick lines are
the current lines ( = const. In some regions the current lines are nearly perpendicular
to the field lines indicating very small Pfirsch-Schliter currents in this region

For tokamaks the Hamada coordinate system has been computed in 8.

2.2 One Fluid Model

The one-fluid model is the most simple approximation to a slowly diffusing plasma, the basic
relations have already been described in the paper by Kruskal and Kulsrud. Adding Ohm’s law

V® +vxB = 1j (2.30)

to the equilibrium condition describes the slowly diffusing plasma where a feedback of the velocity
v on the momentum balance is neglected. Therefore equilibrium and diffusion are decoupled;

®M Coronado, J. Galindo Trejo, Phys. Fluids B2 , 530 (1990)




having calculated the equilibrium the macroscopic velocity is found from Ohm’s law and the
equation of continuity:
Vpv =8 (2.31)

p is the mass density and S the source term of particles. Furthermore, and equation of state
p = p(p) links the pressure with density, the specific form of this equation is not needed here.
Since the equation of ideal equilibrium remains unchanged by the diffusing plasma, pressure and
density are constant on magnetic surfaces which for this reason form a set of smooth and nested
tori. In the following we assume that an equilibrium field with these properties exist, the issue
of existence is discussed extensively in the literature © .

From Ohm’s law the perpendicular velocity v, is computed which consists of a convective
E x B-drift and the perpendicular diffusion vp = —Vp/B%. More important than the local
velocity is the integrated flux < pv - V4 > which can be obtained by averaging Ohm’ law
in poloidal direction. This averaging procedure yields the flux-friction relations introduced by
Hirshman, Sigmar 1°, which provide a relation between the integral flux I' and the pressure
gradient p'(s) or p'(¥). The standard procedure to derive these relation is to apply the operator
< a-..> to Ohm’s law where a is a surface vector satisfying the condidion a x B = V f(%).
Examples are a = B, j, ep, et. The averaging procedure yields

<a-V®>—fl(¢) <v-Vyp >=<na-j> (2.32)

I' = V'(¢) < v-Vy > is the total flux of v through a magnetic surface. Since density and
pressure are constant on magnetic surfaces this flux is proportional to the particle flux. Taking
a = ep yields f' = —1 (see Eq. 2.6) and we obtain

T =V'(@¥)n(<ep-ep > p'(¥)+ II'(¥)). (2.33)
The electric potential is single-valued in poloidal direction < ep - V® >= 0 but in toroidal
direction the finite loop voltage leads to V/(¢) < B-V® >= Uj. a = B yields

UL = V() (19 (¥)+ < B2 > I'(9)) (2.34)

These two equation can be summarized in the following form

T Viggyy | <% 1(¥) P'(¥) (2.35)
UL I(¥) < B> r'(®)

This relation is a typical example of a linear relation between thermodynamic forces and the
conjugate fluxes. The fluxes are here —I', U, and the thermodynamic forces are p'(1), I'(%).
The transport matrix L relating these quantities is positive definit and Onsager symmetric. The
matrix L is

<ep-e > I(¥)
I(v) <. B% 5

It can easily be shown that this matrix is positive definite by averaging Ohm’ law with j. This
procedure yields

L= V() (2.36)

r'($)Up - pP()T = V() <j-j> (2.37)
This equation was derived by Maschke 1! | it has the typical form of an entropy production

°H. Grad, Phys. Fluids 10 (1967) 137
1°S.P. Hirshman, D. Sigmar, Nucl. Fusion, 21, (1981), p. 1079
"E.K. Maschke, Plasma Physics 13, 905 (1971)
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equation: the left hand side is the product of fluxes and thermodynamic forces while the right
hand side describes the dissipated power. The dissipative power is positive.

The symmetry of the transport matrix reflects the symmetry between classical bootstrap
effect and classical pinch effect. The term II'(y) descibes an inward diffusion driven by the
toroidal current I, on the other hand the term Ip’(%) introduces the bootstrap effect in the
integrated form of Ohm’s law Eq. 2.34. The coefficient < ep, - e, > characterizes the diffusive
flux driven by the pressure gradient p'(¢): —I' = V/(¥)n < ep - ep > p'(¥). In the large aspect
ratio approximation close to axisymmetry the relation holds

2
<ep-ep >R ey "€ > (1 + L_Z-) (2.38)

This equation shows that using the base vector ep in deriving the flux friction relation quite
naturally incorporates the Pfirsch- Schliiter enhancement factor in < ep - ep >.

It is unconventional to call the loop voltage Uy, a thermodynamic flux driven by the force
I'(1), however, it should be noted, that there exists no strict rule in how to define fluxes and
forces. One could easily reformulate the flux friction relations eqs. 2.35 by transferring the loop
voltage to the right side and calling the pair p'(¢), U, thermodynamic forces driving the "fluxes”
=T, I'(¥). The transport matrix in this case is

: 3 < 7B
H 12 (< ep e, >< B* > -I%) I(v) (2.39)
<B >\ -1w) 1/

In this form the transport matrix D is no longer symmetric, bootstrap effect and pinch effect are
antisymmetric to each other. However, since the toroidal current changes sign with B — —B,
we obtain Onsager symmetry in the following sense: DT[B] = D[-B]. The D-matrix is also
positive definit 2. However, it is more reasonable to consider the gradients p'(¢) and I'(s) as
the forces which drive the fluxes I' and Ur. The tokamak equilibrium is specified by the two
functions p'(y) and J'(s) and the solution of the Grad-Shafranov equation. Thus, the toroidal
current I(s) is also fixed by the choice of p(s) and J(s). In a next step collisions are taken
into account and determine the fluxes and equivalent sources, which are necessary to maintain
a given pressure gradient and a given toroidal current. In the experiment, however, the sources
and the loop voltage are given, the pressure gradient and the toroidal current are determined by
the collision processes. Usually the loop voltage is controlled to maintain a prescribed toroidal
current independently of the plasma parameters.

2.2.1 Tokamak Equilibrium

In an axisymmetric tokamak the magnetic field is represented by
B=VexVx(r,2)+(J()+ ¢ B-d)Vp (2.40)

Here, r,z,¢ € [0,1] is the standard cylindrical coordinate system. The flux function x is the
solution of the Grad-Schliiter- Shafranov equation and J(x) is the poloidal current. The Hamada
coordinates (, @ are defined by

B-V(=4(s) ; B-VO=—X(s) (2.41)

2] should like to thank Dr. A. Boozer for valuable discussions on this point.
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s is the volume of the magnetic surface. Because of axisymmetry the coordinate # does not

depend on the toroidal angle ¢ and the equation for 8 is
B,-V8= —x'(s) ; Bp,=VexVy
or
(Vsx Vyp)-Vo =1

which leads to
7 dl

0 =6,+ —
w=const. |v5|
The volume of a magnetic surface is s = [* § rdl/|Vs|ds and therefore

rdl _
[Vs|

(2.42)

(2.43)

(2.44)

(2.45)

The path of integration is ¢ = const. on the flux surface y = const. Thus, the period of the
poloidal Hamada coordinate is 1. The base vector ey = V# x Vs points in toroidal direction
and because of axisymmetry the relations hold: et - Vx = 0 and e - Bp = 0. This leads to

= (J00 + §B-d)

(2.46)

In tokamaks the product B - e is a flux function and equal to the poloidal current. This leads

to the following form of the plasma currents in tokamaks

i= —P'(%b)vi;B —i,((w))(J( )+}§B dl){m - <B2 } i

<j-B>

< B? > P N

The following ansatz of the toroidal Hamada coordinate ¢

C :99+f(613)

leads to
B, Vf = /(s)- B- V¢

or

SX(s) = ¥(s) - B -V

This differential equation has a periodic solution since
P(s) =<B-Vp>= j{B-VgodB
Explicitly f is
56,9) = ulo) + s = [(#(s)-B V) as
The poloidal base vector ep is

ep = V.sngo+-g-'g-V.sxV9

12

(2.47)

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)




or

1 B Ve
ep = Vs x th e :(]. — —T’b’—(s)——) et (254)
From this form of the base vector we derive
1 B V2
<ep-ep>=<|Vs|}Vey|? > -|—L—2 < (1 - ?,L‘—'(S_)g) et - et > (2.55)

The second term is the Pfirsch-Schliiter enhancement arising from the Pfirsch-Schliiter currents.
The first term describes the classical diffusion in a tokamak. Summarising all terms yields the
plasma current in the following form

p’(%’))(1 _B-Vop

e + I'(s 2.56
. ¢,(S))t+f()B (2.56)

i=-P(¥)Vsx Ve+

In this representation of the plasma current all three components are divergence-free.

Figure 3 Magnetic surface of a azisymmetric equilibrium. The thick lines denote the
Hamada coordinate lines ( =const. or the ep-lines. Aspect ratio A=4, ¢ = 1/ = 2.6.
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2.3 Stationary Equilibrium

In the preceding section we anticipated the existence of an ideal equilibrium satisfying the force
balance Eq. 2.1. This model may be justified in a slowly diffusing plasma where the velocity
has little influence on the the force balance. However, experiments in tokamaks and stellarators
indicate the existence of a poloidal and toroidal rotation. In particular, shear flow arises in the
edge region and therefore inertial and viscous forces have to be taken into account for a proper
descrlptmn of the stationary state. These forces, in general, are small compared with Vp and
J x B, however in the tangential plane of the pressure surface these forces are the only ones.

In the following we consider a plasma in stationary equilibrium and include viscosity and
resistivity as dissipative processes. In order to maintain a steady state, a particle source com-
pensates the plasma losses as already outlined in the previous section. The force balance in
stationary equilibrium is

Vepviv=-Vp+jxB-V.r (2.57)

p is the mass density and 7 the anisotropic pressure tensor. In order to truncate the hierarchy
equations this tensor must be related to the plasma velocity v, the detailed form of the vicous
tensor valid in the collision dominated regime will be discussed in a later section. The other
equations are Ohm’s law

-Vé+vxB =1nj (2.58)

the equation of continuity
M:pv =5 (2.59)

and the equation of state
p = pp,T) (2.60)

Furthermore, a heat transport equation is necessary to compute the temperature, however, since
we are interested in plasma rotation and particle transport we adopt the model of an isothermal
plasma (T'=constant).

An important issue in the context of stationary equilibria is the problem of existence and
uniqueness of solutions. This issue will not be discussed here, for details the reader is referred
to a paper by Spada and Wobig'® . In the following we assume that solutions of these equations
exist and analyse some consequences with respect to plasma rotation.

Unlike to ideal equilibria magnetic surfaces and pressure surfaces do not coincide in stationary
equilibrium. Magnetic surfaces even need not exist in the rigorous sense, however, confinement
of the plasma will strongly depend on the quality of magnetic surfaces and on a close coincidence
of pressure surfaces and magnetic surfaces. In the following we assume that toroidally closed
and nested pressure surfaces exist. The magnetic field may have a small component normal to
the pressure surface. We define the average over the pressure surface by

S92 ey [Vpl/ s V] (2gl)

We utilize the subscript p to distinguish this pressure surface average from the magnetic surface
average < .. > defined above. In general the plasma velocity will consist of a radial diffusive or
convective velocity and a component tangential to the pressure surface p = const. The latter one
describes the plasma rotation which is driven by the inertial forces and damped by the viscous

1*M. Spada, H. Wobig, J. Phys. A: Math. Gen. 25 (1992), 1575
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forces. To demonstrate this we take the dot product of the momentum balance with the current
J or the magnetic field B and average over the pressure surface. Because of < j - Vp >,= 0 and
< B-Vp>,=0 this procedure yields

L VAPV i By —<j V-n(v) >,

<B:V.pviv> = —<B-V.a(v) >, (2.62)

Since these equation are non-linear in velocity the inertial forces couple all three components
of the velocity, toroidal and poloidal rotation are coupled to the radial diffusion and vice versa.
Averaging the force balance over magnetic surfaces yields a similar result, however, since <
J+Vp ># 0 in general, these equations are

<) Vipriv >4 <= Vp> = 2gj - V-a(v) >
<BVipv:v> = —<B:-V-x(¥v) > (2.63)

The surface average < B - Vp > is zero for all p. The inertial forces may be written as

2
V-pv:v:vS+pV%—pvxu’5 (2.64)

@ = V x v is the vorticity of the velocity v. The first term arises from the equation of continuity,
the second term describes the centrifugal forces and the last term in this equation represents
the Coriolis force. The centrifugal forces contribute only little to the integrated force balance.
Since in our isothermal model the density surface coincides with the pressure surface we find

AT o p Vs = df'”—z' df//df/Wl (2.65)

This integral is zero if the plasma current flows in the pressure surface. The main contribution
comes from the Coriolis force parallel to the plasma current or to the magnetic field and we may
write the integrated momentum balance in the form

<J VvESp+<pv-(jx@)>, = —<j-V-1>, (2.66)

<B:-v§> +<pv-Bxd)> = —-<B-V.r>,

Apart from the first term which describes the momentum loss caused by ionisation the dominat-
ing forces are the Coriolis force and the viscous force, these forces determine the poloidal and
toroidal rotation of the plasma. The Coriolis forces provide a coupling of the radial diffusive
{lux to the tangential velocities. This is the essential feature of the Stringer spin-up mechanism,
in Stringer’s formulation, however, the radial derivative in the inertial forces is neglected. Such
a coupling of radial, meridional and azimutal motion also exists in the atmosphere of the earth.
The integrated momentum balance equations exhibit a strong similarity to the momentum bal-
ance of the zonal circulation in the earth atmosphere driven by the meridional motion in the
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Hadley cell '*. On rotating planets the vorticity consists of the rigid rotation $ and the relative
vorticity. The angular velocity of the planet is the dominating factor in the Coriolis forces. In
plasmas, however, there is only a small zeroth order vorticity: the slow diamagnetic rotation
of the ions. The observed fast rotation in plasmas results from a spin-up mechanism which
amplifies the the small initial rotation. This will be described in a later section.

The viscous forces provide a damping mechanism which tends to slow down the rotation of
the plasma. As shown by Hassam and Kulsrud the slowing down is mainly due to magnetic
pumping and it has to be expected that the magnetic field structure plays an important role in
this mechanism. For this reason we analyse the viscous forces in more detail.

