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Abstract

The existence of nonaxisymmetric toroidal magnetohvdrodyvnamic (MHD) equi-
libria whose magnetic field lines are closed after one poloidal turn around the
magnetic axis C is investigated analytically. Up-down symmetry of the configu-
ration with respect to the equatorial plane which contains the axis is assumed.
In principle. nonaxisymmetry is manifested in the form of a noncircular axis or
a varlation of the geometry and/or magnetic field along a circular axis. It is
proved that no equilibrium with a noncircular axis exists. For a circular axis.
nonexistence is proved if the ellipticity of the cross section varies along C. Nor is
variation of the triangularity, etc., up to the seventh Fourier mode with respect
to the poloidal angle, allowed. For variations with still higher mode numbers
nonexistence is made plausible. For the magnetic field the situation is analo-
gous. Nonaxisymmetric poloidal equilibria with equatorial mirror symmetry are
thus practically ruled out. The method of investigation is an expansion in the
distance from the magnetic axis, supported by the algebraic computer language
REDUCE. With growing order the number of constraints on the configuration

increases until the quoted results are obtained in sixth and higher orders.




I. Introduction

The existence of toroidal magnetohydrodynamic (MHD) equilibria with axisvm-
metry was established long ago. Their governing equation, the Grad-Shafranov
equation, was derived by Hain, Liist, Schliter, Grad, Rubin and Shafranov [1].
and many explicit solutions of it are known: see, for example, [2]. [3]. [4]. [3].

[6], [7]. [8]. On the other hand, it was very soon doubted, whether the MHD

equations,
JXB = VP,
j = VXxB. (1)
V:B = 0,

have solutions with smooth nested flux surfaces at all in the nonavisymmetric
toroidal case [9]. The nature of the existence problem may be regarded in various
ways.

From the Hamiltonian point of view, for example, one starts with the differ-

ential equations for magnetic field lines

dr? B! dr? B? (2)
dr3 — B3’ dr3 — B3’ -
where 7, 7 = 1, 2, 3, are arbitrary coordinates and B' are the contravariant

components of the magnetic field B. Owing to V- B = 0 they may be written
as a one-dimensional time-dependent Hamiltonian system [10], equivalent to a
two-dimensional time-independent one. Two-dimensional Hamiltonian systems
are generically nonintegrable, which for most field lines implies ergodicity and no
confinement to magnetic surfaces. This, in itself, would not be a major obstacle,
since integrable Hamiltonians exist as well, guaranteeing good magnetic surfaces.
The problem is that with V-j = 0 the current lines also constitute a Hamiltonian
system which has to be integrable as well, and its surfaces must coincide with
those of the field lines. In view of the close relation between j and B, it is quite
unclear whether these two requirements are compatible with each other [11].

From a mathematical point of view the MHD equations are non-standard in
that they have both complex and real characteristics. The theory for mixed-type
differential equations is not sufficiently developed to ascertain the conditions for
the existence of a solution.

A deeper analysis [12], [13] shows that the existence problem for Egs. (1) can

be traced back to the “magnetic differential equation”™

B-V@zB%:S. (3)




where @ is a single-valued function. [ is the arclength along B. and S is known. In
poloidal and toroidal coordinates which make the field lines straight [10] a Fourier
ansatz transforms the operator B -V into a factor proportional to Umyn = M+ N4q.
Here ¢ is the ratio of the toroidal to the poloidal magnetic fluxes, and m and n
are integer Fourier mode numbers. On all surfaces with rational ¢. i.e. for all
surfaces with closed field lines. Eq. (3) is degenerate. a,,, = 0. and an infinity of
side conditions on S have to be imposed. S ultimately corresponds to a free profile
function. e.g. the radial pressure profile. The side conditions are equivalent [12].

[14] to the more explicit, but no less daunting requirement
dl
J B

viz. the path integral I along any closed field line must be the same for all field

I = = HF)s (4)

]

lines on a given surface F of constant pressure.

