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Abstract

ASDEX-Upgrade currently uses FIR interferometry (DCN, 195um) as
a technique for measuring line integrated electron density along eight
chords of the plasma cross-section. A polarimetry diagnostic based on
Faraday rotation using the existing setup would yield [ n.B - dl along
the same chords which, in combination with the fn,dl measurements,
would provide additional information about the poloidal magnetic field.
This would be helpful for reconstructing the g(v) profile, which is difficult
to recover from external magnetic measurements alone.

A sensitivity study to determine the effectiveness of adding polarimetry
to ASDEX Upgrade is carried out using function parameterization on a
simulated equilibrium database, together with a database of randomly
chosen density profiles with four degrees of freedom. The robustness of
the recovery in the presence of measurement noise and the effects of
plasma birefringence are taken into account.
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1 Introduction

The poloidal magnetic field profile, or equivalently the current density or safety
factor profile, is a fundamental quantity of interest in tokamak experiments.
One important method of measuring this is based on the Faraday rotation expe-
rienced by far infra-red beams of radiation traversing the plasma [1]. On ASDEX-
Upgrade, there exists the possibility of adding such a polarimetry diagnostic to
the existing FIR interferometry setup. A sensitivity study of the diagnostic is
carried out using function parameterization on a database of simulated experi-
mental states, focussing on the recovery of the radial position of inner g surfaces
using the external magnetic measurements and the additional polarimetry data.

The general methods of function parameterization and principal component
analysis which form the basis of the study are described in the coming sections,
as are the principles of polarimetry measurements and the associated effects of
plasma birefringence. The recovery of the radial position of the g surfaces of
interest is then carried out both with and without the simulated polarimetry
signals, and the robustness of the signals in the presence of measurement noise
is investigated. In addition, the recovery of the poloidal 8 and the internal
inductance of the plasma [; (which are related to the current density profile), and
gexis: the g value at the magnetic axis, is looked at.

2 Function parameterization

The method of function parameterization consists of the numerical determina-
tion, by statistical regression on a database of simulated experimental states,
of simple functional representations of parameters characterizing the state of a
particular physical system, where the arguments of the functions are statisti-
cally independent combinations of diagnostic raw measurements of the system
whose geometry is fixed. The technique has very close parallels with artificial
neural networks (ANN) in that a ‘training’ procedure is central to both methods.
The following is a breakdown of the main stages involved — a more thorough
exploration is made in [2].

The initial phase consists of the generation of a database consisting of ran-
domly chosen states of the system simulated by a computer code. The code
should contain an accepted physical model of the system (in our case the plasma
is assumed to occupy a sequence of ideal MHD equilibrium states) and should
include the geometry of the sensors on the experiment so that experimental mea-
surements can be simulated. Care must be taken at this stage to ensure that
the database contains enough variety to accurately reflect that observed in the
experiment, since the method detects only those tendencies described within the
database and cannot in any way improve on the physical model used to compute
the simulated states. In our case, simulated plasma equilibria were generated




using a version of the Garching Equilibrium Code [3] using 12 pseudo-randomly
varied independent input parameters.

The second phase is concerned with the actual training procedure, where both
model selection/optimization and parameter recovery are carried out off-line. In
our analysis, the parameters of interest are recovered with low order polynomial
models using multilinear least-squares regression on the simulated diagnostic in-
formation. The large number of measurements necessitates dimension reduction
techniques described later. :

The generation of the database and its subsequent analysis are generally very
time-consuming, but once performed, the recovery of plasma parameters using
experimental data (which is the operation that must be performed many times)
requires only the evaluation of the final function - a relatively trivial task that
does not require heavy computational power. This gives FP a great advantage
over conventional data interpretation methods: as long as the database reflects
the physical reality in both diagnostic and parameter information, a wide variety
of effects can be encompassed in the same basic algorithm.

3 Principal component analysis

Principal component analysis (p.c.a.) is a statistical technique which is used
as a means of dimension reduction and elimination of multicollinearity — it is
employed here to narrow down the number of candidate predictors to be used in
regressions from a large set of correlated variables to a smaller subset of linearly
independent ones. It operates by selecting uncorrelated linear combinations of
maximal variance from the original set of variables. For a more detailed expla-
nation see [2].

More specifically, given a data matrix X with n observations of p experi-
mental variables X ... X, and its corresponding p X p covariance matrix S (the
covariance of X; and X; is defined as < (X; — X:)(X; - X;) >= Si;). the
principal component transformation constitutes a rotation of the coordinate axes
in p-space such that they lie along the directions defined by the eigenvectors of
5.

The real symmetric matrix S is positive semi-definite with p eigenvalues (1?),
corresponding to orthogonal eigenvectors ;. We index the A% by eigenvalue
magnitude, so we have A2 > ... > A2 > 0. The p x p matrix of eigenvectors (
T) is formed of columns 4 ... 7, which are mutually orthogonal.