2.3.1 Viscous Forces

The viscous forces in the momentum balance depend on the collisionality of the plasma. In a
collision dominated plasma the theory of Braginskii is applicable. In this theory the viscous
stress 7 is locally linked to the rate of strain tensor

1
W = 279 4 (Viv)T) - 291 (2:68)

In a neoclassical plasma the viscous forces have to be calculated from kinetic theory. In a strong
magnetic field the distribution function may be approximated by f (v, v.) and the viscous stress
is

Tir = (p — po)(bibx — %5&) (2.69)

b is the unit vector along the magnetic field lines. Eq.(2.69) is the Chew-Goldberger-Low!®
form of the pressure tensor which is valid for all regimes of collisionality. The viscosity tensor
of a collision dominated plasma is given by Braginskii, in this theory the leading term of the

viscosity tensor yields: ) b
[ 1 dv,
—pL=- bibypy 7— — = —— 2.70
P|—PL=—37p ?m:( b e =3 93, (2.70)

7 is the like particle collision time. The full Braginskii viscosity tensor contains 5 terms which
are of the order 1, (wr)™" and (wr)~2. The term used here is of the order one and describes the
bulk viscosity. In chapter 5 the effect of the other terms will be investigated.

Another approach to the anisotropic pressure P — py is based on the magnetic pumping
mechanism or gyro-relaxation effect 8. In the double adiabatic theory the variation of p and
pL is given by

i-dp—J' = —-2V-v+b:b-V:v
pL dt
d
1 apy = -V-v—2b:v-V:v (2.71)
p“ dt

"E. Palmén, C.W. Newton, Atmospheric Circulation Systems, Academic Press, New York, London, 1969
The meridional profile of the azimutal velocity u is determined by

fot g 2y Pt B
a dy pv

(2.67)
v is the meriodional velocity, y the meridional coordinate (v = geographic latitude), f = 2Qsin ¢ is the Coriolis
parameter, Fry and Fy. are the viscous forces. The meridional velocity v is the northward or southward component
of the Hadley cell. Q is the angular velocity of the earth, a the radius of the earth.

'*C.F. Chew, M.L. Goldberger, F.E. Low, Proc. Roy. Soc. A236, 112 (1956)

'® A. Schliiter, Der Gyro-Relaxations Effekt Z. Naturforschg. 12a, 822-825 (1957)
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Using the approximation p| & p &~ p we obtain

dpy _ dpy

= — =3p(b:b-V: v-gv v)=3p> bibmWim (2.72)

{Win} is the rate of strain tensor which has zero trace. It was suggested by A. Schliiter'” that
this equation be modified by the gyro-relaxation effect leading to the following equation:

dpy d
2L g D bibnWim = —v(p — pL) (2.73)
dt dt
Under steady state condition this equation becomes
v-V(py—pL)+3p Y bibmWim = —v(p) — pL) (2.74)

If the collisions are frequent enough the convective term can be neglected and the difference in
the pressure becomes

1
py—PL = —3p7 Y _{bmbi — §5tm}Wlm (2.75)

This approximation leads to the same result as the bulk viscosity of Braginskii.

2.3.2 Surface Averaged Viscous Forces

Let us return to the viscous stress tensor in the CGL-approximation:

e = (9 = pL)(bibs — 58 (2.76)

which holds in strong magnetic fields without restriction to the collisionality regime. In the force
balance we need the component of V - 7 parallel to j and B. Let be A one these vectors, then
the viscous force parallel to A is

A-V-r=A-V. ((PH—PL)BI;QB) & %A'V(Pu - p1) (2.77)

The first term on the right hand side can also be written as

o (P=PL, )_(p” pL)
B V( e A-B B B-BVA (2.78)

In case of A = B we find B-BVB = B-VB/B. If A = j a similar relation holds. To
demonstrate this we start from j x B ~ Vp and take the curl of this equation. This procedure
yields j- VB = B - Vj. Therefore we may approximate the first term on the right hand side in
both cases by

Pl — (py = p1)
B-V A B B-AVB 2.79
(B a-B) - (2.19)
In summary the viscous force parallel to A is approximately
P = (op=21) , VB =l
B-V( —a. B)— N TR (2.80)

TA. Schliiter, Lectures on Plasma Physics, SS 1959, University Miinchen, unpublished
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The surface average over the terms with B - V.. and A - V.. is neglible since it depends on the
radial components of B and j. Summarizing the results yields the the surface averaged viscous
forces in the following form

<A-V-Tl'>n"$—<(p”—p_L)A'zBBi> (2.81)
In case of an ideal equilibrium this approximation is an equality.

It is obvious that this relation holds for any linear combination A = a( p)j+ b(p)B. Plasma
equilibria with an ignorable coordinate are of special interest since there a direction exists where
the magnetic pumping effect is zero. This is the toroidal direction in tokamaks and a helical
direction in helically invariant stellarators. In summary the integrated momentum balance is

. S . VB
<J vE>+<pv-(jx@d)> = <(p||_pl)J._B_>
VB
<B:.vS>+<pv-(Bxd)> = <(p”-—pJ_)B-——B > (2.82)

In toroidal stellarators an invariant direction does not exist in general, therefore magnetic pump-
ing is always present. There exists, however, a class of quasi-helically invariant stellarators 18
where a direction A with A - VB = 0 exists. Magnetic pumping would not inhibit plasma ro-
tation in this direction. Another method to reduce magnetic pumping and to facilitate poloidal
plasma rotation is to reduce VB parallel to the plasma current. In stellarators without toroidal
net current the current lines are either poloidally closed or they ergodically fill small ring-shaped
domains. Therefore any minimisation of the poloidal variation of the magnetic field reduces the
magnetic pumping and favours poloidal plasma rotation. Such a reduction of the poloidal com-
ponent of VB is one of the main features of the Helias concept!®. In the following chapters the
flux-friction relations and the momentum balance equations will be extended to a multi-fluid
plasma consisting of N particle species. Furthermore, it will be analysed how turbulent effects
and inertial forces modify the flux-friction relations.

2.4 Time Evolution of Plasma Rotation

In the previous section the stationary equilibrium has been discussed in the one-fluid model. As
analysed for the first time by T.E. Stringer a static equilibrium is unstable against a poloidal
rotational perturbation®®. This mechanism has been investigated by many authors and has
gained renewed interest in context with the H-mode effect. In deriving the spin-up equations
use has been made of the special geometry of tokamaks and the issue arises how the equations
can be generalised to an arbitrary stellarator geometry.

For this reason we use the same approximations as in the tokamak theory and start from
the momentum balance equation

a
Epv+V-pv:v:—Vp+ij—V-1r (2.83)
and the equation of continuity
d
(,)—':+V-pv:5' (2.84)

'®J. Niihrenberg, R. Zille, Phys. Letters A Vol. 129 , No. 2 (1988) 113
9], Niihrenberg, R. Zille, Phys. Letters A, Vol 114, (1986), 129
*°T.E. Stringer, IAEA-Conf. 1971
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Ohm’s law is
-Vé+vxB=rnj (2.85)

The momentum balance can also be written in the form
p(%v—l—(v-V)v):—Vp—kjXB—V-W-—VS (2.86)
In lowest order the flow velocity is tangential to the magnetic surfaces and follows from
- Ve,(P)+vexB=0 ; V-.-v,=0 (2.87)

The solution of this equation is
Vo = 8 (¥)ep (2.88)

E = @/ () is the radial electric field. Multiplying the momentum balance with the perpendicular
component of ep yields the equation

dv, "
pep.J_-Ez —ep1L-Vp+j-Vip—e, - V-T—ep; -v,5 (2.89)

The parallel component of ey, yields
dv

Peoll - = - VP — €y VT —ep) - VoS (2.90)
Averaging Eq. 2.89 over the magnetic surface leads to
dv,
<pepL-——>=—<e€,1 VP> —<e - V-T>—-<ep -V,5> (2.91)

dt

The first term on the right hand side is the Stringer spin-up term. In order to get a non-zero
term the pressure must be inhomogeneous on magnetic surfaces. This term can also be written
in the form

Vi x B \Y
— < Vp- ‘;’; > = <pV- ¢B’;B (2.92)
1
= <pVYxB V>
\Y
= <p——-lB¢|r:g>

Kg is the geodesic curvature of the magnetic field line. The role of the geodesic curvature in
the spin-up mechanism of tokamaks has also been pointed out by D.R. McCarthy et al. 2!. In
tokamaks with B = V1 X Vo + J(¢)V¢ we obtain

Vi x B Vi x Vo J
<Vp—p—>=J<Vp " >=< 5B, Vp> (2.93)
Using the approximation B% « 1/R? yields
<ep1-Vp>x< R*B,-Vp> (2.94)

#D.R. McCarthy, J.F. Drake, P.N. Guzdar and A.B. Hassam, Phys Fluids, B5, (1993) 1188
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(see also A.B. Hassam and J.F. Drake??). In this perpendicular momentum balance the quadratic
inertial forces are neglected and inserting the explicit form of v, yields

—<pepL-€1 > -—-—<ep,1_-Vp>—<ep,L-V~1r>—<ep,L-voS> (2.95)

ot
In the parallel equation 2.90 the inertial force are not neglected and summing up the two

equations leads to

oF
— < pep-ep > —(,j)?—<pep‘”-(v-V)V>:—<ep-V-7r>—-<ep-vo.5'> (2.96)

In this formulation it is the parallel inertial force which plays the key role in the spin-up mech-

anism. As has been shown in the previous section the factor < pep, -ep > can be approximated
by

2
<pep-ep>f¢:<pep,l-ep,l>(1+:2—) (2.97)

The derivation given above is not the most general one since the net toroidal flow velocity
has been neglected. The general solution of egs. 2.87 is

vo = —E() ep + A()B (2.98)

The flux function A(3) describes the net toroidal flux of v,. Averaging the momentum balance
with e - .. and B - .. yields the two equations

<pep-%>+<pep-(v-V)v> = —<epV:x>—<ep-vi> (2.99)
<pB-a;">+<pB-(v-V)v> = —-<B:-V:7>-<B-v§>

Inserting the velocity v, from Eq.2.98 leads to

av, B_E_ oA

<Pep'W> = —<pep-ep> at+<ﬂep'B>§ (2.100)
v, oF A
B- = - B- - B- e
<p 5 > <p ep>at+<p B>8t

Using the approximation of constant density we may also write

- v, S ! oF
P o < ep-ep > a1
ot = —po(¥) p°®p ot (2.101)
aVc:) I < B? > oA
PR 2 ot
The inertial forces have already been analysed in the previous section, they are
<pep-(Vv:-V)v> = <p,v-(ep X&) > (2.102)

<pB:(v-V)v> = <pv-(Bx@)>

22A.B. Hassam and J.F. Drake, Phys. Fluids, B5, (1993), 4022

20




This formulation shows that the Coriolis forces are the driving forces for poloidal or toroidal
rotation. It is interesting to note that the lowest order flow v, cannot excite any rotation. As
has already been shown by Bineau?? the surface averaged term < poB -V . v, : v, > is zero.
This also holds if we replace B by ep,. As will be shown in a later chapter, this result also holds
if we approximate p,v by p,v, in the Coriolis force and leave the vorticity quite general. The
conclusion is that a radial velocity v; is needed to get a poloidal or toroidal acceleration. The
vorticity of the lowest order flow is

@ =Vxv,=-EVxe,+e,x VE+Aj—B x VA (2.103)
and we obtain
—ep X Q9 = Ee, xVxe,+ (Eje,-e,+ Al'— N'(B-e,))Ve
-Bx{0 = EBxVxe,+(E'B-e,+AP — A'B%)Vy (2.104)

In summary the surface averaged Coriolis forces are

— < povy - (ep X ﬁ) > = RnE+ RisA+ Ky E' + Kqs A
< povy - (B x ﬁ) > = RyE+RpA+EKyE' + Ky A (2.105)

The coefficients in this equation are

Ry = < pavl(ep X Qp) >
Riz = <povi-Vyp>T
Ry = -—-< pPovi(B x L:)'p) >
Ryy = — <povi-Vp> P (2.106)
and
Eun = <(povi-Vi)e,-e, >

K3 = <(pov1-V¢)e, B>
Ky = — <(pov1-V¥)e,-B >
Eop = — <(povi-Ve)B?> (2.107)

wp = V X e, is the vorticity of the base vector e,. Using these matrices the Coriolis forces can
be summarized in the following form

~ oF

— < PoVy - (ep X Q) > Ri1 Ris E K11 Kia %
= + (2.108)

. ) oA

< PoVi -t (B X Q) > Ro1 Rao A Ko Ko %

**M. Bineau, Phys. Fluids, 10, (1967), 1540
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The spin-up equations (without damping terms ) are now

oF
< eD . ep > I W
o5 po(’:b)
1 < B%*> ah
ot
. . OF
Ri1 Ry E Ky Ky, 7%
= + ¥ (2.109)
. g JdA
Ry1  Ray A Koy Ky M

These coupled equations describe the evolution of the radial electric field and the toroidal net
flux A .

