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Abstract

Exact three-dimensional solutions of the magnetohydrodynamic (MHD) equa-
tions are presented. The configurations are infinitely extended along a straight
axis and have neither cylindrical nor helical symmetry. All field lines are plane
and closed around the axis. The magnetic surfaces have elliptical cross-sections

whose ellipticity along the axis is an arbitrary function.




In magnetohydrodynamic (MHD) theory plasma equilibria with pressure P,

magnetic field B and current density j must satisfy the equations

I%B = ¥P,
1= VHB, (1)
VB = [

Of particular interest are configurations which have smooth nested surfaces F'(r)=
const of constant pressure. Equations (1) imply that the B (and j) lines are
embedded in these surfaces, which are therefore also termed magnetic or flux
surfaces.

If the equilibrium is independent of at least one coordinate, Eqs. (1) can be
condensed into a single quasilinear elliptic equation [1], [2], [3], of which explicit
solutions with smooth nested flux surfaces are known. This refers to axisymmetric
toroidal solutions (no dependence on toroidal angle) [4], cylindrical configurations
(no dependence on z-coordinate) [2] and helical configurations (dependence on
helical and radial coordinates only) [5]. Many more pertinent references exist.

There is a widespread suspicion, based on general considerations (6] and nu-
merical evidence [7], that volume current configurations without these continuous
symmetries are always subject to field line chaos and regions of ergodicity (though
possibly confined to minor areas). No smooth nested flux surfaces would then ex-
ist. This was recently proved for for the special case of nonaxisymmetric toroidal
configurations with up/down mirror symmetry and purely poloidal fields [8]. The
nonexistence proof fails for straight geometry. This prompted the search for the
present solution.

There is only one case without continuous symmetries in which existence of
volume current MHD equilibria was proved. This is the case of mirror symmetry.
but this time with respect to a poloidal plane. and small plasma beta [9]. No
explicit solution, however, was given in [9], nor, to the author’s knowledge, are
any explicit three-dimensional solutions with pressure gradient cited elsewhere.

Here. for the first time, a simple explicit equilibrium configuration without
any of the three continuous symmetries mentioned is presented. It is a “straight”
configuration extending from, say, —oo < z < oo, in a Carteslan coordinate
system z,y,z. The field lines are plane curves, concentric around a straight axis
at # = y = 0. All field lines are ellipses. with half-axis ratio \ﬁl +u)/(1 —u),
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where u = u(z) 1s an arbitrary function, with u? < 1. (For u? > 1 the field lines
trace out hyperbolas.)

In detail, the magnetic field is given by

et

_Pl 1+u
Biey.2) = \/1_@"’
+ P, 1—u
By(:r,y,z) = ‘-)Cl 1—;—11:1" (2)

B.z.y,2) = 0,

where ¢ is a constant and u(z) is arbitrary. The pressure is linear in the surface

label F,
P(F) = B+ AF, (3)

and the surfaces F(z,y, z) = const themselves are determined by

_Pl 72 y‘z

¥ @y = 4c? |14+ u(z) * F—u(z)| (4)

It is elementary to check that B = (B;,B,,B.), P and F from Eqgs. (2) - (4)
satisfy Egs. (1).

In vector notation B can be represented as
B = VF xXVG(z), (5)

where (G(z) is an arbitrary function which is related to u(z) by

(ilf = cy/1 —u¥(z). (6)

From Eq. (5) it follows that B-V F = 0, which proves that the surfaces ' = const
are flux surfaces. In polar coordinates, with # = rcosf, y = rsinf, F is given

by

—P r
F = 4(.21 = [1 — u(z) cos(20)] . (

-J
~—

The constant c is related to the longitudinal current density 7. as follows
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B
= gty (8)

je =
cV1—u?
while the perpendicular current density is

Pu'z . —Pu'y

,'I — . = N 9
L 2¢(1 + u) V1 —u? o 2¢(1 —u) V1 —u? ©®)

with v’ = du/d:z.

A necessary condition for the existence of equilibria is that / = § d//B be the
same for all closed field lines on a given flux surface, I = I(F), (B = |B|, dl =
length element along B) [10]. Evaluation of I with Eqgs. (2) - (4) yields I =

4we/ Py, which is indeed a constant, not only on F' = const, but also absolutely.
for all F.

An MHD equilibrium of finite radial extent can of course be obtained by
bounding the plasma with a conducting wall at some F' = Fp.

Some examples of flux surfaces are presented in Figures (1) - (4). The z-axis 1s
in the vertical direction. The half-axes a, and a, of the ellipses are kv/1 + u and
/1T — u, respectively, where k = 2¢,/—F/P;. 1t follows that 0 < a,, a, < k2.

Figures 1 and 2 show two periodic solutions., namely u = 0.4sin z, with = €
[0, 67]. and u = 0.4 +0.2sin z, = € [7/2, 67 4 7 /4], respectively, both with & = 3.
A solution which deviates from axial symmetry only locally is shown in Figure
3, with u(z) = 0.4 — 0.8exp(—0.3z%), k = 3 and z € [-8, 8]. A quasiperiodic
fAlux surface constructed with u = 0.2(sin = + sin v/2z) is shown in Figure 4, with
k=5 and z € [0, 67).
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Fig. 3: Same as Fig. 1, u(z) = 0.4 — 0.8exp (—0.32%), z € [-8, 8].
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Fig. 4: Same as Fig. 1. u(z) = 0.2(sin z + sin V2z), z € [0, 67].
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