The principal component transformation is given by the inner product of the
set of centred measurement variables with successive eigenvectors of S:

P
& =Y 7:(X; — Xi)-

i=1




The &; are the principal components (p.c.'s) of X;...X, (also referred to as
the transformed measurements); when evaluated for each observation in X they
form the n sets of p principal component scores of X; ... X,.

The effects of the transformation are two-fold: firstly the transformed vari-
ables are now uncorrelated (within the database) by virtue of the fact that the
eigenvectors of S are orthogonal, and secondly the variance of ®; is less than
that of the preceding ®,...®;_;. The number of nonzero eigenvalues of S is
exactly the number of degrees of freedom in the data, and any ~ with a zero
eigenvalue leads to a ® with zero variance (a constant of the database) which
has no predictive power (but which can be used to derive constraints on the
data). This is the property that leads to dimension reduction: if all principal
components were included then there would be no reduction, but the assump-
tion underlying statistical regression analysis based on p.c.a. is that the most
significant information will be contained in the first few p.c.'s, and that those
beyond a chosen cutoff point (V) can be neglected.

There is no universally accepted criterion for determining the cutoff point for
the number of p.c.’s to be included in the regression model, but one requirement
leading to a lower bound for N is that there be at least as many predictors
as there are degrees of freedom in generating the database. In the context of
experimental measurements, all with known noise variance o, an upper bound
for N is given by A4 > &%, which is nothing other than the requirement of a
good signal to noise ratio. The choice of a cutoff point is thus a compromise
between model size, information retained and signal to noise ratio.

For our purposes it is more meaningful to work with the correlation matrix R,
where R;; = S;;/6:6;, and é; denotes the standard deviation of X; etc. In partic-
ular, the 34 external magnetic measurements used by FP (fig. 2) for determining
the plasma geometry are read into 12-bit digitisers which are calibrated such that
the full-scale deflection of the data acquisition electronics fits the largest possible
signal that can occur. It is thus natural to standardize the measurements to their
own spread (i.e., the square root of the variance); in the context of the p.c.a. it
merely means that all of the raw measurements receive equal weighting. Also,
since the signal noise is roughly a constant number of bits for each digitiser, it
is valid to assume a single noise level o for all of the standardized variables. R
is a particular type of covariance matrix, one whose diagonal elements are all
equal to unity, and thus all properties described for S still hold. Note that due
to the standardization of the measurements, trace(S) = sum of the variances of
X1...X,, whereas trace(R) = p.

Finally, the transformed measurements are very difficult to assign a physical
meaning to — they are, after all, linear combinations of all the original variables
which are determined using orthogonality and maximal variance conditions, and
this procedure does not lend itself to any simple physical interpretation. Further-
more, it is not always true that maximal variance is the best criterion for selecting
the ®, since it is possible that some & may vary widely and yet have little corre-



lation with the response parameter. In such a case, canonical correlation analysis
may be a better solution to dimension reduction, since this seeks to identify those
linear combinations having the largest correlation with the response parameter.

4 Principles of polarimetry diagnostics

The following is a brief description of the Faraday effect for high-frequency
monochromatic e.m. radiation propagating in a plasma with an arbitrary mag-
netic field B (the medium is not assumed to be homogeneous), borrowed largely
from De Marco and Segre 1972 [1].

The state of polarization of high-frequency monochromatic electromagnetic
radiation of wavelength A changes during propagation in a plasma immersed
in a magnetic field. The ray can be generally regarded as the superposition of
two characteristic waves (of orthogonal polarizations) whose polarizations remain
constant during transit and each of which experiences a slightly different index
of refraction. This leads to a phase difference between the two waves which,
if the initial ray is plane polarized, manifests itself as a rotation of the plane of
polarization of the ray (Faraday rotation).

For linearly polarized radiation, if plasma birefringence effects on the beam
due to the component of the field perpendicular to the path is negligible (which
is discussed below) and the deflection of the beam due to the changing refractive
index does not disturb the trajectory, then the angle of rotation 1 is given by

€

N —_— B -dl
’(’b 2mecne,crit(w) -/n

= 1,[) =20'% 10—13 AZ/REB”(H

with % in radians, A inm, B in T and n. in m™2.

Thus if 1 is measured along many chords of the plasma and the line integrated
electron density [ n.dl is also known (e.g. from interferometry techniques), then
the magnetic field component parallel to the line of sight (B)|) can be decoupled
by FP and its poloidal behaviour determined, yielding information about the
toroidal current density (J;) and thus gq.

5 Effects of plasma birefringence

In general, the radiation suffers not only Faraday rotation, but also an ellip-
ticization due to the transverse magnetic field (Cotton-Mouton effect). This
has recently been investigated by Segre [5], from whose analysis the following
summary has been compiled.




