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Abstract

A radial hydrodynamic model is used to investigate the radiative thermal in-
stability in the scrape-off layer by applying a linear stability analysis of existing
equilibrium states. Phase space trajectories are analyzed to derive conditions of
their existence and bifurcation. Equilibrium profiles are calculated for the cases of
homogeneous plasma temperature, plasma density and self-consistency. Unstable
perturbations, localized in the scrape-off layer, may lead to a strongly radiating
detached plasma belt.
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1 Introduction

The global stability and confinement of a tokamak plasma are significantly influenced
by the boundary plasma parameters. The onset of density disruptions, which limit the
maximum plasma density, is triggered by impurity radiation in the edge plasma [1], [2].
Increasing the electron density increases energy loss in the boundary, where radiative
cooling is an essential loss mechanism. If the plasma density reaches a threshold, the
radiative condensation thermal instability is excited and a poloidally asymmetric Marfe
appears [3] - [6]. After a time of about 100 ms the Marfe decays and the radiation comes
from a poloidally symmetric shell around the plasma edge [1]. Above a second density
threshold the temperature in the SOL decreases due to the onset of the radiative thermal
instability (RTT). This detached plasma state is unstable to magnetic perturbations, and
after a series of small disruptions the tokamak discharge undergoes a terminal disruption.
The RTI was first analyzed in the frame of a simple model in [3]. As the only loss
mechanism, this model considers radiation described by a step function profile, neglecting
the effects of neutral particles and limiter losses. When the radiation loss is equal to the
input power, the equilibrium state is marginally stable. A model which considers the
neutral particle dynamics more correctly was first presented in [7].

In this paper a one-dimensional model [8] is used to investigate the effect of neutral
particles, of heating and loss processes on the plasma equilibrium state with respect to
the existence of critical parameters and the RTI in SOL plasmas. The dynamics of the
plasma and neutral particles is described by a consistent set of hydrodynamic equations
averaged along the magnetic field lines. Tonization, charge exchange, plasma particle and
energy losses to the limiter, neutral particle recycling at the limiter and radiative cooling
of the edge plasma by carbon impurity ions are taken into consideration (see section 2).

The stationary problem is investigated in section 3. The goal is to compute profiles of
densities, temperature and their fluxes for existing equilibrium states. An existence theo-
rem is formulated which implies that existence domains in the phase space are limited by
quasi-singular points that are characterized by critical quantities (section 3.1). Existence
conditions for equilibrium states are investigated by analyzing phase space trajectories,
and profiles are calculated, both in different approaches: homogeneous temperature (sect.
3.2), homogeneous density (sect. 3.3), linearized solution (sect. 3.4), numerical solution
(sect. 3.5). A change of the parameters of the system may lead to bifurcation which is
the essential mechanism that disrupts existing equilbrium states.

The RTT is studied in section 4 by applying a linear stability analysis. Linearizing the
MHD equations, we find unstable perturbations, localized in the SOL, which lead to a
strongly radiating detached plasma belt. The effect of the energy input and the limiter
losses on the RTT are discussed.




2 Model Equations

Averaging the MHD equations over the magnetic field lines and taking into account the
boundary conditions at the limiter plates z =0 and =z = L,

v(z2=0)=—u,; wlz=L)=1u,,
PN||(Z = 0) = ans,FN”(z = L) = -—ans, (1)
FT”(Z = U) - —6TTIUST, FT||(Z = L) = 6Tm?5T.

we describe the motion of the plasma and neutral particles perpendicular to the magnetic
field by

om + 0.1 = ki(T)nN — 0n/7,(T), (2)

3£N + ax].—‘NJ_ = —k,'(TI)'i'lf\{v + G'Rn/‘rl (T), (3)

83nT + 8,Tr1 = H(T) — Qr(T,En) — ki(T)nNR, — 8T +4(T), (4)
1

Lol = —Dl(an)aa:na I'nvi=-— a:ct’.fjva Fry = _KJ_(n~T)aIT- (5)