These equations show that the radial derivative of E and A also occurs which is not the case
in Stringer’s original paper on the spin-up. In Stringer’s paper the time derivative of E is only
proportional to E and not to E’. The reason is that the parallel inertial force B - (v-V)vis

approximated by
vy ()

o8 ' Y B (2.110)
For this reason the spin-up equation takes the simple form
2. Ov
(1+ - a—t" X (2.111)

As shown above the velocity v; = v — v, is the component of v which leads to the spin-up of the
flow velocity v,. This velocity v, consists of the diffusion velocity vp and the parallel velocity
V|- These are linked by the equation of continuity

Vpovp + Vpv = § (2.112)

Usually the parallel velocity v| is larger than the diffusive velocity. If we approximate vy by its
parallel component only, all terms with v; - Vi) are zero and the K-matrix 2.107 is zero. In the
R-matrix 2.106 only the first term Ry; is non-zero and the spin-up equations become

OF
— po(¥) = (2.113)
I = B s on 0 0 A
at
which leads to OF
- Po (<ep-e1D ><B2>—I2) = rt B*> Rn E (2.114)
and
IE+ < B*> A = Const. (2.115)
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Eq. 2.115 states that any poloidal rotation E leads to a toroidal net flux A and a toroidal rotation
of the plasma. In a stellarator without toroidal current (I = 0), however, this linkage between
E and A is zero and we obtain A = const.. There is no toroidal spin-up in a stellarator in this
approximation. The radial component of vy, (vq - V¢ # 0), however, restores this linkage, and
the coupling between poloidal and toroidal fluxes persists. In the approximation v; = vy, we
obtain the standard spin-up equations in general toroidal geometry. In analysing the coefficient
1211 we write the parallel velocity of v; in the form v; &~ uB and using B X ep = Vi we find

Ry = < Po UV 'ﬁp >
= <pouV-(epx Vi) > (2.116)

where the parallel velocity is the solution of the magnetic differential equation

poB -Vu = -V-p,vp + 8§ (2.117)
In axisymmetric tokamak geometry this approximation coincides with the equation eq. 32a
E 2 . 1
(1+2q2)%—£- — ?quinﬂu == (2.118)

in the paper by Hassam and Drake?!. Because of B = ¢(s) e + x'(s) ep and V - (B x Vy)=0
we have

V-(ep X Vy) = -% V- (et X V) (2.119)

and therefore 1
g = -7 < poV - (eg x V) > (2.120)
The surface integral < V - (ef X Vi) > is zero and in tokamak geometry this terms reduces to
V- (et X Vo) x sinf (2.121)

which yields the equation mentioned above.
Another form of V - (ep X V) is obtained by inserting Vi) = B x ep which yields

ep X Vi) = Bep? — ep (ep - B) (2.122)

and
V.(epx Vi) = B-Vep’ —ep- V(B -ep) (2.123)
This formulation explicitely shows the role of the parallel component of ep : ep - B which is
related to the Pfirsch-Schliiter currents (see Eq. 2.15).
In the discussion above we have neglected the damping effect by magnetic pumping. The
viscous forces have been analysed in the previous section (see eq. 2.81) and to complete the
simplified spin-up equations by the damping forces we write

OE VB
<ep-ep > 1 E Ri1 O E < (P|| - pl)ep ) B >
—po(¥) = +
AA VB
B2 by — — B:-— >
I & B> 5 0 0 A < (p—pr) 5
(2.124)

**A.B. Hassam, J.F. Drake, Phys. Fluids B5, (1993), 4024
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The equation for the poloidal velocity E becomes

6‘_E
at

where the vector h is h =< B? > ep + IB. In a stellarator without net current (I = 0) the
damping term is simplified to < pj —p1 < B? > ep - VB/B > and the spin-up equation is

VB
=<B’> RnE+< (p—p)h-— >  (2.125)

—po(<ep-ep><B2>—Iz) =

E VB
— = R E+ < (p” = pJ_)EP o T (2.126)

—Po <ep'ep> at B

In conclusion we find that in stellarator configurations with small ep - VB magnetic pumping
is reduced and therefore a poloidal spin-up is easier to achieve than in standard stellarators.
As will be shown in later chapters the term < (p” —pi)ep - %f— > is proportional to the
neoclassical particle flux through a magnetic surface. Thus, Helias configurations with reduced
neoclassical transport see a small damping against poloidal spin-up. Since neoclassical transport
in tokamaks is smaller than in stellarators this implies also a smaller damping against poloidal
spin-up, which may be one of the reasons why H-mode operation in tokamaks can be achieved
more easily than in stellarators. In a collision dominated plasma the viscous damping is described
by the Braginskii viscosity which is linear in the velocity v,, however, in the long mean free path
regime, where the term p| — pL must be calculated from a kinetic equation, the radial electric
field modifies the particle orbits and the viscous damping depends non-linearily from the radial
electric field £. This non-linearity is the reason for multiple solutions of the saturated state the
bifurcation phenomenon. The effect of lost orbits is also included in the term =P
Non-linearities also arise in a collision dominated plasma if the inertial forces are retaind to
a higher order. If we abandon the approximation p = p,(3) in the centripetal forces, these can

be written as
2 2

—<%ep-Vp> ;i =< %B-Vp> (2.127)

The variation of p within the magnetic surface can be found approximately from

poep - (Vo-V)v, = —clep-Vp
poB-(vo-V)v, = —c!B-Vp (2.128)

The non-linear saturated state of the poloidal rotation has been analysed by many authors
utilysing the axisymmetric tokamak geometry. The zeroth order density distribution has been
computed by Zehrfeld and Green?® and by Hazeltine, Lee and Rosenbluth?6. Numerical calcu-
lations of the spin-up by Green et al.?” showed that the rotation saturation in the vicinity of
the poloidal sound speed. The results of Zehrfeld and Green have been generalised to stellara-
tor geometry by Kovrizhnikh and Shchepetov?®, however, in this paper the specific features of
non-axisymmetry are eliminated by averaging the equations in toroidal direction.

*H.P. Zehrfeld, B.J. Green, Phys Rev. Lett.25 (1969), 961

*R.D. Hazeltine, E.P. Lee, M.N. Rosenbluth, Phys. Fluids 14 (1971) 361

?7].M. Green, J.L. Johnson, K. E. Weimer, N.K. Winsor, Phys. Fluids 14 (19710, 1258
**L.M. Kovrizhnikh, S.V. Shchepetov, Nuclear Fusion 29 (1989), 667
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Chapter 3

The Multi-Fluid Model

3.1 Basic Equations

Let us consider a magnetic field B with nested and toroidally closed magnetic surfaces 1 =
const. This may be either a vacuum field or a self-consistent equilibrium field satisfying the

condition
]=%xB . V:B=4 (3.1)

In this magnetic field we consider a turbulent plasma consisting of N particle species. The
macroscopic quantities of this plasma are written as f + § f(¢) where f denotes the time av-
eraged quantities and éf the fluctuating part. The plasma is assumed to be isothermal with
a temperature 7', the modifications due to temperature gradients will be discussed in a later
chapter. The momentum balance of each particle species is

_anvj

m
7 ot

+ m;V -n;v;: v; = =Vpj+q¢n;E+qn;jv; xB - Fj,l ==Vl (3-2)

with the following notations: p; = n;kT= pressure of each particle species, n; = density, ¢; =
charge, v; = macroscopic velocity. 7; = anisotropic part of the pressure tensor. The friction

1
9k
lel YE— ‘kak (3-3)

force ' is

q; is the heat flux vector and the coefficients /7% are the friction coefficients defined by
2
Ik 1k v 2 2V
i

8 ik 1s the linearized Coulomb collision operator which links the particle species with index j

and k. 'UJ = 2kT;/m; is the thermal velocity of the particle species j. In the following we will
neglect the heat flux in the friction force, the effect of this term will be discussed in a later
section. The friction force (without q;) can also be written as

P = Z ajr (v; — Vi) (3.5)
k

!S.P. Hirshman, D. Sigmar, Nuclear Fusion 21, 1079 (1981)
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Since Coulomb collisions conserve momentum the matrix aji is symmetric and the friction
coefficients o are given by

4 #g3
Qik = N; N Mg, 5\/271' In Aﬁq';%;?ﬁ (3.6)
T

where m;r = m; my/(m;+m;) is the reduced mass and InA the Coulomb logarithm. The inertial
forces on the left hand side can be modified using the equation of continuity

3 .
e SR (37)

where §; is a source term describing all ionisation processes. We consider her the source term
as a given term independent of time. The inertial forces are also written in the form

mjnjgti + mjn;v;-Vv; + ijjVj (3.8)

Usually the source term is neglected, however it may be important in the boundary region where
neutral gas provides a source for ions and electrons. Since the source S; is positive (exept for
recombination) this term tends to reduce the velocity of the fluid.

These equations describe the evolution of the plasma on all time scales. We consider a
toroidal plasma in a stationary turbulent state. On a fast time scale the plasma instability has
grown to a finite level where nonlinear effects stabilize a further increase. All plasma parameters
consist of a time averaged term and a fluctuating term.

n; — n; +én; , p; — p;+ 6p; (3.9)
vi—vVv;j+dév; , E— E+6E (3.10)
B— B+ 6B (3.11)

For simplicity we assume that the friction coefficients a;;. are time independent and constant on
magnetic surfaces. Taking the average over the fast time scale eliminates all terms which are
linear in the fluctuations and the result is the evolution equation on the slow time scale:

& = —=Vpi+¢n;E+ginjv; x B — Zajk (vj—vi)—V-x; (3.12)
k
The term ¢ includes also the quadratic terms arising from the turbulence
ov; :
£ = mjnj% +mj(nj + 6n;)(v; + 6v;) - V(V; + 6v;) — ¢; 1,68 — 83, X 6B + m;S;v; (3.13)

8) = 8gjnjv; is the fluctuating part of the current of the particle species 7. Explicitly the inertial
term is

NV Vv +njov;-Vov;+énjév; - Vv + énjv; - Vév; + 0(6%) (3.14)

Turbulence gives rise to three extra forces: the second term on the right hand side in Eq.(3.13)
includes the turbulent Reynolds stresses, the third one arises from the fluctuating electric fields
and the last one is the turbulent force by fluctuating magnetic fields. Furthermore, we need the
equation of continuity on the slow time scale

an;

==+ M V= 5 & TV = Ldniv; (3.15)

at
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These equations describe a stationary state and a slow instability of this state. This could be the
rotational instability of a diffusing plasma which spins up according to the Stringer mechanism
or driven by the poloidal Reynolds stresses arising from the turbulence. We will not consider
here any reaction of the stationary solution on the turbulence level which is a characteristic
feature of the L-H-transition in tokamaks.

In the frame of these equations several scenarios can be analysed

o A quiescent equilibrium under the influence of inertial forces and viscous forces.
¢ A stationary turbulent equilibrium under the influence of additional turbulent forces.
¢ Rotational instability of a stationary equilibrium.

The momentum balance of the whole plasma is obtained by summing up the momentum balance
of all particle species

Y & =-Vp+jxB - V., (3.16)
i i

Because of quasineutrality ) g;n; = 0 and the momentum conservation of Coulomb interaction
the electric field and the friction forces do not occur. Neglecting the inertial forces and the
viscous forces yields the familiar equation describing the ideal equilibrium. This equation shows
that pressure surfaces, magnetic surfaces and current surfaces in general do not coincide. In
stationary equilibrium the magnetic surface may exhibit islands and stochasticity while pressure
surfaces are smooth and nested.

In the following we assume that a stationary equilibrium exists and that pressure surfaces
p=const. are nested toroidal surfaces. The Vp-force is mainly balanced by the j x B force, in
radial direction the inertial and viscous forces are small. The tangential force balance, however,
is governed by these forces. To demonstrate this we average Eq. 3.16 over the pressure surface.
Multiplying this equation with B or j and averaging yields the equations

Y. <B-g>=-> <B-V.1; >, (3.17)
J i
and
3 <§ &= =Y < Vem >y (3.18)
] i)

The subscript p indicates that averaging takes place over the pressure and not over the magnetic
surface (which may not exist everywhere ). The average values of < j-Vp > and < B-Vp >
are zero because of V- j =0 and V-B = 0. These equations 3.17 and 3.18 also hold if we take
a linear combination a = f(p)B + g¢(p)j instead of B or j.

In a two-component plasma consisting of hydrogen and electrons this balance is mainly the
balance of ions, because of small mass electrons play a minor role and the inertial and viscous
forces are those of the hydrogen. As will be shown later the viscous forces tend to slow down
any rotation of the plasma. If a finite poloidal or toroidal rotation of the plasma exists, it must
be driven by the inertial or turbulent components in £;. The motion of the plasma tangential
to the isobars has a strong similarity to zonal circulation in the atmospheres of planets which
is driven by the combined effect of Coriolis forces and cellular convection. In plasma such a
rotation is of particular interest in conjunction with the development of shear flow in boundary
regions and the effect on radial plasma transport.
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3.2 Expansion Technique

Since we are mainly interested in the momentum balance of a toroidal plasma we adopt the
model of an isothermal plasma with a given temperature. The equation of state links pressure

and density
pj = n; kT. (3.19)

In general, an energy equation would be needed to compute the temperature separately. The
source terms S describe all ionisation and recombination processes. Since the charge is conserved

by these processes, we get:
> 4 S;=0 (3.20)
i

in every volume element. In steady state the conservation of charge leads to the ambipolarity
condition

> ¢T;i=0 (3.21)
i
with T'; being the particle flux through a magnetic surface
i‘j = / n;v; - df (3.22)
df is the surface element on a magnetic surface. The plasma current density is
1= anqjvj with V-j=0 (3.23)

In a given magnetic field these equations determine the density, the flow velocity of each particle
species and the electric field. However, in practice solutions can only be found approximately
by an expansion technique. The main difficulty arises from the first order and second order
derivatives of v in Eq. (3.2) which makes this equation a nonlinear differential equation rather
than an algebraic equation. The expansion technique proposed by Shaing and Callen neglects
these nonlinear and dissipative terms in lowest order. Furthermore all source terms are omitted
in lowest order. Mathematically, this procedure may be critizised, since higher order derivatives
of the flow velocity are neglected in lowest order. Boundary layer effects, which may arise around
rational magnetic surfaces, cannot be treated by this method. Following the method applied by
Shaing and Callen we expand all unknown quantities into two terms

pi — Pit+p;
g s Nk
® — P+ o

n; — N;+n;

Here P;, V;, ®, N; are the lowest order quantities and p;, v, ¢, n; are the perturbations. ® and
¢ are the potential of the electric field.