These doubts on the very existence of nonaxisymmetric toroidal MHD equi-
libria have been pushed aside for years in analytical and numerical MHD studies
of nonaxisymmetric devices such as stellarators. Theoretical analysis was done
bv. for example. expansion with respect to the distance from the axis [12], [15].
[16] or some other ordering methods [17]. The convergence of such expansions
remains open. Early numerical codes, e.g. [18], simply assumed, explicitly or
implicitly, that island formation and ergodicity of field lines should be minor ef-
fects. Recently, the analytical study of ergodization and its elimination, both for
vacuum fields [19] and in plasmas [20], has regained attention. Similarly, modern
numerical MHD codes [21], down to some finite limit of resolution, are able to
cope with islands and regions of ergodicity. It is found that with properly de-
signed external coils and not too large beta values these do not affect the surfaces
of constant pressure too badly.

From a theoretical point of view, in this ambiguous situation between doubts
of existence and de facto arrangement with minor regions of ergodicity, proofs
of either existence or nonexistence of nonaxisymmetric toroidal MHD equilibria
should be enlightening even if the configurations treated are not directly related
to present-day fusion devices.

Lortz [22] has given the only proof of ezistence of nonaxisymmetric toroidal
MHD equilibria with volume currents, namely for toroidal configurations which
are mirror-svmmetric with respect to a poloidal plane and whose beta value, the
ratio of plasma pressure to magnetic field energy, is not too large. Owing to
the mirror symmetry all field lines are toroidally closed and hence ¢ is infinite.

Although this alleviates problems with resonances, the condition that all closed




field lines on a pressure surface have the same value of / remains nontrivial and
has been coped with in the proof.

Palumbo. on the other hand. was able to prove nonexistence of a (somewhat
special) class of nonaxisymmetric toroidal MHD configurations. namely so-called
1sodynamic equilibria. provided that there is a plane of symmetry in the configu-
ration [23] or that the configuration is of the stellarator type [24]. “Isodvnamic”
is defined as having magnetic fields with constant amplitude B on each magnetic
surface. Palumbo’s result was extended by Garren and Boozer [23]. who proved
that no so-called quasihelical MHD stellarator equilibria exist. “Quasihelical” is
synonymous with B being a function of a helical coordinate only, on each surface.
while B may depend there on a second coordinate as well.

Not unexpectedly. it is somewhat easier to obtain (non-)existence results for
nonaxisymmetric surface current equilibria. Recently, new explicit toroidal MHD
solutions were found [26]. They are characterized by poloidally closed field lines in
the current surface. In the case of zero torsion of their (noncircular) axis the shape
of the cross section is arbitrary. In [27] both the existence and the nonexistence
of further classes of nonaxisymmetric surface current equilibria were proved.

In the present paper we prove nonexistence of the following class of nonax-
isymmetric toroidal volume current MHD equilibria. We study configurations
which, so to speak, are complementary to those considered by Lortz [22]: the
plasma is assumed here to be up-down symmetric with respect to an equatorial
plane. All field lines close upon themselves after one poloidal turn around the
axis C of the configuration. This axis, for symmetry reasons, is assumed to lie
completely in the equatorial plane, i.e. the axis has no torsion. Its curvature
#(s), however, is an arbitrary function of the arclength s along C (excluding self-
intersection). Either x(s) is non-constant or the configuration varies in some way
or other along the axis, if it 1s a circle.

In axisymmetry many up-down symmetric solutions with poloidally closed
field lines and with finite beta are known [3], [4], [6], [8]. The simplest one has
been repeatedly obtained, e.g. by Shafranov [3].

The first aim of the present paper then is to show that if the magnetic axis of
such axisymmetric configurations is distorted from a circle into some other shape.
the plasma is unable to find a new equilibrium. We prove this proposition. We
also prove that there is no equilibrium if the circular axis is kept but the ellipticity
of the cross section along it is made to vary. If the ellipticity is also fixed, equilibria
with variable higher-order deformations might still exist. We prove that up to

the seventh order in an expansion around the axis (corresponding essentially to




keeping the first seven modes in a Fourier decomposition of the minor radius as
a function of a poloidal angle) this is again impossible. For still higher orders
nonexistence is only made plausible.