2kan
H(T) := o(T)E?, where z and z are the coordinates perpendicular and parallel to the
magnetic field, v, Iy, 'y and vs = /2T /m; are the plasma velocity, neutral particle flux,
the heat flux of the plasma parallel to the magnetic field, and ion sound velocity, respec-
tively; R is the recycling coefficient at the limiter and 67 ~ 4;n, (I',,1), T, (I'r1), N, (I'ny)
are the plasma density, plasma temperature, neutral particle density with their respective
perpendicular anomalous fluxes included in parentheses; D, and k; are the coefficients of
the perpendicular anomalous plasma diffusion and heat conduction, o = 0o7%/? is the clas-
sical electrical conductivity; k; and k., are the rate coeflicients for ionization and charge
exchange and E is the toroidalelectric field of the tokamak; R, = 13.6eV. 7, := B L /v,
is the lifetime of the plasma (m = 1) in the SOL and its energy (m = 2) due to stream-
ing along the field lines to the limiter (4 = 1/2,8; = 1/267, L - connection length);
T :=r1—7,, T, is the separatrix radius, and § = 6(z) is the Heaviside function. 0, , denote
the partial derivates with respect to ¢, z.

For the cooling rate Qi we use the analytical expression of [7], [13] which takes espe-
cially charge exchange processes between carbon ions and atomic hydrogen into consider-

ation:

Qr:=n*& G(T,&) [W/em?], (6)

G = A(T - Ty)e”BT-1) (7)
A= 10—’26(3'16—0.024(111.'5:\'4*11)2 F 07). B = 0.66—7.810"4 (In€n+14)%4 + 0.055

T in €V with 5 eV < T <50 eV, nin em™3, T} = 4.4eV.&; = n./n, where n. is the mean

carbon ion density.




We introduce the 6-dimensional vector function #(z.t) which is composed by subse-

quent pairs of scalars A followed by their respective fluxes 'y (in the following ” L “ will
be omitted) for A =n, T, N:

7= (n,La. T.T7, N, Tn)", (8)
The system of equations (2)-(4) can then be written in vector notation as
(4o, + E0.)-§ = T, (9)

where A(#) is a 6 x 6 matrix function with the only non-vanishing elements A;; = Ay =
1, A3y = 3ys, A3z = 3y, and E is the identity matrix. The vector function f(a: ) contains
the remaining rhs terms of eqs. (2) - (4). We consider initial value problems (IVP) and
boundary value problems (BVP) to eq. (9) which represents a system of non-linear first-
order partial differential equations.

3 Equilibrium: Critical Parameters and Bifurcation

3.1 General

We investigate steady-state solutions (9; = 0) to the system of equations (9) on the domain
X = [z.,z,] (z, - position in the central plasma, z,, - distance from the separatrix, located
at ¢ = 0, to the wall) which results in the equation

—

Oy = f (10)
to be solved. The equations for the fluxes T'4 (5) are balance equations
0Ty = Hy — Ly (11)
with source (H4) and loss (L4) terms, which can be integrated formally:

Mi(z) = T% + 2/ dz' Ta(Hy — La). (12)

Scalars and fluxes at a position zo are denoted by Ag := A(zo),T 40 := I'a(z0). Our
treatment can be simplified as follows. For the case both of complete recycling at the
limiter (R = 1) and at the wall,

I, + I'n =0, (13)

the system of equations (10) contains a first integral
NT = ¢— an? (14)

with @ := m;k,D/2 and the constant ¢ which is determined by initial or boundary

conditions. Thus the neutrals can be completely eliminated from our treatment. i.e. the
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number of variables can be reduced to only 4 variables (A — n,T), and the boundary
value of the neutral particle density can be considered as a parameter.

We consider IVP and BVP to eq. (10). Suppose that the function f?and the Jacobian
matrix jf = af'/ag' are continous on X. Then there exists a unique solution of the IVP
for (11) which can be constructed by means of Euler polygons. The goal of this treatment
is to calculate profiles (z) of existing equilibrium states for BVP. To ensure uniqueness
for the solution of BVP, one can make use of the property of the system (10) to be quasi-
monotonically [9], [10]. To find conditions under which equilibrium states exist, we start
with an ezistence theorem [7]: An equilibrium state exists if the following inequalities are
fulfilled:

I >0, A>0VzelX (15)

These conditions restrict physically possible solution manifolds to be contained in limited
existence domains in the phase space S := {y}. We analyze phase space trajectories in S
in order to derive existence conditions for the parameters of the system (10) p € P (P is
the parameter space) which should also contain remaining boundary values.