Lowest Order Equations

In lowest order the momentum balance and the equation of continuity are:

0=-VPj+¢N;j(-V®+V; xB) (3.24)
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and
V-N;V;=0 (3.25)

-with P; = N; kT. In lowest order the density N; and the electric potential ® are functions of
the magnetic surface ¢ = const and the lowest order flow is incompressible

V:-V;=0 (3.26)
Defining the functions
Uj($) = %tan(w) + a(p) (3.27)
and
Ej(¥) = Uj(y) = %% + () (3.28)

the momentum balance in lowest order can be written
0=-VU;(¥)+V;xB (3.29)

The parallel component of this equation yields B-VU = 0, which implies that in zeroth order the
flow of each particle species stays in the magnetic surface and is determined by the flow potential
function Uj;(%). At this point it may be noted that the existence of closed magnetic surfaces
is required by the specific expansion technique which solves Eq.(3.29) instead of Eq.(3.2). A
rigorous treatment of Eq.(3.2) would not anticipate the existence of magnetic surfaces, however,
the solution would strongly depend on the topology of B. In the following calculations the two
vectors B and e, will be used as base vectors on the magnetic surface instead of the two vectors
e, and e;. Using the two incompressible base vectors e, and B the zeroth order flow velocity
can be written

V;=-E;(¢¥)e,+ Aj(¥)B (3.30)

In lowest order these functions E;(?) and A;(?) are undetermined, they have to be calculated
from the first order equations. Aj(%) is the toroidal net flow of the particle species and the
toroidal plasma current between two adjacent magnetic surfaces is

A=y g;N; Aj()dp (3.31)
From Eq.(3.30) we obtain the plasma current in the following form
= —P($)e,+ I'(h)B (3.32)

P = 3" P; is the total pressure of the plasma. This formulation of the plasma current is
particularly convenient to identify the role of the net toroidal current I().

First Order Equations

In order to find conditions for A;(1) and E;(¢) the first order equations have to be taken into
account:
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q; N;E, — qijVqS-l— qijVj xB = Zajk(v_,' -Vi)-V- T
I (3.33)

+ &+ Vpi+ LV
J

The induced electric field E, is also of first order since it is needed to compensate the collisional
dissipation. The matrix elements a;; depend on the lowest order densities and are constant on
the magnetic surface. The structure of these first order equations is the same as Qhm’s law in
chapter 2, therefore the same procedure can be applied to derive the flux-friction relations in a
multi-species plasma. The equation of continuity is in first order

V- (NJ'VJ' + njVj) = S_?' (3.34)
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Chapter 4

Flux-Friction Relations

4.1 Surface Averaged Momentum Balance

In lowest order the functions E;(%) and Aj(¢)) remain undetermined, they must be calculated
from the first order equations. The required periodicity of the first order quantities nj,v;, p;, ¢
leads to conditions of integrability and to the desired relations between A;(9) and E;(¢) . For
this purpose the first order momentum balance in the magnetic surface is considered and by
averaging the momentum balance over the magnetic surface the surface functions E;(?) and
A;j(¥) are correlated to the radial particle flux. This averaging process described in chapter II
will be applied to the first order equations Eqs. 3.33 with a = B and a = e, as surface vectors.
The result of the averaging process is

qij<a-E0 >—f’qj<NjVj-Vi,[)> —= Zo:jk <a-(Vj—Vk)>-|-<a-V-fr>
+ <a-§> (4.1)

Furthermore, we obtain < e,-V¢ >= 0 and < e,-E, >= 0 since there is no poloidal loop voltage.
Similar relations are also valid for the toroidal base vector et: < et Vo >=0,<e;-Vp>=0
but < ey - E, ># 0 because of the toroidal loop voltage. The radial particle flux is also

i Nj < et (vi X B) > = o(¢) < ¢;N;v; - Vip > = (4.2)

L
—q: T
Vi)
or

giNj < e+ (v;xB) >= — < ¢;N;v; -V > = (4.3)

1
ZOM
Parallel Momentum Balance

By multiplying Eq.(3.33) with B and taking the surface average we obtain the parallel momen-
tum balance of each particle species, which relates the integral toroidal flow A;() to the driving
terms.

Za'jk< B-(V;-Vi) >-< B-V.1mj >=-< Bt > L€ gN;B-Bs > (4.4)
k
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If the velocity V; and V} are replaced by Eq.(3.30) this equation is modified to

Yai{< B > (A(#) - Ak(®)) + < B-e, > (E($) - E(8))}
k

+<B-V.m;> = —-<B-§ >+<¢N;B-E, >

(4.5)

In a steady state stellarator this driving term ¢;N; < B - E, > does not exist. Summing up
this equation over all particles makes the first terms in Eq.(4.6) vanish due to the momentum
conservation of Coulomb interaction and the result is

Y.<B:-V.m> = =Y <B:§> (4.6)
J J

Also the toroidal electric field has dropped out because of charge neutrality.

Poloidal Momentum Balance

By taking the vector e, instead of B the averaging process yields the momentum balance in
poloidal direction.

1
ijrj = Zajk< & (Vi-Vi)>+<e:V-mj >+< e-§ > (4.7)
k

or

1
Tl = 2ok < ey > (Bi(Y) - B(¥)
— Y ajk < Brey > (Aj(%) - Ak(¥)) (4.8)
k

= KBV omy > o— < 8- bs >

The first term in Eq.(4.8) describe the classical and the Pfirsch-Schliiter diffusion. In conven-
tional derivations of the collisional diffusion the lowest order flow is divided in a perpendicular
flow and a parallel flow which leads to the classical diffusion flux and the Pfirsch-Schliiter dif-
fusion flux. However, if we make use of the natural decomposition of the lowest order flow in
components parallel to e, and B, both diffusion fluxes are treated together and described by
one geometrical coefficient < e, - e, >. In standard stellarators with large aspect ratio this
coefficient is proportional to 1 + 2/:%. Any reduction of this geometrical coefficient by proper
choice of the magnetic field reduces the collisional diffusion of all particles species. Therefore
also the collisional inward diffusion of impurity ions is reduced by this effect. The second term
is the classical pinch effect. This particle flux is proportional to the toroidal fluxes Ag(v) and
the the toroidal current I(%). In stellarators with zero toroidal current this term does not arise.

The neoclassical diffusive flux is described by the third term.

1
mqu‘j:<ep-v-7rj = (49)

In this fluid description the neoclassical flux is proportional to the surface averaged poloidal
viscous force, whereas the classical and Pfirsch-Schliiter diffusion is determined by the poloidal
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frictional force. The formulation of the neoclassical diffusion in terms of the viscous tensor holds
for all regimes of collisionality, however in every regime another approximation to the viscous
tensor must be found. All turbulent effects and the diffusion caused by external momentum
sources are summarised in the last term. Eq.(4.8) shows that the poloidal inertial force, the
poloidal electric field and the poloidal §j x §B-forces may lead to anomalous diffusion fluxes.
The anomalous diffusion flux is

< ey >=<eV-yn;v;:v; >—< gjbnje,-6E > — < e,-0j; x 6B > (4.10)

The first term in this relation describes the anomalous flux driven by the turbulent Reynolds
stresses, the second term is the anomalous flux due to poloidal electric field fluctuations and the
last term arises from magnetic field fluctuations Summing up the fluxes yields the total poloidal
momentum balance
dYo<eVemi>= - <e,§ > (4.11)
i J
To arrive at this relation the ambipolarity condition and the symmetry of the matrix aj; has
been used. It should be noted that the fluctuating electric field does not occur on the right
hand side of this equation. Because of the quasineutrality the term } é¢;n;0E is zero. The
fluctuating electric field may be the dominant term in the anomalous radial flux, however it
does not affect the poloidal force balance and the poloidal rotation of the total plasma.
The viscous forces may be simplified by using the Chew-Goldberger-Low representation of
the pressure tensor. In this approximation the parallel and poloidal viscous forces are !

VB
< B'V'?l‘j > = =< (P”—p_j_)jB'—B— (4.12)

and vp
< €p- A% ;> = =< (p” — pl)jep ) ? > (413)

In axisymmetricc tokamaks these viscous forces are not independent of each other. Because of

the symmetry the relation holds
B-VB = B’,-VB (4.14)

and therefore
<B-V-1j >=B<e, - V-71; > (4.15)

In a stellarator the toroidal current I() and the loop voltage are zero and therefore these
equations may be simplified to

Y e < B? > (Aj(‘%b)—Ak(%b))— = (P||“PL)jB‘2ﬁB >= =< B > (4.16)
k

and

1
RAOL T; = ) o< ep-ep > (Ei($) - Ex(4))
( ) k (4.17)
VB
+ <(’p”—p_|_)jep-? >—<ep-Ej>

'M Coronado, H. Wobig, Phys. Fluids 29(2) (1986), 527
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Summation over all particle species yields

VB
Z < (PH —PL)jep 5 > = Z < e > (4.18)
J 7
and -
Z< (p||—PJ_)jB"? > = Z< B:-& > (4.19)
) J

The flux friction relations determine the unknown functions E;(%), A;(¢) and the electric poten-
tial ®() if we consider the radial fluxes and the toroidal loop voltage as given. These are 2N+1
equations, where IV is the number of particle species. It should be noted that these equations
are valid in all regimes of collisionality. The pressure anisotropy P||—p. and the forces &; are the
unknown quantities in these relations, they must be calculated separately in every collisionality
regime.

4.2 Vector Notation

In order to facilitate further analysis it is convenient to introduce a shorter notation which avoids
the summation over particle species. For this purpose we introduce the N-dimensional vector
space RN and the vectors

= leb) q,-il“,- ;. Be= ﬁj A=Ay (4.20)
and the transport matrix
Do = {>_ oujbjr — aji} (4.21)
!
The viscous forces are summarized in the vectors
I, = <B'V:‘7Tj> My = <ep-V:’-1rj> (4.22)
and the driving forces
Ky = <Bfg,-> ; K, = <ep:-§,-> (4.23)
Let us introduce three more vectors
€= |1 EN N ] Nq =| 4N (4.24)

34




and summarize the toroidal electric field in the vector Uy,
U.=| <¢;N;B-E,> | = N, <B-E, > (4.25)

The scalar product in the vector space RY is

N
=2 ajb; (4.26)
i

and in this notation the ambipolar condition is

N
Y.l =V (@)l-é=0=¢-l, =K, (4.27)
J
and the parallel momentum balance
¢y = €K, (4.28)
The flux-friction relations are in this notation
~T = <ey-e> DyE-<B-e,> DA —1i,- £,
U, = <B-ey> DoE+ < B*> DA +1i,+ K, (4.29)
or
jr _p. [ o> I }f : —EIP N —iip (4.30)
UL I(v) Z.5* A 1Ty K,

The structure of the flux-friction relations Eqs. 4.30 is the same as the coresponding equations
in the one-fluid model (Eq. 2.35). However, two more terms arise, these are the viscous terms
IIp, 1T, and the turbulent terms K, K. The resistivity is replaced by the matrix Daipha. Dy is
the classical transport matrix, its properties and the relation to the collision operator have been
extensively discussed in the review paper of Hirshman and Sigmar?. The classical transport
matrix is singular (Det D,=0), this follows from the conservation of Coulomb collisions. The
equation D,% = 0 has the non-trivial solution # = & For this reason there exists a unique
solution of the inhomogeneous equation D,& = ¥ if the vector ¥ is orthogonal to €. This implies
that the matrix D! exists in the subspace of RN which is orthogonal to €. One example is the
vector Nq which is perpendicular to €. €- Nq = 0 is the immediate result of the quasineutrality
of the plasma. Furthermore we obtain - Uz = 0 and therefore the vector DalUL exists.

23.P. Hirshman, D.J. Sigmar Nuclear Fusion 21, (1981), 1079. D, is equivalent to the matrix I$} in this paper
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4.2.1 Generalised Ohm’s Law

In that case we can eliminate the parallel fluxes and derive a generalised Ohm’s law. The vector
of parallel fluxes is
= 1
£H'S

{D;lﬁL-l— <B-e, > B = D;l(ﬁb + I_k;b)} (4.31)

The toroidal plasma current is the sum of all particle currents

I'($) = Y qiNiA; = Ng-& (4.32)
J

and we get Ohm’s law in the following form

<B*>1TI =N,-D;'U,+ <B-e,> N, E - N,- D7 (1l + K (4.33)

Because of the quasineutrality the electric potential drops out from I\_fq . E and we obtain
N,-E = Y kT N! = P'(y) (4.34)

The generalised Ohm’s law correlates the toroidal plasma current to 4 driving forces. The first
term on the right hand side of Eq.( 4.33) is proportional to the toroidal loop voltage. The second
term is proportional to the density gradients and the toroidal current I(3) = — < e, - B >,
this is the classical bootstrap effect. The third term is the neoclassical bootstrap current drive
represented by the parallel viscous forces. These forces, however, depend on the toroidal fluxes,
this effect will lead to the neoclassical modification of the resistivity. The last term describes the
driving forces arising from external momentum input, inertial forces and turbulent forces. An
example of turbulent forces driving a current is the so-called a-effect of the solar dynamo. The
classical bootstrap effect is proportional to the current I, therefore the bootstrap effect needs a
seed current I(0) # 0 as initial condition, otherwise the equation I’ « I(¢) leads to I = 0. For
the first time this classical bootstrap effect has been described by Kruskal and Kulsrud?.

4.3 The First Order Equations

In the previous chapter the first order equations have been used to derive integrability conditions
which eliminate the ambiguity of the zeroth order solutions. When these conditions are satisfied
the first order equations can be used to calculate the functions pj,nj,v; and ¢. These first
order equations are

n:
Vp;j+q¢N;V¢ = F‘J.ij(i,b) + ¢;N;v; x B)
7
— Zajk(vjka)HV-ijrqijEo—{j (4.35)

7

and the equation of continuity
Vv - (vaj + njVj) = Sj (436)

®M. Kruskal, R. Kulsrud, Phys. Fluids 1 (1958)
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From the parallel component of the momentum balance we obtain a magnetic differential equa-
tion for the pressure p; and the electric potential ¢.

B-Vhj= -3 aB-(V;-Vi)-B-V.1;, -B-¢ (4.37)
J

where we have introduced hj = n; kT + ¢; N;¢. When a solution h; of this magnetic differential
equation is given the density n; is eliminated by the condition of quasineutrality:

dogni=0=> qihij=¢> ¢N; (4.38)

which determines the electric potential.