Figure 1:
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Following Segre's notation, 9 is the Faraday rotation angle and tan(y) is
the ellipticity of the final polarization on traversing the plasma — the quantity
measured by most polarimeters used to date on tokamaks is s = ¥ + x. For
initial 1o, xo = 0 with cylindrical symmetry assumed for the plasma density n(r)
and the safety factor g(r) and propagation along a vertical chord (z and = are
taken to be vertical and along the torus’ major radius respectively as in fig. 1),

the final parameters 9, x are given by:

2a M?Y,
vz PXYs - R(1+ Xa/R)*
2a M?Y, MY;
Xz s R(1 +Xa/R)4)(1 + Xa/R)?
where
Zy
0 Ny
Zy \ 4 ]
0 Mo Q(P) 0 Mo
Zo
Yazf np) 9o gy
0 no q(p)

are form factors of order unity,
P =10.4\%n,I,
M= 2.42)\353110&
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are dimensionless quantities, and A(mm) s the radiation wavelength, n¢(10%°m™2)
is the central plasma density, I,(MA) is the plasma current, Bo(T) is the toroidal
magnetic field at 7 = 0 and a and R are the tokamak major and minor radii
respectively (m). Propagation is in the z direction on a chord a distance = from
the plasmacentreand weput X = z/a,Z = z/a,p=r/a = (X?+2Z%)?,Z, =
(1—X?)Y2,g, = g(p = 1). The above equations for ¥ and x are valid for small
M, P and for small X.

Neglect of birefringence corresponds to setting M = 0, in which case the
expression for 1 reduces to its usual form as follows: the parallel component of
the poloidal magnetic field (fig. 1)

X
B” = Bpocos(f) = _de;
T Bior Gaxis a Bya(r)
Now q(r) = = . P
( ) RBP°1 Q(T) Bpol(a) T
and Boala) = :_i =const.
T b oxis _ 2ra® Byo(r) . 2ma Bpo(r)
o(r)  pod T pol  p
Y, = 222 f " 2e) Bosle) 4,
pol Jo  mo P
adZ = dz and &‘%(ﬂl — %l_
2ra [* n(p) By
SHET=] = da.
: pol ~/o ng X £

zp 29
Finally ¢ =PXY; = 10.4)\22—“(% / nB)dz) = 2.6x10713)? f nBdz,
Ho A

where all quantities in the final formula are in Sl units once again.

In the case of modest electron densities and magnetic fields, it can be ar-
ranged by suitable choice of input polarization that ¥ >> x, and Faraday rotation
dominates the signal s [5] given by:

2a M?Y, 1+ MY,
R (1+ Xa/R)* (1+ Xa/R)?

20 -2

s(X)=v+x=(PXYs - )
In the more extreme regimes of a tokamak such as AUG it is of interest to look for
an upper bound on the form factors Y1,Y2,Y3 and hence estimate the overall

effect of birefringence on s.
Assuming that the density profile is of the form n(,) = n,=0(1—p*), Gaxis > 1
and g, < 6 then upper bounds for Y'1,Y2,Y3 follow easily:

8
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Thus the relative importance of birefringence compared to Faraday rotation can
be estimated.

The usual method of interpretation of the polarimetry data for circular plas-
mas is Abel inversion of the line integrals — this allows the reconstruction of By
in terms of the polarimeter signal s. For such a procedure however, the ellipticity
acquired by the beam due to the perpendicular component of the magnetic field
is highly undesirable since s = 9 + x then no longer measures simply Faraday
rotation: a significant x leads to an error in s which must be taken into account,
and even if x is small, non-negligible birefringence distorts the Faraday angle 7
itself as detailed above.

The simulated polarimetry data (see later) in the FP database are, at present,
purely proportional to 9 and assume zero ellipticization of the beam. On the
surface, this would appear to present a problem: the database does not account
for the Cotton-Mouton effect and the results, which we present later, could there-
fore be judged to be optimistic. However, since g and n.(p) are known in the
database it is possible to accurately account for the birefringence effects by nu-
merical integration of ¥;-Ys and inclusion of this contribution in the simulated
polarimetry data. So as far as FP is concerned, this is a known contribution to
the evolution of the polarization state and can thus be included in the generation
of the database, and there are no difficulties with the full treatment apart from
the more involved off-line calculation of the simulated measurements. Otherwise
the entire procedure remains the same: the model is simply optimised (or in the
language of artificial neural networks, trained) on the new measurements. This
is one of the most attractive features of FP and ANN over conventional inter-
pretation methods: as long as the predictors can be programmed to accurately
reflect the physical reality, then any complicated side-effects are automatically
accounted for in the final optimised function and require no additional analysis.