A point 3 € S is said to be quasi-singular if it is an element of the hypersurface
S; = {7 |fi = 0} C S, where f; is the ith component of f. The cases of equality in (15)
are related to conditions f; = 0. We define $(6-™ := N\™ S, where m is the total number
of the hypersurfaces S;. If m = 6, S(® is identical with the singular point:

—

SO, fi®) = 0. (16)

7

do =

The reason to introduce the concept of quasi-singularity is that quasi-singular points limit
existence domains in S . Therefore, we have especially to analyze phase space portraits in
the vicinity of quasi-singular points and look for conditions under which these portraits
are changed when the parameter vector p'is changed. Consider, for instance, a contineous
change of the 7 along a curve C, in P. When the phase space portrait gets restructured
qualitatively in passing through certain points on C,, these points are called its bifurcation
points, while the associated parameter values px bifurcation values [11]. Because this
analysis is a complicated task, we consider simplified cases in the next sections.

The conditions (14) suggest that (A,I'}) phase space representations be considered.
We investigate IVP for the two domains z < 0 (I) and z > 0 (II) separately. We focus
our attention on the second domain (SOL), because the first one is a special case of it.
Before presenting numerically calculated profiles for the whole domain X in sect. 3.5, we
consider special cases in sects. 3.2 - 3.4. As far as possible, we apply analytical methods
and consider also solutions on the domain Xy := (—o0,00) 2 X. Bifurcation turns out to
be the essential mechanism to disrupt equilibrium states with changing parameter p. Let
us emphasize that our analysis is restricted up to now to the spatial equilibrium problem

only (to the temporal problem see sect. 4).




3.2 Homogenous temperature

For the case that T' is assumed to be homogenous, eq. (11) can easily be integrated.
starting at the lhs of each domain (finite central position z, separatrix at z, = 0):

I = (- - 4, (17)
o pr:=cla forzx <0 (1)
he { prr = ¢éfa for z > 0 (II), (18)
Ap:= (n?—p)?* -T2 0 (1
A = I (n.:g #)2 ~,;u orr <0 (I) (16)
Agr:i=(ni — p)* -T7, for z >0 (II),

&:=c—T/(kir),Ty := T/\/Dak;[2T.
Replacing = by 7 := z1/Dak; /2T /D, one can integrate I, = —dn/dz by means of eq.

(17) with the result that & as a function of n can be expressed analytically in terms of
the elliptic integral of the first kind F(¢,m):

i(n) = — ["dn' [P(n') =

arcsin( n ) ,u+\/£_§
Vie+vVAa ‘u—=vVA

The inverse function n(Z) can be expressed by the elliptic Jacobi function sn ( u— VAZ, m)
with the quarter-period K(m) = F (%,m).

As phase space representation we consider I'? as a function of n? in dependence of the
parameters p, 'y ) according to egs. (17) - (19). The quantities used in the discussion

1

SE S
p— VA

. (20)

- are normalized as follows:

B v, Lo gy = f‘n(c_s)/ng’a,n —nfng g, p— p/nd A — An?,. (21)

I'2 has a minimum at the point (x,—A) which is below the n? axis if A > 0. The
function I'? then has the two roots n?, = p +/A. Fig. 1, where this dependence is
displayed for the domain I for different parameters p; (which are always positive) and
', shows that in the region 0 < n® < 1 equilibrium states always exist. This means
that for an arbitrary parameter pu; each value of the density at the separatrix can be
realized with suitably chosen initial values with the particle flux following from eq. (17).
These values will be used as the initial values for domain II. Density profiles for domain I
calculated by means of eq. (20) are shown in Fig. 2 for vanishing neutral particle density
and different particle fluxes I',,.. For the case I',, =0 (A; =0, m=1, z, = —o0) we
obtain the analytic solution