The momentum balance contains only the perpendicular component of the first order velocity
vj. The parallel component of the first order flow can be calculated from the equation of
continuity. With v; = v; 1 + A; B the magnetic differential equation for A; is

N;B-VX+V;-Vn +V-N;v;,=5; (4.39)

This magnetic differential equation contains two inhomogeneous terms S; and &;, the latter term
is hidden in v; ;. Usually these inhomogeneous terms are localized in poloidal and toroidal
direction. This is especially the case with neutral beam injection as the heating method. The
beam is a localized source for particles and momentum to the plasma, and in Fourier analysing
the source terms we obtain a whole spectrum of poloidal and toroidal modes. The general form
of the magnetic differential equations is

B-Vf=gyg (4.40)

where f stands for either p; or A; and g for the remainder of Eqs.(4.37). In magnetic coordinates
the operator B - V is

d d
. = 2 —_— I .
B-V=C,B (”09"'899) (4.41)
and the magnetic differential equations becomes
a d g
Colegg + 8—50)f =52 (4.42)

Because the Fourier series of the right hand side contains a whole spectrum of poloidal and
toroidal harmonics resonances occur on all rational magnetic surfaces with Iz —m = 0 ( [ is the
poloidal mode number and m the toroidal mode number). On these resonant magnetic surfaces
the parallel flow velocity goes to infinity if the right hand side of the magnetic differential contains
resonant coefficients. Because of the poloidal and the toroidal localisation of the source terms,
however, these resonant terms always exist. This singular behaviour around resonant surfaces
demonstrates the collapse of the ordering scheme. We have considered the viscous terms as
small corrections and have treated them as being of first order. The viscous terms only contain
the lowest order flow velocity V;. This approximation has to be abandoned around resonant
magnetic surfaces and thus the momentum balance (4.35) yields a differential equation for the
velocity v;. The viscous dissipation introduces a damping term which prevents the parallel flow
velocity from going to infinity. However, the parallel flow may be large and so is the parallel
plasma current

j=2 ¢Nvi-b (4.43)

J
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Such a large parallel current in the vicinity of rational magnetic surfaces could lead to a perpen-
dicular magnetic field which perturbes the topology of the magnetic surfaces and creates islands
and stochasticity. In low shear systems it can be expected that this resonance phenomenon is
restricted to low order rational surfaces which are separeted from each other. With larger shear
these resonant surfaces can overlap and enhanced losses may arise over a large part of the plasma
radius. In the following, however, we assume the first order corrections to be small compared
with the zeroth order quantities and calculate the plasma losses from the surface averaged first
order equations.
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Chapter 5

The Collision Dominated Plasma

5.1 Flux-Friction Relations in a Collisional Plasma

The flux-friction relations derived above do not represent a closed set which can be solved for
the unknown functions E;(+) and A;(¢). For this purpose the anisotropy of the pressure has
to be calculated from the kinetic equations and its correlation to the macroscopic flow velocity
V; has to be found. Only in a collision dominated plasma the general solution of this problem
has been established and is summarised in Braginskii’s paper. In a neoclassical plasma details
of the particle orbits are essential in determining the particle distribution function and thus the
pressure anisotropy.

Surface Averaged Viscous Forces

In the following study we concentrate on the collision dominated regime and start from Bragin-
skii’s formulation of the viscosity
Jy 1 dv,,
—pL=-31p bibpy— — - — 5.1
Py Z( mamm 3 th.m) ( )

I,m

and the lowest order flow velocity Eq.(3.30). Inserting 3.30 in Eq.(5.1) yields

B
(P = p1)i = =37 P; 75 - BVV; (5.2)
Because of V x (V; x B) = 0 we find

(BV)V; = (V,V)B ' (5.3)

and therefore the anisotropy of the pressure is

VB
(Pr—pu)j= - 3PV —
VB VB
B (_Ei(’f’)ep"B +Aj(¢)B-§_) (5.4)

This linear relation between py — p, and the unknown functions E; and A;(%) closes the mo-
mentum equation. For further use we introduce the following abbreviations

VB VB
C,,=<(ep~-?)2> ; Ct=<(B'?)2> (5.5)
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and VB, VB
Cb = - < (GPF)(B F‘) > (5.6)

Thus in a collision dominated plasma the poloidal and parallel viscous forces are
<ep-V-mj>= =31;P;(CpE; + CpA;)
< B-V.7; >= 37;Pj(CyEj + CiA;) (5.7)
To abbreviate the notation we define the diagonal matrix
Li=A3r;P;0;1) (5.8)

and write the viscous forces in the following form

o]

Cp, Ch
Cy Ci

_1i,
= =L (5.9)
1T,

=

Combining this equation with Eq.(4.30) yields the flux-friction relations of a collision dominated
plasma:

= <ep-ep> I C, Ch E =
= | D, szl .° 4 "l 5.10)

Ur, I < B?> Cy C A I_l.'b

These flux-friction relations represent a linear relation between the "forces” E, A and the fluxes”
—T, . The transport matrix which correlates these quantities has several symmetry proper-
ties. D, is the classical transport matrix and symmetric, the matrix L is also symmetric.
Furthermore, there exists a symmetry between bootstrap effect and pinch effect: the matrix
D, I(¥)+ CyL describes both effects, bootstrap effect and pinch effect.

Inverting the system (5.10) yields the forces E;, A; in terms of the fluxes I and Uz, and the
external forces K ,, K3. The formal solution of Eq. (5.10) is

-1
E < ep-ep > I G, G e el
=lo,| °® +r| P . (5.11)
| < B*> £ 1. Up—IC;

=

In general the transport matrix T

. I G5 @
T | R R ()ap; shelel alfp 864 (5.12)
I(%) < B?> (&5 6F

is non-singular and therefore the system (5.10) can be inverted since 7! exists.
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Entropy Production

The entropy production rate of the one-fluid model has been derived in Eq. 2.37:
)L - P(#)F = V'($)n <j-j> (5.13)

The equivalent equation of the multi-fluid model is obtained from the flux-friction relations by
introducing again the vector V;
U,-A f-E—lZa- LAV =Ny 3r;P; < (V; VB\* 5.14
L A— =35 ik i k)>+z L < i v (5.14)
ik J
The entropy production due to the forces K has been omitted here. The viscosity always
increases the entropy production. However, there are cases where the viscous entropy production
is zero. In case of achsial symmetry any uniform toroidal velocity V; = V; has zero viscous
entropy production, a toroidal rotation of all particle species is not damped.

Achsial Symmetry

However in case of achsial symmetry the coefficients C,, C}, C; are proportional to each other.
In Hamada coordinates the magnetic field is

B = Bfe, + Ble; (5.15)
Because of the achsial symmetry we find e; - VB = 0 and therefore
Ci=-BC, ; C=-Blc (5.16)
In axisymmetric tokamaks the transport matrix
T - D, <ep-ep> I ¥ 10, 1 -Bf (5.17)
I LB -B? (BY)?

is singular and the the homogeneous equation TX = 0 of the system (5.10) has the solution
X = (E,N) = (B°Ao(¥)€, Ao()8); Ag is an arbitrary flux function which describes a toroidal
rotation of all particle species. The inhomogeneous term in Eq.(5.10) must be orthogonal to this
homogeneous solution which yields -
B'¢.K,-¢-FKy=0 (5.18)

Because of - T = 0 and - Uy, = 0 the orthogonality condition only applies to external forces.
The poloidal rotation in this case is zero, the poloidal velocity is

V, = -—Eje,+A;B’,
= —AoBe, + AgB%, = 0 (5.19)
The magnetic pumping effect which is described by the coefficient C, slows down any poloidal
rotation if there is no driving term. If the magnetic field has a helical or quasi-helical symmetry

B = B(%,0 — M() there also exists an invariant direction e, = ey + M e, with e, - VB = 0.
Because of the helical invariance the relations hold

et VB = — Me,-VB (5.20)
and
B-VB = (B’ - MB%)e,-VB (5.21)
In this case BY in Eq. 5.17 is replaced by B — M B¢ and the transport is singular again.
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Stellarators with Reduced Pfirsch-Schliiter Currents

Another case of special interest are stellarator configurations with zero or reduced Pfirsch-
Schliiter currents. As shown in chapter 2.4 zero Pfirsch-Schliiter currents imply e,- VB = 0. In
such a configuration the coefficients C,, C} are zero and therefore the transport matrix is singular.
The solution of the homogeneous equation is a arbitrary poloidal rotation E(y)e, A= 0). These
configurations are equivalent to a mirror configuration with poloidal invariance, in poloidal
direction the magnetic pumping effect is zero or negligibly small. As will be show in a later
chapter these configurations are of special interest in conjunction with a spin-up of poloidal
and toroidal rotation by Coriolis forces which is related to the L-H-transition in the plasma
boundary. This degeneracy of the viscous matrix is absent in stellarators without continuous
symmetries. In these configurations the viscous damping exists in all directions.

5.1.1 Effect of Atomic Processes

The singularity of the transport matrix is also eliminated by atomic processes, which diminuish
the momentum of charged particles. These processes are important in the boundary region
where ionisation and charge exchange effects lead to a loss of momentum. Let us assume that
the neutral background is at rest. The friction force arising from these atomic processes is
proportional to the velocity of the constituents and instead of Eq.3.2 we get

& = =Voi+ GmE+jix B =} aj (v —vi) = v — V- (5.22)
k

The friction coefficients [3; are proportional to the density of neutrals and we consider these
coefficients as constant on magnetic surfaces. The coefficients are positive and as a consequence
the matrix Dg = {8;0;r} is also positive definit and non-singular. The derivation of the flux-
friction relations is also valid in this case except that everywhere the matrix D, has to be
replaced by D, 4+ Dg. Since momentum of charged particles is not conserved by these atomic
processes we find Dgé€ # 0 and the transport matrix 7'

<ep-e,> I C, C
€p-€p (¥) ) p Lb

T = (D« + Dp) -
I(y) <B?> 2 G

(5.23)

is positive and non-singular in all cases.
This transport matrix summarizes all mechanisms which contribute to the radial and toroidal
fluxes. The system Eq. (5.10) is now

_T o i
41“ = et ff" g ] -ETe (5.24)
UL Tgl ng A I&"b
and the T-matrices are
T, = (DQ + Dﬁ) <ep-ep > +ch
Tia = (Du+ Dg)I(¥)+ LCy
T = (Da+ Dp)I(¥)+ LCy
T» = (Da+ Dg) < B:> +LC; (5.25)
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T1; describes the radial diffusion flux, Ty, and T5; the bootstrap and pinch effect and Ty, the
resistivity of the plasma. The matrices Th; and Ty, are positive definit and the inverse of these
matrices exists. The ambipolar condition (¢-T = 0) and the quasineutrality (€ - ﬁq =0 —
€-Up = 0) are taken into account when the flux-friction relations (5.10) are reduced to two
equations by summing up over particle species. The scalar product with (€, €) yields

-€-K ety é-T E
. P _ 11 12 3 (5.26)
€ Ky €Ty €Ty A

Because of the momentum conservation of Coulomb collisions all terms with D, are zero and
these two conditions are in explicit form

—

&K, <ep-ep>  I(¢) €-Dg-E " s G e L-
K, I(¥) <.B% 55 € Dg-A C, Ci €-L-A

(5.27)

5.1.2 Alternative Form of the Flux-Friction Relations

The derivation of the flux friction relations is asymmetric with respect to the toroidal and
poloidal direction. We have used the base vectors e, and B instead of the vectors e, and
et. In this formulation the toroidal current I(v) explicitly occurs and this form of the flux
friction relations is particularly suited to identify the role of the toroidal current and to analyse
the special case of a stellarator without net toroidal current. In a currentless stellarator the
classical transport matrix is diagonal; a pinch effect and a classical bootstrap effect does not
exist. However, viscosity and — as will be shown later —inertial forces provide a coupling
between toroidal and poloidal directions and in such a case it is more appropriate to use the
base vectors e, and e;. The plasma velocity is

Vi = (=Ej+B°Aj(¢))ep+ Aj(1)Bley
Vie,+Vie (5.28)

The relation between the components E;, A; and Ig, th is in matrix form

E -B¢ Bf 172
| = lc ? (5.29)
A BEL G 1 v,
Averaging the momentum balance equations with e, and et yields the fluxes
-T
1. = P (5.30)
ﬁU‘L — T
instead of —f, Ur. Using these definitions the flux friction relations are
i Ty T v, K
' Y ot o T B (5.31)
EUL —(¥)r To1 Too Vi Ky
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The transport matrix 7" is now

Tin = (Da+Dg) <ep-e,>+LC),
Ti2 = (Da+Dg) <eg-e,>+LCy
Ty = (Da + D‘@) <eg-ep > -[—LC[,
T = (Do+ Dﬁ) <ep-ep >+LC; (532)

The matrix of viscous coefficients is here

VB VB VB
CP Cy <(eP.?)2> <(ep'—-§—)'(6t'?)>
L =L (5.33)
VB VB VB
Cy Cy <(et 5 ) (ep-5) > < (o6l B
The coefficients < et - ep > and < ep - ep > are correlated by
<ep-eg>= —I-B <ep-ep> (5.34)

The various representations of the velocity V; are equivalent. In stellarators without net toroidal
current the formulation with E;, A; is more appropriate than in terms of ij ,th . Because of
< €, -+ B >= 0 the transport matrix 7' ( Eq. 6.3) is nearly diagonal, parallel and poloidal
directions are only coupled by Dg and C}. In axisymmetric tokamaks the representation in
terms of VP;", th is more appropriate since the viscous coefficients C; = C, = 0 lead to a simple
form of the viscous part of the transport matrix. This form clearly shows the singularity of the
viscous transport which reflects the wellknown fact that bulk viscosity does damp not a toroidal
rotation of a tokamak plasma.