In Section II we begin with the definition of an appropriate coordinate system
and a representation of the field B which ensures the poloidal closure of the
field lines. The equilibrium equations are reduced to a system of two partial
differential equations for two unknown functions. F and G. The first equation.
in axisymmetry. corresponds to the Grad-Shafranov equation. while the second
one describes the force balance in the toroidal direction. An expansion in the
distance r from the magnetic axis is made in Section III and an outline is given
in which sequence the two coupled sets of expanded equations will be solved.
Both the expansion in r and the solution of the resulting equations are done with
the algebraic computer language REDUCE. Section IV is devoted to the solution
of a first group of four low-order equations. The ellipticity of the cross section is
found as a function of the curvature of the axis, if the latter is not a circle. In the
opposite case it is free. The next quadruple of equations is solved in Section V.
In this section the nonexistence of up-down symmetric poloidal equilibria with
noncircular axis is proved. It is also proved that poloidal equilibria with circular
axis and variable ellipticity or triangularity of the cross section along it do not
exist. In Section VI, finally, the nonexistence of poloidal equilibria with circular
axis is extended to cases with variable quadrilaterality, etc., up to heptagonality.
For variable deformations of still higher order nonexistence of an equilibrium is

made plausible. Conclusions are given in Section VIL




II. Coordinate system, closed field line config-

urations, and force balance

We consider toroidal configurations whose magnetic axis is an arbitrarv non-
intersecting plane curve C(s). s = arclength along C. t(s). n(s) and b(s) are
the tangent. normal and binormal vectors, respectively, along C. In the poloidal
planes s = const. spanned by n and b, polar coordinates r.# are defined such

that the position vector x assumes the form
x(r.f0.s) = C(s)+r[n(s)cosf + b(s)sinb] . (5)
With the Serret-Frenet formulas for plane curves.
I

t' = kn, n = —&t, (6)

where #(s) > 0 is the curvature of C and primes here denote derivation with

respect to s, the metric coefficients g;x = 2% - 2X are found to he
grr = 1. Gog — 7'2-, Gss — A? .
(7)
Gre = Grs = s = 0,
where
A = 1—k(s)rcosf . (8)
u', u?, u® stands for r, 0, s, respectively. For the determinant g of the metric tensor

one obtains

JF = miN. (9)

Before the equilibrium equations are expressed in this coordinate system a
representation of the magnetic field B is given which ensures that the field lines
are poloidally closed around the axis.

We start from the assumption (to be questioned) that there is an equilibrium
configuration with nested toroidal surfaces of constant pressure P and label them
with a scalar F' = F(r.f0,s) = const. F is periodic in § and s with periods
27 and L. respectively, where L is the circumference of the axis. According to
Egs. (1) B- VP = 0 and hence the magnetic field lines are embedded in the P =
const surfaces. We define the magnetic surfaces to coincide with the P = const
surfaces. This definition of magnetic surfaces, which does not restrict possible
configurations. is practical and removes the ambiguity of definition inherent in

cases with closed field lines.



With the assumption of flux surfaces and with the condition V -B = 0 the

magnetic field can always be written in the form [23]
B = [VFXVG], (10)

where the condition that B be a periodic function with respect to a closed poloidal

or toroidal path around the torus is satisfied by the ansatz
G = al(F)0+ 3(F)s+~(F.0.5) . (11)

Here a, 3. and ~ are arbitrary functions of F'. and 4 is periodic in f and s with
periods 27 and L. respectively. The magnetic field is manifestly tangential to the
surfaces F = const. as desired. The intersection of the surfaces F' = const and
(i = consl defines curves tangential to B. Thus, G = const at F kept constant
are the field lines. A field line is poloidally closed if it comes back to the same

value of s after an increase in 6 of 2x. This requires
a(F) = 0, (12)

a condition which has a simple interpretation: 2ra(F) is the toroidal flux through
a poloidal surface element between F and F + dF [28]. In the case of poloidally
closed field lines this flux must vanish.