6 Database detalils

The database used in analysis is a subset of the ASDEX Upgrade equilibrium
database used for FP and contains approximately 800 lower single null plasmas
of area greater than 0.9m?. This excludes ~ 40 % of all category 4 plasmas,
but the excluded equilibria differ strongly from the standard configuration. All
profiles have been scaled to correspond to a plasma current I, of IMA and a
magnetic field of 2.5T at R = 1.65m. Fig. 4 shows a few of the more extreme
examples that are still included in the database used here. -

The toroidal current density profile, which is central to the present work, is



Figure 2: Magnetic diagnostics on AUG: the 34 measurements which FP uses
to determine the geometry of the plasma
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Figure 3: Existing interferometry setup on AUG: 8 FIR channels (DCN
195um) ,

R =1785 mm
R =1200 mm
R=2135mm
Z=+146 mm
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z =+ 600 mm, =20°
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parameterized in the equilibrium code as

je = Cop™' R+ Crrip™#' |R

Here, ¢ = (Si'_‘f;b)) where 1) is the poloidal stream function and the subscripts ‘a’
and ‘b’ refer to the values it takes at the magnetic axis and plasma boundary,
respectively. The right-hand side arises from the following parameterization of
the two free flux functions in the Grad-Shafranov equation: -

FF'(¥)

o

pl(llb) = Cp"ﬁbIL"'; = Gp'}:'a”gb%'
Thus LL, and LLpp: are shape parameters for the (derivative) pressure and
poloidal current profiles. Cpr and Cgp: are related to B,, and 1—/3,,,;, respectively.
For a fuller description see [2].

In addition to the information normally stored in the database, each equilib-
rium was assigned an electron density (n.) profile parameterized as:

Te(plasma) = @ ok bpfb + CP:;, + dpfb?

where py is the normalised flux surface radius and the set of coefficients a, b, c,d
are chosen randomly from a database of 2000 experimental profile fits to electron
density and temperature measurements from the ASDEX Thomson scattering
diagnostic. In the scrape-off layer a fifth parameter (the fall-off length ) was

added:

- A
Te(sol) = Te(boundary)® =

where 1em< A < 3cm and zy is the distance along the major radius in the
Z = Zge, plane from the plasma boundary to the vacuum flux surface 7.

Using the n. profile assigned to each equilibrium and the description of B
from the equilibrium database, the line integrals fn,dl (simulating existing in-
terferometry data) and [ n.B - dl (simulating the new polarimetry data) along
the 8 DCN chords (see fig. 3) were numerically computed for both the plasma
and scrape-off layer regions separately. These new predictors were added to the
magnetic measurements in models for FP regressions.

The scrape-off layer contribution to the line integrals is important for the
recovery, in that it provides zeroth order continuity in n. at the boundary. In
many cases the line of sight for one or more channels does not cut the plasma
boundary, resulting in a zero plasma contribution to the corresponding line inte-
grals. This poses problems for the regression since a zero [n.dl or [ n.B - dl
provides no information regarding how far the plasma is from the given chord.
The more realistic total line integrals (sum of plasma and s.o.l. contributions)
were exclusively used in regressions — these yielded better overall recoveries than
the separated contributions and, in any case, only the totals are available from
the experiment. :

13



Table 1: Summary statistics for the line integrals

Signal H1 H2 H3 H4 | H5 Nid: Ty2 V3
Mean J nedl 043 035| 0.36| 0.23| 015| 0.56| 0.12] 0.02
Std [ nedl 031 | 0.29| 0.28| 0.22| 0.19| 0.42]| 0.13| 0.04
Max [ n.dl 204| 1.85| 1.86| 1.62| 1.47| 2.62| 1.08| 0.55
Mean | [n.Bjdl 1.23 | 3.27| -3.28| -3.01 | 2.33| -4.86| 2.66 | -0.60
Std J neBydl 4.44| 395 3.96| 3.29| 2.83| 539 297| 111

Min | [n.Bydl |-22.96 |-21.26 | -23.14 | -26.84 | -3.25 | -41.42 | -0.12 | -15.07
Max | [n.Bydl | 21.62| 26.65| 27.75 | 20.82 | 24.38 | 22.95 [ 27.75 | 0.00
Mean | || [n.Bydl || | 3.35| 3.85| 3.95| 3.23| 2.34| 547 2.66| 0. 60
Std || fn.Bydl|| 3.6 3.39| 329| 3.07| 2.83| 477 297| 1. 11
Max ||| [n.Bydl| | 22.96 | 26.65 | 27.75 | 26.84 | 24.38 | 41.42 | 27.75 | 15. 07

Table 1 details the summary statistics for the simulated line integrated density
and [ n.B)dl, with the [n.dl in 102°m™2 and [ neBydl in degrees for I,=1MA.

The line integrated density is reasonable at a few times 10'*m~2. On average,
the Faraday rotation is roughly 3-4° for each of the channels: the anomalous
maximum and minumum values of over 20° are due to a very few extreme equi-
libria in the database and are highly atypical.