5.2 Generalised Ohm’s Law in a Collisional Plasma

In Eq. (4.33) Ohm’s law for each magnetic surface has been derived. This equation does not
allow to compute the toroidal plasma current explicitly since the viscous forces depend on the
toroidal fluxes Ax()). The second equation in (5.10) provides a method to eliminate the toroidal
fluxes and to express these in terms of the thermodynamic forces E;. This equation is

Uy 2T BTkt B (5.35)
leading to . _
A = TR0 — TR\ TnE - T K, (5.36)

The matrix Ty is the generalisation of the plasma resistivity. Since the matrix C,L is positive
the resistivity of the plasma is increased by viscous effects. The toroidal plasma current I’ is
given by I' = N, - A

I'($) = N, T Up - Ny - T T E — N, - T K, (5.37)
The vector Uy, is proportional to the loop voltage Ur,

Up = ﬁﬁq UL (5.38)
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Introducing the volume V(7)) of the magnetic surface instead of the flux as radial variable we
may write Ohm’s law in the form

rwy = (V)P N, T - NoUp — ¢'(V)N, - T T B (5.39)
- Y (V)N -TR'K,

The first term on the right hand side is the current driven by a toroidal loop voltage Uz. The
conductivity of a magnetic surface is

o(V) = (¥'(V))’ N, -T5;' - N, (5.40)

since the matrix C;L is positive definit matrix this viscosity always enhances the resistivity of
the plasma and reduces the conductivity. The second term on the right hand side describes the
classical and the viscous bootstrap effects. We introduce the coefficient

Dyt = ¢'(V)Ny - T55'(Da + Dp)E = 4/(V)/ < B > P'(V) (5.41)

and write Ohm’s law in shorter form

I'(V) = o(V) UL = Dy I(V) = (V)Ny - T5'Cy LE — ¢/(V)N, - T35 Ky (5.42)

The matrix C,L is the relevant matrix of viscous bootstrap effects. Since the coefficient C} can
be positive or negative the viscosity driven bootstrap current may be positive or negative. The
viscous contribution to the bootstrap current C,LE provides an effect by the radial electric field.
Explicitly the vector LE is

LE = | 3P, =22 | +| 3p; | @'(%) (5.43)

Thus, the viscous bootstrap current drive is proportional to the density gradients and the radial
electric field. The last term in Eq. (5.42) is the current driven by external forces, the inertial
forces or the anomalous effects arising from plasma fluctuations. These terms will be discussed
in a later chapter.

5.3 The Radial Electric Field

The radial electric field does not explicitly occur in the flux- friction relations Eqgs.(4.30), it is
one of components in E;.
kT N]

Ei¥) = 3

+ &'() (5.44)

To compute the electric field we proceed in the following way: First we compute the vectors E
and A form Eq. 5.24. Secondly, the electric field is written in terms of the density gradients
and in a third step the density gradients will be eliminated. Let us first consider a stellarator
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without toroidal current, external forces and friction forces (Dg is neglected ). The system Eq.
5.26 is reduced to

O X 0
= (5.45)
Cb Cg Y 0
with T N
X =& LE = Y 3rP(—L + @) (5.46)
E q9; N;
and B
Y = & LA = ) 3r;PiAi(¥) (5.47)
i

Since the matrix in stellarators is not singular Det=C;C, — CZ # 0 ) the homogeneous system
‘has only the trivial solution X = }7;37;P;E; =0 and Y = 3,37, P;A; = 0. This leads to

. N!
&= —— T erﬁ—ﬂ (5.48)
i

27 F; g; N;
In the simple case of a two-component plasma with 7, << 7;, P, = P; this yields

N!
o = kT —— 4
¢ Vi (549)
The electric field is mainly determined by the ion pressure gradient, the macroscopic velocity of
the ions is very small. we obtain
Ei 7 Ar T
ol ST 5.50
E._ 7 < A n S Gel)
Therefore the velocity of the ions is small but not zero. Taking into account external forces
yields the system

@& 6 X
Cb Ct },

K.
= N (5.51)
- K

oy

I

o

Since the matrix of this system is not singular (Det = CZ — C;C,, # 0) the solution of this system
is given by

GEa ks = Ot K
X = - P 5.52
Det ( )

Cpe- Ky — Cyé- K,
= 5.53
f Det ( )

The electric field in terms of the density gradients is then

1 P; N!
P = X-kT )Y =12 (5.54)
ZTJ'PJ'{ ; qu Nj

The hydrogen ions provide the main contribution to the radial electric field, 7; P; is the weight
function and if impurities represent only a small fraction of the ions the hydrogen ions are the
dominating ones. In stellarators viscous damping reduces the poloidal diamagnetic flow of ions
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to a small value so that ion pressure is basically balanced by the radial electric field. The picture
may be changed when external forces are relevant.

- The electric field is expressed in terms of the density gradients. These, however, are deter-
mined by the transport coefficients and the fluxes T and Uy. The radial fluxes are fixed by the
particle sources and U is proportional to the applied loop voltage. T and Uy, are the quantities
controlled externally and the plasma gradients result from the diffusion proccess. When the
thermodynamic forces E; are given by the solution of Eq. (5.10) the density gradients are found

from AT 5 N’
T N! P
E;= + {X —kT Z J (5.55)
ETJ

This is an equation for the densnty gradients and can be solved if the thermodynamic forces E;
and the external forces Iip and Kj in X are given. Inserting the solution in Eq.(5.54) yields
the electric field in terms of the externally controlled quantities. However, it should be noted
that this is only a formal solution. The inertial terms and the anomalous terms in K,, Ky may
depend non-linearily on the lowest order velocity and therefore this equation must be solved
self-consistently. This will be analysed in the next chapter.

In axisymmetric tokamaks this procedure to compute the radial electric field fails since the
determinant Det:C‘b2 — C¢C¢=0 and the solutions X and Y diverge to infinity. In this case
interactions with neutrals (Dg # 0) or a small ripple viscosity must be retained to keep the
rotation velocity finite.
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Chapter 6

Plasma Rotation

6.1 Slowly Diffusing Plasma

The standard model of a slowly diffusing plasma only retains the collisional forces and neglects
inertial forces and turbulent effects. The relation between fluxes and thermodynamic forces E, A
is given in Eq. 5.24 without the terms K} and IL?, In lowest order the flow of the plasma in the
magnetic surfaces is given by Eq. (3.30). Eje, is the poloidal velocity and A;(¢))B the parallel
velocity. The total plasma velocity is V; 4+ v; where v; describes the radial diffusion velocity.
If we neglect all "external” forces K, and K} the vectors £ and A are given by the solution of
Eq.(5.24):

=1 (6.1)

or in explicit form

=
|

—(T11 — T12T55 To1) ! (f + T12T5;" (}L)
T5' (U1 — T E) (6.2)

=1
Il

The particle fluxes are given by the source term. The matrix of trnsport coefficients is

T = (Da+t+Dp) <ep-e,>+LGC,

Ty = (Da+Dp)I(¥)+ LG,

Tnn = (Do+ Dg)I()+ LCy

T = (Do+ Dg) < B> +LC, (6.3)

Since in this approximation there are no non-linearities the solution of the the flux-friction
relations is unique. In stellarators ( zero loop voltage Uz, = 0) the solution is

(T11 — T12T55' Tn) 2 T
= _T2_‘21T21E (64)

= =

The viscosity gives rise to a small bootstrap current if the coefficient C} is non-zero. Ohm’s law
is

I'(V) = =Dy I(V) — 9¥'(s) N, T5;' Cy LE (6.5)
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This differential equation determines the toroidal current in stellarators, in tokamaks the colli-
sional bootstrap effect is negligible in comparison with the current driven by the loop voltage.
The seed current on the magnetic axis is zero I(0) = 0, therefore the solution would be identical
to zero in stellarators with Cj = 0. This implies T13 = T5; = 0. In a stellarator with C} there
is no collisional bootstrap effect and no pinch effect. In this case Eq. 6.2 yields A; =0 for all
particle species and the poloidal velocity is given by

E = T;'T (6.6)

The geometrical coefficients in the 71;-matrix are < e,-e, > and Cp. This implies that in Helias
configurations where the Pfirsch-Schliiter transport coefficient is small and the poloidal variation
of B is reduced a higher polidal rotation may be expected than in standard stellarators. In case
of a two-component plasma without plasma neutral interaction the matrix Ty, is

Qej — Qi 37 P, 0
T, =< €p - ep > + Cp (67)
— Qe Qei 0 3TiP:
which yields )
Ee=al 6.8
Cpd3tePet < ep-ep > (1+7/7) (6:6)
and y
el
E, =-T A 6.9
Cp3TePet < ep-ep > (14 7./7) (6:3)
I'c = —T'; = I is the ambipolar particle loss. This approximation explicitely shows the effect of

the geometrical coefficients < e, -e, > and C,.

6.2 The Effect of Inertial Forces

In the model of a slowly diffusing plasma the solutions E and A are unique proportional to the
source terms I and Ur. M Next we consider the effect of the non-linear inertial forces in &
and neglect the turbulent terms. The inertial forces provide a feedback of the diffusion velocity
on the momentum balance and since the inertial forces are non-linear, the solution is no more
unique; multiple solutions may arise. The implications of these non-linearities and conditions
for uniqueness have been studied in 1. Besides a slowly diffusing solution also solutions with
strong poloidal and toroidal rotation may exist, these are of particular interest in conjunction
with the H-mode phenomenon in the boundary of tokamaks and stellarators.

K, = {<ep -Vmnv;:v;>}
Ky, = {<B-Vmjn;v; s ] (6.10)

Taking into account the equation of continuity (V-n;v; = S;) leads to the following formulation
of the inertial forces

VJ o
V-njVj Vo= Vij-I-njV?—njVj X w (6.11)

M. Spada, H. Wobig, J. Phys. A: Math. Gen 25 (1992), 1575
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W = V xv; is the vorticity of the velocity v;. The second term in this equation is the centrifugal
force and the last one the Coriolis force. In lowest order the inertial forces are

v? ~
V-NjV;:V; = NV - N;jV; x §; (6.12)

Q is the vorticity of V;. In this order the surface average forces < € -...>and B-... > are zero
2, The averaged centrifugal forces are zero (< e, - VV?- >=0and < B-VV? >=0) since the
density N; is constant on magnetic surfaces. This also holds for the averaged Coriolis forces.
This average is . .

Sl ViR Or) e (epxV;)-Q; > (6.13)

Because of V x (e, X V) = 0 and e, X V; & V¢ the averaged Coriolis force is zero. The same
holds for the Coriolis force averaged with B. This results leads to the conclusion that the radial
diffusive or convective velocity has to be retained to provide a finite effect by the inertial forces.
In general the surface averaged inertial forces are

2

V5
<ep-Vnjvj:v;> = <Vj-eij>-—<—-2‘I-ep-an>+<njVj-(epx&')>
2
v.
<B«Vnjviiv;> = <v]--BSj>—<éB-an>+<njvj-(Bch’)> (6.14)

The first term on the right hand side is only important in the boundary region where jonisation
takes place. This term is a damping term which slows down the poloidal and parallel rotation
of the plasma. The second term describes the parallel and poloidal centrifugal forces; these
are only non-zero if the density n; is inhomogneous on magnetic surfaces. nj is the first order
density variation on the magnetic surface which must be found from the first order equations
Eqs.(3.33). The last terms are the poloidal and parallel Coriolis forces which mainly are caused
by the radial component of the flux n;v;. This term is the origin of the spin-up mechanism
described for the first time by Stringer 3. This mechanism leads to an amplification of a small
initial vorticity & by the radial diffusive or convective flux n;v; - Vi in the Coriolis force.
Proof:

In order to demonstrate that a radial flux is needed we write the averaged Coriolis
force in the form < (e, x njv;)-&; >. If njv; is replaced by N;V; this term is zero
for every vorticity &. Because of

ep X N;V; = N;A;(¥)VY = Vf(¥) (6.15)

we obtain Vf(¢)-&; = V- (Vf x v;). Since the vector Vf x v; is tangential to the
magnetic surface ¢ = const. the surface average of V - (Vf x v;) is zero for every
v;. Thus the surface averaged Coriolis force is non-zero only if the particle flux n;v;
is not equal to N;V; In first order the poloidal Coriolis force is < njv; - (e, x (1) >.
This is also valid if we replace e, by B. n;v; are here the first order fluxes.

?M. Bineau, Phys. Fluids 10, (1967), 1540
*T.E. Stringer, Proc. of the .. IAEA-Conf. of Plasma Phys. and Controlled Thermonuclear Fusion Vol. II,
383, Vienna 1971
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6.2.1 Coriolis Forces

In order to calculate the first order Coriolis forces we start from the vorticity of

Vi = —Ejep+ A;(¢)B (6.16)
which is given by
= —E;Vxe,+e,x VE; + Aj(¥)j— B x VA;(¥) (6.17)
and we obtain
—e, X = Eje,xVxe,+(Eje, e+ NI — Aj(B-e,))Ve
~Bx{ = EBxVxe,+(EB-e,+A;P —A\ BV (6.18)

It is interesting to note that the averaged Coriolis forces are proportional to the velocity com-
ponents E;, A; and also to the radial derivatives of E; and A;. These derivatives represent the
velocity shear and they play an important role in the physics of the H-mode.

In summary the surface averaged Coriolis forces are

- <mjnjvi-(epx Q) > = Ri Ej+ RiyAj+ K}, E} + K, A
<mnvi-(Bx Q) > = R} E;j+ RhyAj+Kj Ef + K, A (6.19)

The coefficients in this equation are

R{l = < mjnjvj(ep X (IJ',,) >
R, = <mnjv;-Vo>1T
R%l = — <m;n;v;i(B x Gjp) >
Ry, = — <mjnjv;-Vip> P (6.20)
and
K, = < (mjn;v; -Vie,-ep, >
Ix"f2 = < (mjnjv;-Vile,-B >
K} = - <(mjnjv;-Vi)e,-B>
ng = - <(mjnjv;-V¢)B* > (6.21)

wp = V X e, is the vorticity of the base vector e,. Similar to the matrices T we introduce
the diagonal matrices R and K by R = {R%¢;s} and K = {Kk76;;}. The K-matrices are
antisymmetric in the following sense K15 = —K5;, however, this does not hold for the R-matrices:
Ri3 # Rgp. Using these matrices the Coriolis forces can be summarized in the following form

, s E

= I!'.'p Ru R12 E 1(11 I(lg (;—
- i ¥ (6.22)

- = A

K, Ra1 Ra A K91 Ki 'g'{b'
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All forces arising due to ionisation can be summarized in the equation

S11 S12 E
- (6.23)
S21 Sz A
where the components of the S-matrices are
S, = —<Sje,-e,>
5{2 = - < S] ep . B >
$h = <Sje,;-B>
i v= .2 5B > (6.24)

Since 5; > 0 is a positive source term the matrices S, are positive, all eigenvalues are positive.
This means that the ionisation slows down toroidal and poloidal rotation of the plasma.