arcth n,
== th o =] = ey
n Vi (@ —2)] , a g (

o
(S}

=J




The phase space representation for domain II (SOL) is shown in Fig. 3 for I, = 1

and for parameters ¢ = —1...1 which may change from negative to positive values. An '
equilibrium state exists for the case that A < 0. For A > 0 existence conditions become
more complicated. In order to investigate them, we proceed to analyze the parameter
space with respect to existence. The two remaining parameters u, I, are displayved in
Fig. 4. Above the curve A = 0 there is existence for 0 < n2 < 1. For A > 0 there are
also possible phase trajectories for n} < n? < 1, where n? = y 4+ v/A is the larger of the
two zeros (see Fig. 3). The existence domain becomes larger and is extended to areas
above the curves where n} becomes equal to a certain value ¢y (Fig. 4). In the sense
of the definition introduced in the foregoing section, A = 0, n? = ¢; can be understood
as bifurcation lines that divide the parameter subspace into an existing and non-existing
region. Phase trajectories may thus exist from n? = 1 to ¢, where I'Z = 0 with a curve
parameter z = z19 which follows from eq. (20):

210(4Thg) = z(y/eo) — (1) (23)

This means that for a given parameter there is a maximum extension z,, of the SOL such
that an equilibrium state does not exist for z,, > z19. This is demonstrated in Fig. 5,
where contour plots z1(y, I'2,) = 7,0 for different 2,4 values are displayed. The existence
region is above the given curve. z; as a function of the parameters is shown in Fig. 6. The
used parameter subspace is divided into existing and nonexisting regions by a bifurcation
surface. Density profiles that realize existence are shown in Fig. 7. Special analytical
solutions exist for the case z (\/c_g) = 00, which is connected with K = oo,(m = 1) of

the elliptic Jacobi function:
/2 arcshy/2
lir] i1 (24)

sh [\/2|un|(:c+a2)]’ ’ v/ 2|11l

for p;; < 0 and

arccth (\ﬁ%ﬁ) (25)

VHEIT

for purr > 0, where n;, needed for the coupling with the solution for domain I, must be

n = Jurcth[\/ur(z +as)], aa =

determined for egs. (24) and (25) from the relations Ajj(n) = p3; and Ajp(n,) = 0,
respectively.

Finally, let us consider how the neutrals act. Eq. (14) shows that ¢ increases with
increasing neutral particle density. With otherwise constant parameters, an increase of p
may lead to arriving at the boundary of existence with susequent bifurcation (see Figs.
4, 5). Thus, the neutrals force bifurcation and, in this sense, they destabilize existing

equilibrium states.




3.3 Homogeneous plasma density

Next n is considered as a constant parameter. Integrating (11) yields
5 n .
I3 =C—2¢ |2 (- 02 ) T/ - cynR,Si(T) ~ £n*S, (T, ) (26)

with 8 := 6oF?, 1y := ﬁQL\/TT/?., C being an integration constant determined by the
boundary conditions, and cy := ¢— an?. The functions S; ,, describing ionization and ra-
diation losses, respectively, are given by the following expressions, which can subsequently
be approximated:

Sl T) e ]dT @ =3 N [ %e:cp(—-Ry/T) +7erf (@)] : (27)

ST, = [ dT Q(T,en) = — 4

er f(z) denotes the error function. These approximations presuppose the following sim-

14 B(T — Ti)] exp|-B(T — T)). (28)

plifying assumptions to be valid:

ki(T) = ki %—exp(—Ry/T), Env = const (29)
y

with kjp = 0.73%x1078¢m?/s. To discuss possible equilibrium states, we focus our attention
on the SOL domain by assuming the initial values at the separatrix 7,7, to be given.
The integration constant C in eq. (27) is then determined by the condition I'r(T}) = Iz

5
C =5, +2¢ |5 (Bo— =) T2 - cxnR,S(T,) — €S, (T2 blrer)|  (30)
0
Integrating I'r = —xdT'/dz leads to

T
2(T) = —n/ dT" [T (T"). (31)

In the following, we use the normalized quantities

n, N T i k; I L r Lr
—_ — k= —' L -5 — —
1012 /em3’ TV T s em’ T (MW/108cm?)’

n, N —

(32)

and the parameters K = nD, D = 10%'em?/s, & = 0.1, By = 0.