The labelling of the flux surfaces F' = const is not unique. One can always
transform to another label F = F(F). It is useful to exploit this arbitrariness by
the following definition of E

i (F([v)) = 1. (13)
Altogether, omitting the tilde, we are left with the representation
G(F.,0,s) = s+~(F,0,s). (14)

If ~ is independent of 6, the field lines G = const at F = const are given by
s = const, i.e. they are plane, otherwise not.

The contravariant components of the magnetic field are obtained from
[axb]t = eHapbi/\/9, 1.k 1= r.0. s, where €' is the antisymmetric Ricci tensor
with values 0. +1, summation over repeated indices 1s implied. and ay. b; are the
covariant components of the vectors a, b. From Egs. (10) and (14) it follows that

1 0GOF 1 0GaF
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B = __1466’8_1“‘ (15)
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1 0GoF

B = ——2
NG

where the partial derivatives of G are taken at fixed F'. The covariant components
of B, B; = ¢;+ B*. are required for the current density vector j. whose components

obey the relations

. ix1 OB :
Jgg = EHT‘I‘:- bkl = rollys (16)

The covariant components of the the MHD force balance equation. finally. are

a—P

"'0Bsk '_'.S‘B[;_ - e U T

Vi Vi o (17)
+ T g of s aP

\/57]33—\/{7]3—755:0- (18)
. o QP

V9i'B' = \/4i’B - = = 0. (19)

Equations (15)-(19) can be combined into a system of two coupled partial differen-
tial equations for F'and (G. The first one is a generalization of the Grad-Shafranov
equation [1] to the special nonsymmetric case considered here, while the second
describes the toroidal force balance. We shall discuss them presently.

With dP/0r = (dP/dF)0F/dr and Egs. (15)-(16) a factor 0F/0r cancels
from Eq. (17) for the radial force balance (provided dF/dr # 0), leaving

0 (9,08, 0 (1, OF
Uar \/ﬁgar ar \\/g Or

8 0\[gr( 0 0 dP(F) :
e e o =0, 20
- ("ae 33) [\/5 ("aa as) F} tVI—gp =0 )
where
oG aG |
= . = : a1)
7= bs|, T (&)

If 7 = 0 on a field line, this line is plane, as mentioned above.

If (¢ is considered given, Eq. (20) is a quasilinear parabolic p.d.e. for F(r,8.s):
with three independent variables there are only two second-order derivatives.,
9?/9r* and the combination (¢0/d8 — 79/ds)?. The operator

L = 0d/90—70/0s . (22)

when applied to arbitrary functions A(G) which only depend on the field line
label GG, at a fixed magnetic surface F' = const, gives zero: LA(G) = A'(G) LG =
A" (cdG /00 — 10G[ds) = 0, by virtue of Egs. (21). The characteristic surfaces

[02]




[29] S of Egs. (20) are the poloidal surfaces obtained by the union of all field lines
with arbitrary F and fixed G = G = const. There are no derivatives in Eq. (20)
pointing out of S. in conformity with the poloidally closed field lines having no
mutual toroidal connection. Inside S Eq. (20) is elliptic.

In the axisymmetric case the field lines are plane. i.e. 7 = 0. and by a suitable
transformation from F to F(F) o = 1 can be achieved. In this case Eq. (20)
trnsforms to the Grad-Shafranov equation [1] with zero toroidal field.

The force balance in the # direction, Eq. (18), also leads to Eq. (20). provided
OF /00 # 0.

Finally, the toroidal force balance, Eq. (19). becomes

6F{a (gﬁﬁ aF i(gss_a_{
i o) Tan\ g o

o (,OF _ OF\ [0 [g (O _ OF\] _ 0 (g OF
90 " 95 ) \0s Vg \" 00 " "Bs)| " ar\\g or
dP OF
i - 2
SaFras - (2d)

We do not have any a priori insight regarding possible solutions of this equa-

tion. With respect to the existence of nonaxisymmetric equilibria, however. later
experience shows it to be more critical than Eq. (20).
In passing. we note that for plane field lines, but not necessarily axisymmetry.