Representing the plasma velocity in terms of poloidal and toroidal components ij , th yields
an alternative formulation of the surface averaged Coriolis forces. The vorticity of V; is

Q=ViVxe,—e,x VVi+ ViV xe,—e x VV] (6.25)

and the two matrices R and K are in this version

R, = < min;v;(ep X &p) >
R, = <mjnjvi(e,xd)>
Ry = <myn;vi(ey x &) >
Rl = <mjnjvi(eyx &) > (6.26)
and
K{I = < (mjn;v;-Vi)e,-e, >
Ix"f2 = < (mjnjv;-Vi)e, e >
K} = <(mjmjv; - Vi)ei-e, >
K, = <(mjnyv;-Vi)et-e; > (6.27)

Wp = V x e, and & = V X e; are the vorticities of the base vectors. This leads to Coriolis forces
in the form

5 - Vv

Il'rp R R12 Vp I 11'12 %
- + Zb (6.28)

= - . . oV

K, Ra1 Ry Vi Ky Ko =

oY

It should be noted that the non-diagonal terms is these matrices are the result of the toroidal
geometry. In a straight and cylindrical plasma the base vectors ep and et are perpendicular
to each other and the non-diagonal components in the K-matrix are zero. Furthermore, since
w¢ = 0 and et X w, = 0 the non- diagonal terms of the R-matrices are zero, too. The coupling
between toroidal and poloidal flow is the combined effect of Coriolis forces and toroidal curvature.
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6.2.2 Centripetal Forces

The remaining term is the centripetal force which is quadratic in the velocity. In lowest order
the density is constant on the magnetic surface and the surface averaged centripetal forces are
zero. The first non-trivial approximation to the centrifugal forces is

v? \%

-<?Jep-an> : —<——B Van; > (6.29)

where the first order density variation in the magnetic surface must be calculated from the first
order equations 4.37

B:Vhj= - ajxB-(V;—=Vy)-B-V.7;+¢,N;B-E, (6.30)
3
with hj = n; kT + q; N;j¢. Neglecting the viscous forces and inserting the explicit form of the
velocity V; yields the magnetic differential equation

B- th = Z Ct'jkB "€y (EJ; = Ek) . Z ajkB2 (AJ‘ - Ak) + Q'ijB . Eo (6.31)
J 2
Since e, - B and B? are the only terms which vary on the magnetic surface, the solution of the
magnetic differential equation can be written in the form

hi=fpy apn(Ej—Ex) = fo Y aji (Aj — Ag) (6.32)
i i
The two functions f,,, f, are solutions of the magnetic differential equations
B-Vf, = B-gg—<B-.¢>
B-Vfy, = B-<B*> (6.33)

In vector notation (h = {h;}) these solutions are written as
h= — f,D.E — f,D,A. (6.34)

The electric potential ¢ is given by

-

g ’ff (6.35)

g-

and the vector of first order densities

5 odifs f gl
i = (h~qu“N.) (6.36)

The tangential density gradients which are needed in the centrifugal forces are linear in the
thermodynamic forces E A the tangential derivatives act only on f, and f,. Evaluation of
these terms yields

—

.B— . J
(B.Vn)= 4 & B-<e,-B> (DE_ N, DE)

kT ﬁ
B2~ < B?> 5 -
S i W (5, L. R 6.37
= (D A N A) (6.37)
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and

-V itn s 3
{ep'an} = + e’;ﬂ.}é (DQE_ 5 1 é‘-DaE)
q- Vg
™. v, 2 vV .
ef’—kTﬁ (DQA— q__;? 7 DQA) . (6.38)
q

In a two-component plasma consisting of electrons and single charged ions these terms are zero.
Using the relations N, = N;, ¢. = —¢; and (JD‘,_,,E‘)e = (Daﬁ)i it can easily be shown that n. and
n; are constant on magnetic surfaces. However, since h, = —h; the electric field is not constant
and there is a finite convective flow through the magnetic surface. In this order the centrifugal
forces do not provide a finite tangential force but the Coriolis forces are finite. Therefore the
contribution of the centripetal forces will be neglected in the following

6.2.3 Flux-Friction Relations with Coriolis Forces

M Inserting these results of the inertial forces into the flux-friction relations in E, A representa-
tion yields

-T B Ti1 Tio E
UL Ty To A
p o (6.39)
Ry1 Ryo E Ky, K o
1 e ' -12 g%
Ra1  Rag A Ky Ko e
oY
In the 17,,, 177 representation these equation are
i Ty Th V,
1 = = = -
EUL —¢(P)T Ty To Vi
) ov, (6.40)
By Rz Vy ¥ Ku Ky 0
Ry Rap v, Ko Ko Wi
oY

It should be noted that the matrices in these equations are defined differently according to the
representation of the tangential velocity V;. The Coriolis forces modify the flux-friction relations
in various ways. Firstly, a radial coupling of the flow on different magnetic surfaces is provided
by the radial derivatives §/8%: the flux-friction relation are differential equations instead of
algebraic equations. Secondly, the Coriolis forces lead to a coupling of the radial diffusive flux
to the tangential velocities. This is the essential feature of the Stringer spin-up mechanism, in
Stringer’s formulation, however, the radial derivative in the inertial forces is neglected. Such a
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coupling of radial, meridional and azimutal motion also exists in the wind system of the earth
as has been pointed out already in chapter II. The convective radial diffusive flux is calculated
from the perpendicular component of

Vh; = q;Njv; xB — Zajk (Vj — Vk) (6.41)
i

and the parallel velocity from
V- NJ‘VJ' = Sj (6.42)

The solution is the classical diffusion velocity plus the Pfirsch-Schliiter convective velocity. In-
serting these solutions into the Coriolis forces yields R and K-matrices which are linear in the
velocities E and A. As a consequence the flux friction relation are quadratic in the thermody-
namic forces E, A.

6.3 Effect of Plasma Turbulence

In a next approximation we analyse the effect of turbulent terms on the flux friction relations.
As already mentioned before, the turbulent fluctuations énj,év;, §E, etc. are considered as
given quantities. The issue here is how these turbulent forces modify the poloidal and toroidal
force balance. The surface averaged forces are

B, = {<e VAmV;TV; >+ <€y Ejan >}
By = {<B-Vmmv;ivit <B-fan >} (649

where £; ., denotes all terms originating from electric and magnetic fluctuations. The inertial
stress tensor can be decomposed in the following form

nv:iv =7nv:v+é(nv):év (6.44)

nv is the total time averaged particle flux. The last term is the turbulent Reynolds stress. In
fluid dynamics and gas dynamics this terms represents the eddy viscosity leading to enhanced
perpendicular momentum transfer and thus enhances the effect of viscosity. The Coriolis forces
are computed in the same procedure as above except for the time averaging which leads to
n;V; = n;v; + 0n; 6v; instead of n;v; in the Coriolis forces. The matrices R and K remain
unchanged, only the Pfirsch-Schliiter diffusion flux has to to be replaced by the anomalous
particle fluxes. These matrices are now

R, = <M;V; - (ep X &) >

R, = <®mv;-V¢>TI

R = - <mv;-(Bx&)>

Ry = — <mv;-V> P (6.45)
and

If{l = <(nv;-Vi)ep-e, >

K, = < (mv;-Vi)e, B>

K} = -<(mv;-V¢)e, B>

K}, = -<(mv;-V¢)B®> (6.46)
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The other anomalous terms < ep -4, > and < B *§jan > cannot be linked to the lowest order
velocity without going into the details of the instabilities leading to this turbulence. Here, we
consider these terms as given and focus our interest on the the effect of these anomalous terms
on the force balance. Summarizing all components discussed in the previous chapters yields the
flux- friction relations in the following form

i i 5 o2
=T +(B+5) +K| %% (6.47)
by - Byon i by 2—2

T,R,S,K are the 2x2 matrices decribed above. I_x':p,an = {< ep - &an >} and fx‘:b,an =.4{<
B - {an >} are the anomalous fluxes caused by the 6E and éB fluctuations in the plasma.
In Vp,V; representation the structure of the flux friction relations is the same, the matrices
T,R,S, K must be defined properly using the base vector et instead of B.

6.4 Stationary Solution

In chapter 6.1 we considered a slowly diffusing plasma neglecting the anomalous losses and the
inertial forces. In this approximation the velocity of ions is small since viscous forces or magnetic
pumping slow down ion flow. The situation may be changed completely when inertial forces and
anomalous radial losses are taken into account. Without inertial forces the plasma velocity is
determined by

‘—f + I?p,an EO
=T (6.48)

UL — Kban Ao

where T, U L,I?p,an,f\"'b,an are given terms. Since T is positive definit there is always a unique
solution EO,KO. The anomalous effects reduce the inhomogeneous terms on the left hand side
of this equation and consequently the plasma velocity E, A is reduced. On the other hand the
anomalos radial loss ;v - Vi enhances the Coriolis forces and may lead to a strong modification
of the lowest order solution. We look for the solution of the whole system in the form E, +
El, Ko + Xl where the terms with index 1 are solutions of

y | 7
B B %ﬁ
=T + (R+S5) + K jb
- - 3A1
A A i
1 1 a’w
(Eo %%

+ (R+5) +x | 9% (6.49)
, ako
A B i o

: oy )
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In V,,V; representation this system would exhibit the same structure . In a quiescent plasma
the matrices R, K are computed with the radial fluxes n;v; - V1, which describe classical and
Pfirsch-Schliiter diffusion, in a turbulent plasma these radial fluxes are replaced by the time
averaged fluxes n;v; - Vi which certainly enhances the influence of the Coriolis forces*.

The important issue is how much the the solution E’l,l_{l differ from the lowest order terms
Eo, Ag. As pointed out previously for the case of a two-component plasma the ions are slowly
rotating as compared to the electrons. Does Eq. 6.49 provide solutions with a rapid rotation of
the ions?.

As already mentioned these equations equations exhibit a strong similarity to the equations
describing the zonal circulation in the atmospheres of the planets. An example with strong
circulation is the superrotation found in the atmosphere of Venus ® where the velocity of solar
driven Hadley cells is transferred to a fast zonal circulation. In our case the role of the Hadley
cells is played by the radial diffusive or anomalous fluxes and the role of the planets rotation is
taken over by the lowest order rotation described by Eo,ﬁg. In the zonal circulation on earth
the viscous damping and the rotation of the earth are the dominating factors, the effect of the
Coriolis force vy X V X vy is negligble. v is the meridional motion of the Hadley cells and v,
is the azimutal zonal circulation. However, the spin-up in a toroidal plasma resembles more the
situation on Venus ® where the slow rotation of the planet acts as a seed effect which is strongly
enhanced by the non-linear Coriolis forces. In Eq. 2.109 these enhancenment terms are the
second and the third ones in the first line. Anomalous transport increases the effect, therefore
rotational spin-up is more likely in a turbulent plasma than in a quiescent plasma’. Anomalous
radial transport plays the role of Hadley cells; this transport may depend on the toroidal and

*The role of anomalous radial transport on the formation of poloidal rotation has been pointed out by A.B.
Hassam, T.M. Antonsen, J.F. Drake and C.S. Liu, Phys. Rev. Letters, Vol. 66, No. 3, (1991), 309

*H.G. Mayr, 1. Harris, K.H. Schatten, D.R. Stevens-Rayburn and K.L. Shan, Earth, Moon and Planets 41,
(1988), 45. These authors discuss the energy balance, meridional and zonal velocity in the atmosphere of Venus
and write the zonal momentum balance in the form

V(Qu+Ufr)=UK,/H? (6.50)

Here U is the zonal velocity, V' the poleward velocity of the Hadley cell, , the angular velocity of Venus, K,
the eddy viscosity representing the slowing-down mechanism and H a length scale. r is the radius of the rotating
zone. The other equations describing the meridional motion are omitted here. This equation shows how the
rotation of the planet acts as the driving term. The solution for U is

U= Qpr/(K,r/VH? -1) (6.51)

If the eddy viscosity is small enough or the meridional velocity V of the Hadley cells large enogh a singularity
arises and the zonal velocity U may become rather large in the vicinity of this singularity. The spin-up of the
atmosphere in azimutal direction is caused by the Coriolis force which links the circulation U to the meridional
velocity V. This leads to the strong wind relativ to velocity of the surface U = Qp .

$The anology between shear flow in plasmas and the superrotation of the Venus atmosphere has been mentioned
in a paper by J.F. Drake et al. (I.F. Drake, J.M. Finn, P. Guzdar, V. Shapiro, V. Shevchenko, F. Waelbroeck,
A.B. Hassam, C.S. Liu, R. Sagdeev , Phys. Fluids B4, (1992), 488.) In this paper the development of a shear flow
is explained by the "peeling” instability of convective cells. Numerically the two-dimensional vorticity equation

Ow

a.{-v-Vw—qu:O (6.52)

is solved, however, this theory does not describe the Hadley mechanism and the development of zonal circulation.
"This has been pointed out in a paper by Hassam et al. (A.B. Hassam, T.M. Antonsen, J.F. Drake, C.S. Liu,
Phys. Rev. Lett. 66 No. 3 (1991), 309 ). These authors conclude that the radial plasma loss be poloidally

asymmetric to provide an effect on rotational spin-up. This result is not supported by the present theory. As
long as the matrices R, K are finite poloidal and toroidal rotation is possible
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poloidal plasma velocity and the matrices R, K are non-linear functions of E,A. For the very
moment we consider the anomalous tansport as a free parameter and analyse its implications
on the solutions of Eq. 2.109. If the anomalous transport is large enough, a singularity in Eq.
2.109 arises if the homogeneous equations has a non-trivial solution

0=T +(R+5) +E [ 9Y (6.53)
/-(1 A‘I 8A1

0

Close to this singularity the solution of the inhomogeneous system may become very large. It
is this singularity which is invoked by Mayr et al. to explain the strong enhancement of the
circulation on Venus. This singularity also indicates the limits of the present theory, close to
this singularity the feedback of the plasma velocity on anomalous transport has to be retained.
Theory and numerical calculations indicate a reduction of anomalous transport by poloidal
rotation and shear flow in the plasma®. where the slow rotation of the planet acts as a seed effect
which is strongly enhanced by the non-linear Coriolis forces. In Eq. 2.109 these enhancenment
terms are the second and the third ones in the first line. Anomalous transport increases the
effect, therefore rotational spin-up is more likely in a turbulent plasma than in a quiescent
plasma®. Anomalous radial transport plays the role of Hadley cells; this transport may depend
on the toroidal and poloidal plasma velocity and the matrices R, K are non-linear functions of
E,A. For the very moment we consider the anomalous tansport as a free parameter and analyse
its implications on the solutions of Eq. 2.109. If the anomalous transport is large enough, a
singularity in Eq. 2.109 arises if the homogeneous equations has a non-trivial solution

B By 1

0="T +(R+S) +x | 9% (6.54)
5 - dA;
A Aq %—

Close to this singularity the solution of the inhomogeneous system may become very large. It
is this singularity which is invoked by Mayr et al. to explain the strong enhancement of the
circulation on Venus. This singularity also indicates the limits of the present theory, close to
this singularity the feedback of the plasma velocity on anomalous transport has to be retained.
Theory and numerical calculations indicate a reduction of anomalous transport by poloidal
rotation and shear flow in the plasmal®.