Figs. 8 a, b show phase space representations (7',T'4%) for the initial values at the
separatrix, Ts = 50, I'r; = 1 and L = 3500, with the plasma density n as parameter for
two different separatrix densities of the neutrals, N, = 10~* (Fig. 8a) and N, = 10~2 (Fig.
8b). As already pointed out for the case of constant temperature, the neutrals destabilize
existing equilibrium states. For the last (dotted) curve of Fig. 8b we show in Fig. 9 how

the different loss processes contribute to the total one. Over the whole scrape-off layer the
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ionization loss is negligible. For low temperatures the radiation loss becomes comparable
to the energy loss due to free streaming along the field lines, but for temperatures below
16 eV no equilibrium state exists.

To estimate existence criteria, the situation here is similar to that of sect. 3.2: Figs. 8a,
b show that there are possible equilibrium states for temperatures below the temperature
at the separatrix until the existence conditions (14) do not hold any more. Considering
for otherwise fixed parameters the dependence on the plasma density n. there is a critical
density n; with the zero T7(n;) = 0 such that there is no equilibrium state for densities
above it (compare Figs. 8 with Fig. 3). This also limits the extension of the scrape-off
layer to down to a critical one (cp. eq. (23)).

Fig. 10 shows the existence diagram (n,T), where the zeros Ti(n) for different sep-
aratrix densities are plotted. For neutral particle densities larger than 1072 the lowest
temperature of 5 eV cannot be attained. With increasing neutral particle density at the
separatrix, the existing domain, which is above the respective curve, is diminished. Fig.
11 shows temperature profiles for Ny = 107 with different n for parameters that allow
the temperature of 5 eV to be attained (the remaining parameters are those of Fig. 10).

3.4 Linearized solution

In the foregoing sections phase space representations on the hypersurfaces T' = const,n =
const were studied. Here we apply the qualitative theory of dynamical systems by ana-
lyzing phase trajectories in the vicinity of singular solutions (see e.g. [12]) for equilibrium
states. This restricts the variety of IVP and BVP to those whose phase space trajectories
attain singular points. But bifurcation becomes more clearly.

Introducing the variable E:: ¥ — Yo we linearize eq. (10) in a vicinity of gp:

0:6 = Jy(io) - €. (33)
where J} b Bffag' is the Jacobian matrix of the system (10). This equation can be

used to investigate phase portraits in the vicinity of yp. We consider the simplest case,
when this point is the singular point of eq. (10), 5o = ¥° (16). Then (33) represents a
homogeneous system of linear differential equations with constant coefficients that can
easily be solved with the ansatz E ~ exp(Az). The eigenvalues \; are the roots of the
characteristic equation

det (J; — AE) = 0, (34)
where det denotes the determinant.

The solution of the equation for the singular points (16) results in

R=§; 1% =0 a"=0 BT =D (35)
We obtain four roots of the characteristic equation (34) which are different from 0:

A2 = :f:\/—cl/D (36)
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with
€j = Alc,-(fl“o):’\-’0 - 1/n(T°) (37)

and
A4 =2\ —cfk (38)

with ¢; := 0H/OT |r=70. N°is determined by eq. (14). If we assume ¢, = 0, the remaining
eigenvalues (36) are either real (a) (¢; < 0) or imaginary (b) (¢; > 0) with different sign.
For the first case (a) the phase portrait for (n,0d;n) is a saddle point, for the latter (b) it
1s a vortex. The phase portrait is changed from a saddle point to a vortex for

=0 & k(T (TN =1. (39)

This results in a condition for the constant c¢. Any change of the parameter vector p passing
through the surface ¢; = 0 restructs qualitatively the phase portrait, i.e. bifurcation
occurs. As mentioned above, this point in the parameter space is called the bifurcation
point with the associated bifurcation values p*. Only for the first case (a) BVP can be
solvable. If there are no neutrals only the first case (a) appears, i.e. the neutrals act
destabilizing which is again the above obtained result. To relate this result with that of

sect. 3.2, leads to Ajr = pip, pir = aki(To)/(aTo). So bifurcation occurs at ury = 0
which is identical with A;; = 0.