7 Model selection

From previous FP work [2], it was found that a quadratic model of the form

N i1
9(®4,..., —a+§:b¢> +ZQ<I'2+ZZC.,<I>‘I'
i=1 i=1 1—1 :,v-_lV
linear quadratic mixed

was the best compromise between model size and quality of fit for recovery of a
plasma parameter g in terms of the significant principal components &, ... ®y.
The same basic model is used in the analysis which follows. Higher order models
result in a prohibitively large number of fitted parameters and typically do not
offer significant improvement in recovery, whilst linear models give an inadequate

fit.
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Figure 5:

Log10 of eigenvalue magnitude versus p.c. number
for magnetic measurements (only pe1-pc20 shown)
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8 Selection of magnetic measurement p.c.
cutoff

The 34 magnetic measurements illustrated in fig. 2 represent the set of candidate
predictors with which FP determines the geometry of the plasma. Since there
are many more measurements then degrees of freedom, a p.c.a. is carried out
on this set of variables within the ~ 800 case database in order to eliminate
multicollinearity and minimize the number of predictors used (thereby avoiding
ill-conditioned regressions and excessively large models).

Fig. 5 shows a log plot of the eigenvalues of the correlation matrix (variances
of the transformed measurements ®; as explained previously) along with the
cumulative fraction of the total variance explained as a function of p.c. number.
The assumed noise level in the signals (1%) [2] is marked as a dotted line for
clarity, and only the first twenty p.c.'s are included — the rest have negligible
eigenvalues.

In selecting the optimum number of p.c.'s to include in regressions we ensure
that p.c.'s with a low signal to noise ratio are beyond the cutoff point: these
hold little useful information and serve only to needlessy enlarge the model size.

We seek to capture as much variance with as few p.c.'s as possible. The

15



14** p.c. has an eigenvalue of 0.004, which is equivalent to a signal to noise
ratio of 40 at the assumed 1% noise level — choosing the cutoff here we retain
99.99% of the total variance. This will be the baseline from which we judge the
improvement in recovery due to adding the [n.dl and [n.B - dl signals.

9 Presentation of regression results

For the purposes of examining the accuracy of parameter recovery, we wish to find
a quantity which can be used to compare regressions even when the models used
have different sizes. If R? is the usual squared multiple correlation coefficient
(the ratio of explained variance to total variance of a parameter for a given
regression), then we define the adjusted R? as

n—1

Rij=1- (1-R?),

n—p-—1
where n and p are the number of observations used in fitting the model and the
number of model parameters, respectively. Ridj thus depends not only on the
explained variance, but also on the number of degrees of freedom in the model.

Since the R2,; is often close to unity, we prefer to quote ‘% error’ — the two
are related by

% error = , /1 — Ridj x 100.

In order to obtain an idea of the spatial error in metres, it is necessary to find
an approximate relation between p,, and the geometric radial coordinate Pgeo-
py = normalised ¥ coordinate = Moy

¢a Tl)b ’

where 1, and 1, are the flux values on the magnetic axis and the boundary flux
surface, respectively.

area(v)

Defini o = \| ——————
S area(plasma)

dpgeo , 1dpy

Pgeoc 2 Py

since p(¢) o area(v) for a circular plasma with constant current density. As-
suming this to hold approximately for AUG, we obtain an estimate of the spatial
error in the flux surface radius:

we have

1 dpy

dT eo ~ =——0a
02 /by
where a is the appropriately weighted minor radius of the plasma. This relation
will be sufficient to estimate the spatial error with which the g surfaces are

identified.
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10 Electron density recovery

As a preliminary exercise, recovery of the density profile was attempted using the
magnetic measurements together with the interferometry density line integrals
J nedl. Note that the line integrals were included noise-free here: the experimen-
tal noise level is 2% [6] which is added as a normally distributed pseudo-random
error.

In order to avoid the unphysical situation of recovering the density in terms of
its square, a slightly different model to that described previously was used, where
only mixed second order terms in n. (i.e. involving a product of a line integral and
a magnetic p.c.) were admitted to the regression model. The electron density
was generated at p, = 0,0.1,0.2,...,1.0 and a model consisting of fourteen
magnetic measurement p.c.’s and the eight [ n.dl was chosen to recover n.. In
table 2, columns 2—4 are in 10'®m ™2, and the relative error (final column) is the
rmse divided by the average value of n.(py).

Table 2: Recovery of n.(10'®*m™?) from 14 magnetic p.c.’s (1% noise)
and 8 noise free [n.dl

Variable | Mean | Std. Dev. | RMSE | Adj. R? | % Error | 3222(%)
n.(0.0) | 8145 5357 105 0.9996 2.0 12
n(0.1) | 8000 | 5224 | 88 | 09997 | 1.7 1.1
n(0.2) | 7578 | 4849 | 58 | 09999 | 1.2 0.8
n.(0.3) | 6918 4300 85 0.9996 2.0 1.2
n.(0.4) | 6083 3665 133 0.9987 3.6 2.2
n.(0.5) | 5146 3021 148 0.9976 4.9 2.9
n.(0.6) | 4183 2415 117 0.9976 4.9 2.8
n.(0.7) | 3260 1882 112 0.9964 6.0 34
ne(0.8) | 2412 | 1462 | 195 | 0.9822 | 13.3 8.1
n.(0.9) | 1626 | 1042 | 210 | 0.9595| 201 | 12.9
n(1.0) | 816 562 195 0.8798 | 34.7 23.9

The densities are generally well recovered except towards the edge values,
which are quite poorly diagnosed beyond the 70% surface. Note that this explicit
recovery of the profile is not necessary from FP's standpoint for interpreting the
[ n.B - dl measurements: it is sufficient to include the [ n.dl as predictors in
the model for g(3).