Eq. (23) can be integrated with respect to s because it then assumes the form

a o OF\* o OF\*
[99& (\/_8 ) + Grr (_fg—%) + 2P(F)

Of course. the sum of the first two terms in the square brackets constitutes =

= 0. (24)

and Eq. (24) expresses the conservation of the total energy density along s. It
would be interesting to find out analytically whether in this rather restricted
set of geometries the pair of equations (20) (with 7 = 0) and (24) can have a
solution. Indeed. if even further restrictions on the magnetic field or geometry
are introduced. nonexistence can be proved [30].

Equations (20) and (23) are two coupled equations for the two unknown func-
tions F(r.0,s) and G(F,0.s). They constitute the basis of our investigations in

the following sections.

9




III. Expansion around the magnetic axis

In order to find out whether Eqgs. (20) and (23) are compatible. an expansion in
the distance r from the magnetic axis is made.

For this purpose boundary conditions on the axis are required. The restriction
to purely poloidal fields (no toroidal flux) implies that the toroidal magnetic field
component on axis must vanish. Furthermore, we consider only configurations

whose current density is non-singular also on axis. With [V6| = O(1/r) this leads

to
B'(r=0) =0, (25)
B(r=0) = O(1), (26)
Blr=0] =0 (27)

Equation (27) is in contrast to previous expansions of the MHD equations
around a magnetic axis [12, 15, 16]. There, B* # 0 on axis is explicitly assumed
and the analysis would break down in case of violation of this assumption.

The poloidal flux through a ribbon of size dS = L dr along the axis (length L)
isd¥, = dSn-B = Ldr B%/|V| = O(r)dr. On the other hand, one obtains from
Eqgs. (10)-(13) for this same poloidal flux [28] d¥, = —LdF. Hence. dF/dr =
O(r), so that F' is a parabolic function of r in the neighbourhood of the axis. On
the axis itself I has to be constant. If we take this arbitrary constant to be zero.

the following expansion results:

F(r.0.s) = fo(s.0)r* + f3(s,0)r° + fa(s,0)r* + ... . (28)
For GG(F,#,s) we make the straightforward ansatz

G(F,0,s) = Go(s,0) + G1(s,0)F + Ga(s,0)F* + ... . (29)

where capitals are used to indicate an expansion with respect to F'. For F. in a
second step, the series (28) has to be inserted. The ansatz (29) is only compatible
with Egs. (15) and (28) provided that

aGo ' .

5% = 0 . (30)
Equation (14) implies that v(F. 8. s) has a similar expansion to G. Indeed, Gy =
s+ 7. Gi = 7. 1 = 1.2..... Periodicity of vy implies that the functions ~;.
1 =0.1.2....and G;. 1 =1, 2..., are periodic in # and s. (Gg(#, s) is periodic in

6 but only dGg/ds is also periodic in s.

10




The pressure P(F') is likewise expanded in the form

(31)

P(F) = B+ AF+PF’+....

From Egs. (28)-(31) one obtains a series expansion in powers of r of the basic
Eqs. (20) and (23). Instead of quoting these equations by equation number the
more vivid names — but to be taken with a grain of salt — “Grad-Shafranov”
(GS) equation and “force balance™ (FB) equation (without “toroidal” preceding
it) will also be used.