8The theory of Guzdar et al. (P.N. Guzdar, J.F. Drake, D. McCarthy, A.B. Hassam and C.S. Liu, Phys.
Fluids B35, (1993), 3712, ) shows the the suppression of resistive ballooning mode fluctuations by shear flow in
the plasma boundary region.

®This has been pointed out in a paper by Hassam et al. (A.B. Hassam, T.M. Antonsen, J.F. Drake, C.S. Liu,
Phys. Rev. Lett. 66 No. 3 (1991), 309 ). These authors conclude that the radial plasma loss be poloidally
asymmetric to provide an effect on rotational spin-up. This result is not supported by the present theory. As
long as the matrices R, K are finite poloidal and toroidal rotation is possible

The theory of Guzdar et al. (P.N. Guzdar, J.F. Drake, D. McCarthy, A.B. Hassam and C.S. Liu, Phys.
Fluids B5, (1993), 3712, ) shows the the suppression of resistive ballooning mode fluctuations by shear flow in
the plasma boundary region.
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6.5 The Effect of Shear Viscosity and Gyro Viscosity

In the preceding chapters only the leading term of the Braginskii viscosity tensor have been
retained. This term describes the magnetic pumping effect and the resulting damping term
is linear in the velocity v;. The inertial terms introduce first order derivatives of the velocity
and the flux friction relations turn out to be first order differential equations. In general the
viscous forces include second order derivatives of the velocity which leads to a momentum
transfer across the magnetic surface. This effects are described by the complete Braginskii
viscosity tensor which incorporates shear viscosity and gyroviscosity. In the following the total
Braginskii viscosity tensor will be taken into account and the balance equation for a general
nonaxisymmetric configuration will be formulated.

The full viscosity tensor in a collisional plasma consists of 5 terms which are of the order 1,
(wr)™! and (wr)~2, (w is the gyro frequency and 7 the collision time ).

4
Tie = — > m Wik (6.55)
0

m1 are the viscosity coefficients and W ;i is related to the rate of strain tensor

ov, oV 2
e — B A V-V
Wiaw da; ¥ dzy . 3 Suw (6:6)

by
Wik = Al () W, (6.57)
The viscous coefficient are assumed to be constant on magnetic surfaces. In the following we

adopt the Einstein convention with summation over equal indices. A(x) is a tensor which
depends only on the magnetic field. In the following this tensor only appears in the combination

Ch = 24: m Afj:-'k (6.58)
0
thus the pressure tensor has the simple form
ik = —CH (x) Wy, (6.59)
The rate of strain tensor W), is a linear first order differential operator on V = —Eep + AB
and since the lowest order plasma flow is incompressible we obtain
W [V] = —E($) Wy [ep] + A() Wy, [B] = E'(¥) W, [ep] + A'(3) Wy, [B] (6.60)

Here we introduce the function E(®) instead of U’. In explicit form the tensors W, [B] and
Wr, [B] are

8B, -8B
W, [B] = —+ + —~ 6.61
v [B] Few | Oa; (6.61)
and 9 o9
W, [B] = B, 9z, T B 9z, (6.62)

In Wy, [e,] and W}, [e,] the vector B has to be replaced by e,. With these notations the general
form of the viscosity tensor is

Tk = + E(Y)CH W lep]+ E'(V)CE WS, [e)
— A(a,b)Cf;c”W,“,[B]—-A’(¢)C§‘[W‘j‘u [B] (6.63)
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The index j of the particle species has been omitted for simplicity. All the terms C B W, depend
only on the geometry of the magnetic field and the coefficients of viscosity. Combining them in

matrices II;;

Miklep] = Cl W [ep) (6.64)
ILix[B] = CH/W,, [B] (6.65)

ixlep] = CHW, [e)] (6.66)
I [B] = C{'W,, [B] (6.67)

the pressure tensor takes the simpler form

or in V,, Vi-notation

Tik = +  E(¢)ifey] — A(¥) i [B]

+ E'(¢)i[e,] — A'(y) 114 [B] (6.68)
mik = = Vp(¥)Mik[ep] — Vi(9) i [B]
- Vo(¥)ile,] — V{(¥) I} [B) (6.69)

From this equation the toroidal and poloidal averages < B-V -7 > and < e,-V -7 > have to
be calculated. The viscous forces are

V-7

= E(¥)V-Iep] - A(y) V-II[B]

+ E'($)V-Ilep] - A'(y) V- TI*[B]

+ E'(¢)[ep]- VY — A'(y) IT[B] - V¢

+ E"(¢)II*[ep] - VY — A"() IT[B] - V) (6.70)

This equation shows that the first order and second order derivatives of E(1) and A(%) occur if
the total viscous tensor is retained. These terms are essential in determining the velocity shear.
The surface averaged forces are

<ep‘V'ﬁ'> =
_I_

+

E(%)< ep-V-Tlep] > —A(%) < ep-V-T[B] >

E'(¥)(< ep-V-I'[ep] > + < ep - N[ep] - Vi >)

AN(¥) (< ep-V-II*[B] > + < ep - I[[B] - V¢ >)

E"(Y) < ep-T*[ep] - Vi > —A"(¢)) < ep-II*[B]- V¢ > (6.71)

and the parallel viscous force

<B-V:7 > =

or in Vp, Vi-notation

<ep‘V‘71—>: -

E(¥)< B-V-1I[ep] > -A(¥) < B-V-II[B] >

E'($)(< B-V-T*[ep] > + < B-Tl[ep]- Vo >)

N(4)(< B-V-TI*[B] > + < B-TI[B] - V¢ >)

E"(¢) < B-TI*[ep]- V¢ > —A"(¥) < B-II*[B]- V¢ > (6.72)

Vo(¥) < ep -V -Il[ep] > -Vi(¥) < ep -V -Il[et] >

Vo(¥) (< ep -V -T*[ep] > + < ep - Il[ep] - V¢ >)

V/(¥) (< ep-V-Tl"[et] > + < ep-Tl[et] - Vi >)

V(%) <ep-M¥lep]- VY > -V () < ep - I*[et] - Vi > (6.73)
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and the parallel viscous force

<e -Vemr>= — Vy(¥)< et -V-Iep] > -Vi(¥) < et -V -1[et] >
— Vi) (< et-V-T*[ep] > + < et - M[ep] - Vo >)
- Vi(¥)(< et V-T"[eg] > + < ey - T[B]- V¢ >)
- V(%) <et-T*ep]- Vi > —V{"(¥) < et - T*[eg] - Vi > (6.74)

The main result of the present analysis is the linear dependence of the surface averaged
viscous forces on the functions E;(?) , A;j(¥) and the first order and second order derivatives
with respect to the radial coordinate 9. Inserting these terms into the flux-friction relations 4.8
and 4.6 yields a system of second order differential equations instead of the algebraic system
considered so far. This implies that also the electric field results from the solution of a second
order equation rather than from an algebraic equation. The ambipolarity condition and the
general form of the poloidal viscous forces lead to a second order differential equation for the
electric field ®’(¢). The radial derivatives of E;(+) and A;(¢) are introduced by the shear
viscosity and gyro viscosity. In chapter 5 the viscosity has been evaluated retaining only the
bulk viscosity, there no derivatives of ' and A occured. Therefore first order and second order
derivatives are the result of gyro viscosity and shear viscosity. In the next step we return to the
vector notation of the viscous forces and write these in the following form

E‘i E‘u
= Lo + Ly |+ L2 . (6.75)
AI Ah’

-

_f['p
1L,
The three matrices Lg, Ly and Lo are

—<ep:V:-Iep]> <ep-V-I[B]>
Lo = P P i (6.76)

< B VIl[ep] > - <B-V-I[B] >

andL1

—(<ep-V-M*lep] > + < ep-Ilfep] -V >) (<ep-V- -II*[B] > — <ep-N[B]- Vi) >)

(<B-V -II"[ep] > + < B -Il[ep] - V¥ >) —(<B-V-II*[B] > — < B-1II[B] - V¥ >)

(6.77)
and also

I = — < ep-I*[lep] - V¢ > < ep-II*[B] - Vv > (6.78)
< B-I*[ep] - Vi > - < B-II*[B]- V¢ >

In the similar manner the matrices can be written in the V,, V;- notation.
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6.6 Summary and Conclusions

Equation 6.75 is the most general form of the viscous forces in the collisional regime. The
dominant term is the matrix L,, it represent the magnetic pumping effect. Shear viscosity and
gyro-viscosity are the reason of the radial derivatives of E; and Aj(¢). We are now in the
position to sum up all terms in the flux friction relations. For this purpose we start from Eq.
4.30 and the Coriolis forces in Eq. 6.22. Together with the ionisation term Eq. 6.23 and the
viscous forces in Eq. 6.75 the flux friction relations are

L <ep-ep> I(y) E S Si2 E
= (-Da + -Dﬁ) +
UL I(¥) <B?> A S21 S A
- ; . oF
Ri1 Ria E Ky Ky -
o
+ +
= ) i A
Ry Ry A Ky Ky EM
- E g
b B 5
+ Lo + Ly + Ly (6.79)
By oA o4
o O?

The matrix D, describes the effect of Coulomb collisions and Dg the interaction with neutrals.
Retaining only these terms generalises the flux-friction relation derived in chapter 2 (eq. 2.35).
The S-matrix describes the momentum losses by ionisation and the R and K -matrices are
the result of Coriolis forces. These matrices are linear in the diffusion fluxes, either classical
Pfirsch-Schliiter diffusion or anomalous diffusion. Retaining only the parallel component of the
diffusion flux yields R;; = K;; = 0, except for Rq; # 0. In this approximation the Stringer spin-
up mechanism is found again. The L-matrices describe the effects of the Braginskii viscosity, L,
represents the magnetic pumping effect, the other two matrices are the result of shear viscosity
and gyro viscosity. An approximation to the L,-matrix is given in eq. 5.33. The terms arising
from shear viscosity and gyro viscosity usually are rather small and may be neglected, however,
these terms introduce second order derivatives in the radial coordinate 1) and therefore they are
important in boundary layers or singularities. On the left hand side the fluxes T and Uy, are
consider as given quantities. This is obvious in case of the loop voltage, the fluxes T are linked
to the source terms by the equation of continuity. If we also take into account the anomalous
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particle fluxes the left hand side of the flux-friction relation must be replaced by

T B
(6.80)

UL = Ifb,a'n.

Without giving more information about the physics of the anomalous transport this only a formal
extension of the flux-friction relation. It depends on the details of the plasma turbulence and
the underlying instability mechanism how these anomalous terms depend on the thermodynamic
forces E and A. However, the modified flux-friction relations show, that anomalous or turbulent
losses occur on two places, on one hand they modify the lowest order solution, which follows
from Eq. 6.48 and on the other hand they enhance the R and K-matrices, thus modifying the
spin-up mechanism.

As pointed out in the previous sections these equations exhibit a strong similarity to the
the equations which govern the zonal circulation in planetary atmospheres. There temperature
gradient driven Hadley cells couple into azimutal rotation. The coupling is provided by the
Coriolis force which may amplify the rotation of the planet leading to a strong rotation of the
planetary atmosphere as observed on Venus. In the toroidal plasma the Hadley cells are replaced
by the radial diffusive flux and the associated parallel mass flow. The slow rotation which can
be enhanced by the Coriolis forces are the solutions Eg, [_{g as described in Eq. 6.48.

Formally the flux-friction equations are linear in the forces £ and A and therefore multiple
solutions and bifurcations cannot occur. However, the diffusion fluxes, either classical or anoma-
lous, depend on these forces, and this way non-linearities are introduced. To obtain quantitative
results it needs to analyse the anomalous tranport mechanism in more detail, the present analysis
is restricted to the general role of anomalous effects in the flux-friction relations.

These relations Eq. 6.79 hold for any toroidal equilibrium, there is no limitation to a specific
configuration or a special coordinate system. The influence of the specific geometry is represented
by the two vetors B and ep, where the parallel component of ep is proportional to the Pfirsch-
Schliter currents. Reducing the Pfirsch-Schliiter currents by a proper choice of the equilibrium
field reduces also the magnetic pumping effect and thus facilitates the poloidal spin-up and the
increase of the radial electric field. In deriving the flux-friction relations we made use of the
properties of the magnetic field which is the field of an ideal MHD-equilibrium. This is a slight
inconsistency, since the force balance of the rotating plasma is modified by the inertial forces
and the viscous forces and the self-consistent magnetic field may differ from that of an ideal
equilibrium. However, since these forces are small compared with Vp and j x B the modification
of the ideal equilibrium is expected to be small, too. If islands occur, this conclusion is no
longer true, in this this case the self-consistent treatment of the stationary equilibrium is needed,
however, this is beyond the scope of the present paper. A further deficiency of the present model
is the assumption of constant temperature, the effect of temperature gradients will be considered
in a subsequent paper.
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