3.5 Numerical results

The analysises of the foregoing sections are the starting point for studying the numerical
solution of BVP to the system of equations (10). For the numerical solution we consider
the whole domain X = [z, z,] without dividing it into two parts. So the rhs f becomes
z-dependent. We suppose that the boundary conditions are of the form: fluxes I'4 given
left (at z = z.), scalars A given right (at z = z,,):

I‘n(mc) = an I‘T(mc) = 1-‘Tc-: n(mw) = Ny, N(mw) = Arw-n T(mw) =Ty. (40)

Numerically calculated profiles are displayed in Fig. 12. They clearly demonstrate the
losses due to the limiter and the fact that the radiation density of the impurities is localized
in the scrape-off layer. To demonstrate existence according to eqs. (14) and relate it to
the above analysis (Figs. 1, 3), phase space representations of these solutions are shown
in Fig. 13. They prove the above existence analysis to be useful.

The maximum of the radiation is shifted towards the wall with increasing I'r. and
connection length L (this means increasing power input and decreasing limiter losses):
see Figs. 15. These profiles will be used as the equilibrium state for the stability analysis
in the next section.
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4 Stability Analysis

We proceed to investigate the stability property of an existing and unique equilibrium
state 7o(z) by means of a linear analysis. The expansion of the system of equations (9)
at gp results in

[A@@0)d: + Eo.|-87 = Jy(do) - 67 (41)

with 67 := § — Jo. We look for absolute instabilities, and try to solve this equation with
the ansatz 6y ~ exp(yt), which leads to

.67 = [Jy(#) — vA(Go)] - 7. (42)
To solve the eigenvalue problem (42), a BVP is formulated with boundary conditions which
describe perturbations that may appear in the SOL: Positive eigenvalues 4 = const > 0
with vanishing perturbed fluxes in the plasma center and a sufficiently small perturbation
of the remaining quantities at the wall are assumed.

The reason for the excitation of the RTI is the existence of a part of the radiation
profile which decreases with increasing temperature (9Qr /0T < 0). The dependencies of
the radiation discussed at the end of the foregoing section are also reflected in the location
of the perturbations. This is shown in Figs. 14 for three different equilibrium states. The
perturbations lead to the temporal development of the profiles which is shown in Figs.
15. The lowering of the temperature and the enhancement of the densities in the plasma
edge result in a strong increase of the radiation. This shows that the RTI can lead to the
formation of a strongly radiating, cold plasma belt.

However, only the onset of these unstable solutions can be described within the frame
of the linear approach. But a small change of the phase space trajectory in the vicinity
of quasi-singular points may lead to non-existence with regard to (15), which can be
understood as bifurcation.

A numerical analysis, similar to that of this paper, has been presented in [13] applying
a simple free-flight model for the neutral particles: I'y = —vn N, where vy is the velocity
of the inward streaming neutrals coming from the wall; for vx = vsy/ k;/2k.. this model is
identical with the diffusion model of (5) for T = const, R = 0. Both models can be used
to prove the sensitivity against the neutral gas description. Because we are concerned
with effects localized in the scrape-off layer, where both models lead to similar neutral

particle behaviour, we also obtain similar results.
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5 Summary

A radial hydrodynamic model in planar approximation is used to investigate the radiative
thermal instability in the scrape-off layer by applying a linear stability analysis of existing
equilibrium states.

Before the stability analysis is presented, existence conditions for equilibrium states
are investigated by analyzing trajectories in the 6-dimensional phase space S of particle
densities, temperature and their respective fluxes. An equilibrium state is represented by
a line in S with the spatial coordinate z as the curve parameter. In order to investigate
existence conditions, the concept of quasi-singularity is introduced because physically
allowed existence domains in S are limited by quasi-singular points. Therefore, it is
necessary to analyze phase space portraits in the vicinity of quasi-singular points and look
for conditions under which these portraits are changed when the parameters of the system
are changed. When the phase space portrait gets restructured qualitatively bifurcation
takes place. Whenever with changing z a quasi-singular region of the phase space 1s
attained, a change of the parameters of the system may lead to bifurcation.