It is advantageous to know in advance which quantities are determined by
which of the two equations and in which order of expansion. Letting REDUCE
do the work, one can look for f,,. G, and P with the highest indices m, n, k
which may contribute to the order rV. The results for the GS equation are

collected in Table I:

Table I: GS equation

N 1 2 3 4 D 6 7
Filfa fal|lfs H]fe fol]ls
G| Go Go| Gy G1 |Gy Go|Gs
PP PP B|P PP
M 1 2 3 4

and those for the FB equation in Table II:

Table II: FB equation

Ni1 2{3 4|5 6|7 8
B o fs|fs fs|fe fr
; Gy G| Gy Gy|Gs G
P P PP P|P P
M 1 2 3

Looking at G, and Pi shows that the equations can be grouped in pairs — indicated
in the tables by vertical bars. The pairs have been labeled with an index, M.
which shows which pairs in the two equations belong together by virtue of having
the same pair of fm. A natural procedure, consisting of four steps for each M.
to solve the equations seems to be as follows. Consider M = 1: f; is determined
— partly or fully — from the GS equation with N = 1, for Gp given. The same
applies to fs, with N = 2. Next G is determined from the FB equation with

11




N = 3. The I'B equation with N = 4, finally. either serves to determine (v
and/or to determine f;. fs, and (G; more completely and/or gives a necessary
condition to be satisfied by the configuration. Such necessarv conditions are what
will ultimately prevent the existence of solutions.

It 1s instructive to see the explicit analytical expressions for the highest-order
terms f,, and (¢, quoted schematically in Tables I and II. After some tedious but

straightforward work one obtains the two equations

0 -

d a| - i
+ [-Ji (0,s) + Ay(0. ‘)%Jr As(f. s )E] G’n} prant]

+ terms with lower order {f;}, {G:z} . ma=2 nzl, (32)
from the GS equation, and

40—0 fﬂ-!-l (Gn f ) = = QnI-Ugf‘me + Ugf:Qjm + Plfm] rm+1

17
= [
+ terms with lower order {f;}, {G:z} . g il (33)

from the FB equation. (The details of the coefficients A;, A;. and A5 in Eq. (32)
are not relevant, since these terms will not play a role; see below).

In Egs. (32) and (33) the terms with factor 7?"*! are valid for odd orders.
N = 2n + 1. only. In even orders, N = 2n + 2, the terms are a lot more involved
and need not be discussed here, except for the fact that they also depend on
(derivatives of) G,. In Eq. (32) and (33) one has m = 2n + 2 and m = 2n,
respectively. For values of m and n less than those indicated the respective terms
either do not exist or do not conform to the general expressions given.

Regarding the notation for derivatives, we use throughout the paper. for com-
pactness, both an explicit notation and the abbreviations “and ’ for 1—9 and i
respectively. The partial derivatives of course turn into total ones if there is only
one argument.

Relations (32) and (33) show that the sequence of steps envisaged above is
reasonable: the functions f,, are determined by the GS equations. in the form of
an ordinary harmonic differential equation in the poloidal angle § whose solution

is straightforward once the right-hand sides are expressed as functions of 0. The

12




functions G, are solutions of the FB equations of odd order and can be solved
by quadrature. Periodicity conditions with respect to # have to be satisfied here.
Both solution processes are also done with the help of REDUCE. It is evident.
however. that the dependence on s, the arclength along the axis, has to be found
in a more indirect way than the dependence on the poloidal angle 0.

In the following sections the quadruples of equations for consecutive Ms will

be treated one by one.

13




IV. Equations in group M =1

A. “Grad-Shafranov” equation, order \ =1

The GS equation (20) to order N =1 gives the differential equation

2/, A
— 1f, = . (2 /
ggz Tl = 3 (31)

where, by virtue of Eqgs. (21). (29). and (30).

, dGy(s
oo = oo(s) = dof ) : (35)

The function og(s) is related to the current density j§ on axis via Ja = P [évo.
The solution of Eq. (34) is

fa(0,5) = faols)+ faa(s)cos(26) , (36)
where
.
fao(s) = 4031 : (37)

oo(s) and fy,(s) are as vet undetermined. A term containing sin(2f), also with
undetermined coefficient, has been omitted in Eq. (36), i.e. this coefficient has
been made zero. Antisymmetric terms with respect to €, in F(r.f.s), would
violate the assumed up-down symmetry of the configuration.