The fluctuations of the RMSE along the profile are most likely the result of
the complex dependency of the correlation of the line integrals with the density
on both the length of the channel in the plasma and the shape of the n. profile.
The trends revealed in both the % and relative errors are simpler, however, with
a minimum at p = 0.2 and thereafter monotonically increasing towards the edge.
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11 Identification of ¢ surfaces

The safety factor g is a flux surface quantity which is important in determining
the MHD stability properties of the plasma — since g is derived from an integral
of the toroidal current density j, and is hence linked to the poloidal magnetic
field, we expect to improve FP recovery of ¢ by adding the simulated polarimetry
measurements to the equilibrium magnetic measurements. Furthermore, the
improvement should be more significant towards the centre of the plasma since
g is well determined at the boundary by external magnetic data.

To investigate this, the radial position of the surfaces for ¢g=1.25, 1.5, 1.75,
and 2.0 were recovered, firstly using the magnetic measurements alone to estab-
lish a baseline from which to judge the recovery, and then with the interferometry
and polarimetry signals added.

12 Recovery of p

Table 3 details the regression results for the radial positions of the g=1.25, 1.5,
1.75, 2.0 surfaces using a quadratic model consisting of the fourteen magnetic
p.c.'s which were selected in the last section. The RMSE in mm is obtained from
the rough approximation derived earlier.

As expected, the recovery improves as we move from the inner ¢ = 1.25
surface towards the outer ¢ = 2.0 surface, verifying the fact that the external
magnetic measurements are more suited to predicting ¢ nearer the plasma bound-
ary than far inside the plasma. Also the errors in p; 5 and p; 75 are not quoted in
results from here on, since they more or less linearly interpolate between those
of P1.25 and P2.0-

From the given baseline of 14 magnetic measurement p.c.'s we add the eight
interferometry ( [ n.dl) signals and obtain little improvement in recovery — this is
as it should be since these carry no information on the poloidal field by themselves.
They are, however, correlated with the size of the plasma and thus including them
as predictors gives a small ~ 1% decrease in percentage error for the p as shown
on table 4.

Table 3: Recovery of p with 14 magnetic p.c.’s (1% noise)

Variable | RMSE | Adj. R? | % Error | RMSE(mm)
pr2s | 0.029 | 0.9731 | 16.4 14.8
pis | 0.016 | 0.9839 | 12.7 7.3
pizs | 0.009 | 0.9908 | 9.6 4.0
pro | 0.006 | 0.9941 | 7.7 2.4
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Table 4: Recovery of p with 14 magnetic p.c.’s (1% noise) + 8 [n.dl (2%
noise)

Variable | RMSE | Adj. R? | % Error | Error(mm)
pr2s | 0.027 | 0.0766 | 153 13.8
P15 0.016 | 0.9858 11.9 6.8
P1.75 0.009 | 0.9915 9.2 3.8
p2o | 0.006 | 0.0947 | 7.3 2.3

We now add the [n B -dl one by one and plot the recovery error versus
number of channels added, to assess the effectiveness of the polarimetry mea-
surements in improving the recovery (fig. 6).

Figure 6:

p recovery error versus polarimetry channels added
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The improvement in recovery is minimal for channels 7 and 8, which corre-
spond to V2 and V3 on fig. 3. These are grazing channels which generally sample
the outer portion of the plasma, and whose information is already contained in
the external magnetic measurements. This leads us to conclude that only the

first six polarimetry signals are of interest in our study — these correspond to
channels H1-H5 and V1 on fig. 3.
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Figure 7:

Log10 of eigenvalue magnitude versus p.c. number
for line integral data
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To investigate possible redundancy in the measurements as was found for the
magnetic data earlier, we carry out a p.c.a. on the line integral data consisting of
the eight [ n.dl and the six chosen J neB - dl. The plot of the eigenvalues of the
correlation matrix (fig. 7) does indeed exhibit a fall-off of eigenvalue magnitude
with increasing p.c. number, indicating that the measurements are correlated, but
the least significant p.c. still has an eigenvalue of 0.001 (equivalent to a noise
level of 3%) and cannot be discarded. The p.c.a. approach is thus unnecessary
since we cannot reduce the number of predictors — we must include all fourteen
line integrals.

13 Noise analysis

To examine the sensitivity of the polarimetry measurements in the presence of
noise, a series of regressions were performed for a model of fourteen magnetic
measurement p.c.’s, eight polarimetry line integrals (with an assumed 2% error
[6]) and the six polarimetry signals, for absolute errors of 0.0-1.2°. Note that it is
appropriate to add absolute (as opposed to percentage) errors to the polarimetry
signals, since in reality the factor limiting the accuracy of the measurement will
be the fixed finite maximum resolution of the polarimeter. Fig. 8 details recovery
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Figure 8:

p error vs. polarimetry measurement noise(deg)
(14 p.c. + 8 ndl baseline)
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error of p; 5 and py o versus error in degrees in [ n.B - dl, where the errors are
uniformly distributed between =+ the quoted error level.