Quasi-singular regions are characterized by critical quantities: limits for the density,
the temperature and the extension of the scrape-off layer. These quantities are evaluated
for simplified cases of homogeneous temperature and plasma density, respectively, and
in linear approximation. Analytical results are used wherever possible. The linearized
solution shows bifurcation in its simplest form and indicates how the neutrals act: Neutral
particles are shown to destabilize existing equilibrium states, i.e. they make existing
domains smaller with increasing neutral density. These analysis is carried out for relevant
physical tasks. How critical plasma densities in dependence of the temperature can be
- calculated and how the different loss mechanisms contribute, was shown in ref. [8]. Here
we discuss only one simple example, which shows that ionization loss over the whole
scrape-off layer is negligible, and that for low temperatures the radiation loss becomes
comparable to the energy loss due to the limiter. For the self-consistent numerical analysis
a boundary value problem is formulated whose phase tracectories attain quasi-singular
points. The numerically calculated equilibrium profiles clearly demonstrate the losses due
to the limiter and the fact that the radiation density of the impurities is localized in the
scrape-off layer with a maximum which is shifted towards the wall with increasing energy
influx and connection length.

This numerically calculated equilibrium state is investigated with regard to the ra-
diative thermal instability. To solve this eigenvalue problem, a suitably chosen boundary
value problem is formulated which describes perturbations of the densities, the tempera-
ture and their respective fluxes that may appear in the scrape-off layer. It is shown that
absolutely unstable solutions may exist. This has also been shown for other equilibrium
states than that one used here, for instance for the case that heating is neglected [8]. The
reason for the excitation of the radiative thermal instability is the branch with negative
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characteristic in the radiation rate, i.e. dQgr/dT < 0. The latter is in fact a necessary
condition for the occurance of the instability. The dependencies of the radiation on the
energy influx and the connections length, mentioned above, are also reflected in the loca-
tion of the perturbations which are also shifted towards the wall with increasing energy
influx and connection length. These absolutely unstable perturbations can lead to the for-
mation of a strongly radiating, cold, detached plasma belt. Moreover, they have an effect
on the parameters of the boundary value problem. These parameters may be changed
until bifurcation occurs. Thus bifurcation is revealed here as the essential mechanism
that disrupt the equilibrium. Bifurcation may also lead to transitions between different
eqilibrium states, e.g. L to H mode bifurcation [16].

Furthermore, bifurcation (branching, hysteresis effects) of the electron temperature in
a stable plasma can be caused by the nonlinear temperature dependence of the impurity
radiation in the SOL [14] or the ionization losses in the high recycling layer in the front
of the divertor target plates [15]. Bifurcation also occurs, for instance, in magnetic field
structures of fusions plasmas. From a more general point of view, this paper may be seen
as a fundamental treatment of bifurcation physics [17] in SOL modelling.
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Fig. 1

Phase space representation for the domain I (z < 0) : T3 as a function of n? for different
parameters (¢, Tae) : 1= (1,0), 2—(1,0.8), 3~(1,1), 4 —(1.5,0); 5 =(1.5,0.5), 6 —
(1.5,1) with dimensionless quantities (21).




Fig. 2
Density profiles for the domain I (z < 0) for 4 = 1 and different [, values with dimen-
sionless quantities (21).
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Fig. 3
Phase space representation for the domain II (z > 0): T2 as a function of (n/n,)? for

I'ne =1 and g = —1...1 with dimensionless quantities (21).
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Fig. 4
Existence diagrams for the domain I with the bifurcation lines A(g,I7,) =0, nf = 0, 0.5, 0.75
with dimensionless quantities (21). Equilibrium states may exist above the curves.
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Fig. 5

Existence diagrams for the domain II with z,¢ as the parameter with dimensionless quan-
tities (21).




Fig. 6
z, as a function of u,I'Z, with bifurcation surface with dimensionless quantities (21).
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Fig. 7
Density profiles for the domain II (z > 0) for I'n, = 1 and different y values with dimen-
sionless quantities (21).
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