It 1s advantageous to introduce a quantity u(s),

_fn

uls) = o’ (38)
such that
f2(0,5) = faols)[1 — u(s)cos(28)] . (39)

To the present lowest order the cross sections of the magnetic surfaces, for |u| < 1.
are ellipses with s-dependent ellipticity. With Cartesian coordinates z,y in the
planes s = const. * = rcosf, y = rsinf, one obtains from Eq. (28) for the cross

sections

F = fals) [(1 —u)z®+ (1 + u)y’] = const . (40)

so that the half-axis ratio € of the ellipses is €(s) = \/(1 +u)/(1 —u).
The field lines of B. determined so far by G = Gy = const, are embedded in

the s = const planes, as evidenced by Eq. (30).

14




B. “Grad-Shafranov” equation, order N =2

To order N = 2 the GS equation (20) gives

9 f3 . 9 f, dfy . _ 3P o
907 +9f; = .‘{(802 cos fl + 90 sinf + 2f;cosf + o cosfl] . (41)

If f> from Eq. (39) is inserted. this becomes

0° P
‘f3+9f3 = h—](.i—u)cos(). (42)

062 ' 203"

A cancellation of Fourier modes 36 on the r.h.s. of Eq. (41) has taken place. This
avoids the occurrence of secular terms from resonances with the left-hand side.

The solution of Eq. (42) is

f3(9.5) = f:il(*")cosg =k f33(5)(‘08(39) s (43)
where

\ f\'P1 . ‘

fai(s) = 1605("" ) 5 (44)

and fs3(s) is as vet undetermined. It adds triangularity to the shape of the cross
sections. fa;. which is proportional to the curvature x(s) of the magnetic axis.

corresponds to the Shafranov shift. The field lines are still plane.

C. “Force balance” equation, order N =3

From the FB equation (23) one obtains to lowest order, N = 3, a differential

equation for Gy:

5 B g afs df: vy ] ,
400f58—9 (Gl.fZ) = _3_925)—9208 —4f;f208 — [P
a : ’ 1 1 F A=
— (%) 00 — 4f220’00'0 . (45)
With Egs. (37) and (39) this drastically simplifies to
a ;. N3 "
2 (G1f2) = Bs = 3~ (46)
where
Ny = 11206{_3) — uu'(s)op — op(s) , (47)
and
D. = [1 —ucos(20))* . (48)

I L J




The requirement that the configuration, i.e. here that f, and G, be periodic

. - . e - . . o .
in @, implies [~ R3df = 0. The numerator \j is independent of 8. and since

By = /27 40 £ 0 1 19
e [l —wucos(28)]2 7 uf <1 e

it follows that
N3 = u’oy(s) —uu'(s)og — op(s) = 0. (50)
This differential equation for g as a function of u can be integrated and gives
o2(s) = e [1 —u¥(s)], (51)

where ¢; > 0 is an arbitrary constant.
Going back to the cross sections I’ = const of Eq. (40). one now finds them
to be given by

—4C1 -1'2 y2
P = . 52
P 1+ u(s) T 1 — u(s) We)

For u'(s) # 0 the shape of the cross sections varies along the axis but the “am-
plitude”™ stays fixed. v > 0 corresponds to horizontally elongated ellipses. The
constant ¢; is a measure of the poloidal magnetic flux density.

A further consequence of Eqgs. (46) and (50) is

0G4 B hy(s)
ag B fQ(H,S) .

(53)

where hq(s) is an arbitrary periodic function. The same periodicity argument as

before gives hi(s) = 0, and therefore
Gl = G](.S) (54)

is left as an arbitrary periodic function of s alone. This also implies that the field

lines are still plane to this order.