The recovery shows reasonable robustness — the vertical reference line shows
the maximum tolerance of 0.2° in the measurement of rotation angle on a system
developed at University College Cork for the RFX experiment in Padua. The
horizontal lines mark the recovery error for p; 55 and p, o with the baseline model
consisting of the 14 magnetic measurement p.c.'s only. At 0.2°, most of the
gains made by adding the polarimetry measurements are still intact. This seems
to indicate that the accuracy required for the diagnostic to significantly improve
FP recovery of g is easily attainable when judged against the quoted tolerance
of the existing RFX system.

14 Error conversion factors

Although we add absolute errors to the Faraday rotation angles, it is of interest to
look at the percentage errors in the signals for a given absolute error in degrees.

Table 5 shows the conversion factor between the two for each channel, where
a is the maximum absolute angular error in units of 0.1° and I, is the plasma

current in MA. Note that % error = rsrtns er;“c:r x 100 and for a variable uniformly
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Table 5: Percentage error to absolute degrees error conversion factors

Channel | Conversion
factor

HI | 1.6 x a/I,
H2 1. 7cafl;
H3 1.8 all,
H4 2.0°%-a/1;
H5 2 xalls
V1 1.2 X afl,
V2 2.7 x afL;
V3 T X all,

distributed on the interval [-a,a], the rms error is I

Thus a maximum error of 0.1° typically represents a 2% measurement error
for a 1IMA plasma current.

15 Recovery of 3,4, i and g cn axis.

As an additional test we have investigated the improvement in By, I; and gayi.
recovery using the polarimetry measurements since these parameters are closely
linked to the poloidal magnetic field . Table 6 shows summary statistics for
the three parameters. The rather wide range of gayis values (qaxis, max/Gaxis, min =
1.23/.34 = 3.6) is a consequence of the variation in ; (}; max/li, min = 1.96/.77 =
2.5) and plasma area (which covered the range 0.9 < 4 < 1.5m?, thus A ax/Apin =
1.5/0.9 = 1.66). Since the plasma current is fixed at 1 MA, the area deter-
mines the average current density: < j >= 1/Area (MA m~2) and for a fixed
B: = 2.5 T (and circular flux surfaces) we have guxis o< 1/jaxis- As ; is essentially
a peaking factor for the current density profile we see that j.,is and hence gaxis
vary with both < j > and [;.

Using the same model as in the previous analysis of py, the error versus noise
added to the [n.B - dl signals is plotted for B, and [; in fig. 9.

Table 6: Summary statistics for Bpol, i and gaxis
Variable | Mean | Std. Dev. | Min | Max
Qaxis 0.78 0.22 0.34 | 1.23
L 1.28 0.22 0.77 | 1.96
Bow | 114 | 053 |0.01]2.19
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Figure 9:

£ and li error vs. polarimetry measurement noise(deg)

(14 p.c. + 8 ndl baseline)
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Table 7: Recovery of g.4. for various models
Model details (bracket figures = noise levels) | RMSE | Adj. R? | % error
14 p.c.(1%) + 8 n.dl (2%) 0.034 | 0.9763 15.4
14 p.c.(1%) + 8 n.dl (2%) + 6 n.B)dl(0.0°) | 0.019 | 0.9929 8.4
14 p.c.(1%) + 8 n.dl (2%) + 6 n.B)dl(0.1°) | 0.020 | 0.9917 9.1
14 p.c.(1%) + 8 n.dl (2%) + 6 n.Bydl(0.2°) | 0.023 | 0.9896 10.2
14 p.c.(1%) + 8 n.dl (2%) + 6 [ n.B)dl(0.6°) | 0.029 | 0.9820 13.4
14 p.c.(1%) + 8[ n.dl (2%) + 6 [ n.Bydl(1.0°) | 0.032 | 0.9793 144
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Bpo1 shows hardly any improvement, while ; is considerably better determined.
These results are consistent with the fact that 3, represents the average plasma
pressure, and is independent of the current profile, whereas /; is a moment of the
current profile, and is hence determined by it.

The results for gayis are presented in table 7. The baseline external magnetic
measurements model yields a rmse value of 0.034. This error level is reduced
by a factor of 1.8 by adding the polarimetry measurements, bringing the rms
error down to 0.019 with no signal noise. With the realistic figure of 0.2° added
noise, the error increases to 0.023 giving an error reduction factor of 1.5, which
is similar to the improvement gained for /; and py.

The reader may ask why the recovery of the position of the ¢ = 1 surface was
not attempted. Now experiment indicates that if the ¢ = 1 surface is present,
the g profile tends to be extremely flat inside it, i.e. guxis — 1 < 1. Consider the
following error analysis for a parabolic current profile in cylindrical geometry:

7(p) = Jaxis(1 = p*)  and f(p)=/opjdA/Ip=2p2(1—pz/2)

Using ¢ = 7B,/ RB,, we readily find that

ov_alp) 1
dle) = Qoxis 1 — p?/2

p(d) = vV2y/1-1/4

leading to

Differentiating we find

dg dp dg
o) —_

dp = T e
SRV N ey P 24(3-1)
Thus for § — 1 < 1 the position of the § surface becomes indeterminable for

finite d §. For the best recovery achieved for gu.is above, i.e. rmse = 0.02, this
error analysis indicates that for dp/p < 1 we require g — 1 > 0.01.

16 Minimal p.c. model

So far, the models used in regressions on the database have been very large: 14
p.c.'s and 14 line integrals amount to 435 individual fitting parameters. We now
attempt to reduce this model to a minimal size by cutting down the number
of magnetic p.c.’s. All eight [n.dl measurements must be included because
decoupling B)| from the J n.B -dl is aided by all available information on the
density profile provided by the eight interferometry signals.

To determine the appropriate minimum number, the rms recovery error of
several geometric parameters in the database was examined. Table 8 contains
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Table 8: Table of rmse of geometric parameters

# P.-c. 's bver/ahor Rgeo deo Ztop Rin Ruut
7 0.060 20 13 33|16 30
8 0.058 18 11 321 13 29
9 0.051 9 4 17 3 20
10 0.013 1 3 14 3 2
11 0.012 1 3 14 3 2
12 0.010 1 3 13 . 2

Table 9: Recovery of gaxis for various models — 10 p.c. baseline
Model details (bracket figures = noise levels) | RMSE | Adj. R? [ % error
10 p.c.(1%) + 8 n.dl (2%) 0.038 | 0.9701 | 17.3

10 p.c.(1%) + 8 n.dl (2%) + 6 n.B;dI(0.0°) | 0.022 | 0.9900 | 10.0
10 p.c.(1%) + 8/ nedl (2%) + 6/ n Byd1(0.1°) | 0.023 | 0.9890 | 10.5
1%) + 8 n.dl (2%) + 6 [ n.Bydl(0.2°) | 0.025 | 0.9868 | 11.5
1 )
1 )

10 p.c.( )
10 p.c.(1%) + 8 n.dl (2%) + 6 [ n.Bydl(0.6°) | 0.032 | 0.9796 | 14.3
10 p.c.(1%) + 8 n.dl (2%) + 6 [ n.Bydl(1.0°) | 0.034 | 0.9760 | 15.5

the relevant figures for these, where b,.;/ap.: is the elongation (dimensionless)
and the remainder are in mm.

It appears that a minimum of 10 p.c.'s is required to reproduce the accuracy
obtained in [2] using 12 p.c.’s from the standard FP database containing all 4
categories (inner & outer limiter, lower & upper diverter). We now redo the
earlier regressions using this reduced model and examine any deterioration in the
recovery as a result of narrowing the model. (The results for g, are again
presented as a table.)

For pl,zg and p, o (fig. 10), the reduced model results in a deterioration in the
recovery error by a factor of roughly 1.3; I; (fig. 11) and gaxis (table 9) display
similar behaviour while 3, remains practically unaffected. The error reduction
factor resulting in adding the line integral signals to the baseline magnetic p.c.
model remains more or less the same, (approximately 1.5-1.6), indicating that
the more restricted magnetics model does not affect the predictive value of the
polarimetry measurements.
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Fig. 10
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17 Discussion and Conclusions

The simulated polarimetry measurements strongly reduce the uncertainties in
radial position of inner g surfaces (by a factor of ~ 1.6) and the error in [; in the
database. The recovery of the axis q value benefits similarly from the addition
of the fneB“dl.

The recovery shows reasonable robustness in the presence of signal noise.
Based on the quoted maximum tolerance of the system currently in use on RFX
(0.2°), the angular resolution required to make the diagnostic useful seems to be
easily attainable.

The rather accurate determination of the q surfaces, and, in particular, the
small error in guy (rmse & 0.02) must be treated with some caution, since this
will be in part due to the restrictions imposed on the current density profiles
used in generating the database. In the case of the ASDEX Upgrade equilibrium
database (1990-1994) two independent shape parameters were used (see the
Database Details section above).

The advantages of using FP for the interpretation of polarimetry data be-
come apparent when we examine the analytic expressions for the evolution of
the polarization state when plasma birefringence is considered — they are highly
complex, but since they are essentially a known contribution and can be included
in the simulated polarimetry measurements, FP can account for the effect with
the same procedure as is used here in the case of pure Faraday rotation (the
effects of birefringence were not anticipated at the time the database used here
was generated).

The regression models used in this work are rather large, containing 435 and
325 terms for the models with 14 and 10 magnetic p.c.'s, respectively. It would
be desirable to reduce this furthur, and one promising avenue is the adoption of
a neural network approach to this identification problem.
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