D. “Force balance” equation, order N =4

If the results obtained so far for f;. fi, and (&) are inserted into the order N' = 4
contributions of the FB equation (23). the following equation results

P

m [l\';” COSB + _"\"'43 COS(SH)] = O . (:
[ - 1

ot
(13
—~—

where
Nap = 3[16(foau + ' faz)(v® — 1)ey — (2u® + u + 1)(u* = 1)K’ P,y
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+ (u? + 6u+ 1u'k P ] (56)
and
N = —[(3u? 4+ 2u + I)u's P — (u + 3)(u? — 1) Pu
+16(u® —1)%c1fas] - (57)

In the following it will be assumed that the pressure profile P(F') is not “dege-
nerate” on the axis. i.e. P; # 0. Since the coefficients of both modes. m = 1 and

m = 3, must vanish. it follows that

oo

,"\741 = A\-‘lg = 0 B (5 ]

We thus have two linear inhomogeneous equations for the unknowns fs3(s) and

f44(s). Their solutions are (postponing the case u’(s) = 0)

(3u+ Du's — (u+ 1)(u? = 1)x’

faa(s) = B 16(u? — 1)equ!

, _ (3u® + 2u + 3)u'r — (u+ 3)(u* — 1)x'u
f(s) = — P 16(u? — 1)%¢; : (60)

Equations (59) and (60) have to be compatible. If f33 is differentiated with respect
to s, the result must agree with the expression given in Eq. (60). This gives the

necessary and sufficient condition
k'u" (1 4+ u) — 2%'u'? — k'u'(1+u) = 0. (61)

Equation (61) is easily integrated. (Division by &'u’(1 4+ u) makes this evident.)
This vields

u(s) = ﬁ—l . (62)
where &, # 0 and &, are two otherwise arbitrary constants.

The ellipticity u is a local function of the curvature  of the axis. u(s) can
be prescribed at will at two arbitrary locations s = s, and s = sy along the
axis. The values there determine x, and k.. u(s) is then fully determined for
all s. As Eq. (62) indicates. it may happen, however, with unfortunately chosen
parameters, that u(s) approaches 1 at some position(s), in particular if £ comes
close to the critical & = x.. and the ellipse degenerates into a horizontal line.

There are two special cases which play a particular role here and in the follow-

ing sections. In both cases the axis is a circle (or more generally. £(s) is constant
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on a finite s interval). In the first case the ellipticity u(s) of the poloidal cross
section is not constant, u’ # 0. while in the second case it is.

In the first case Egs. (59)-(61) are applicable. With &' = 0 the compatibility
constraint (62) is automatically satisfied for arbitraryu(s). (Formally. in Eq. (62)
this case corresponds to # = k.. x, = 0 and v = 0/0.) In Eq. (59) v’ drops out.

vielding

i ) ; 1)k
faa(s) = fo(s) = P (3u 4+ 1)x

1m u(s) = u"(s) = free . (63)

where the index « is used as a reminder for #’(s) = 0. (Let us add that instead
of £" = 0 the weaker local condition #’ = &” = 0 also leads to Eq. (63). We shall
not dwell on such turning-points any further.)

The second case is originally defined as the case postponed so far, namely
u'(s) = 0 locally or on a finite s interval. Resuming this case with constant
ellipticity u of the poloidal cross section - so far for axes with arbitrary s(s) -
we have to reconsider the equations Ny; = Ny3 = 0 with v’ = 0. One obtains the

relations
K= fzgs =0 (64)

instead of Eqgs. (59)-(62). Thus «’ = 0 is possible only if at the same position
#' = 0 also. The result is again particularly relevant to configurations with
circular axis: Eq. (64) implies that in this case, where the ellipticity is constant,
the coefficient fs3 is also constant with respect to s, and that its numerical value

is free:
fas = [ = const = free, = o™ = eonst = free. (65)

The case we are dealing with here, k(s) = const, u(s) = const, implies d f,/ds= 0.
Pulling together all relevant equations, one finds that df;/ds = 0 as well. Ax-
isymmetry of the cross section is thus maintained up to the third order.

Asregards the three expressions for fs3, namely the ones in Eqgs. (59), (63), and
(65), f4; follows from putting &' = 0 in fas, but f§ is genuinely different. This
leads to problems of presentation: fs3 enters into many quantities to be derived
below. It would take too much space to present every result in its concominant two
versions as well. We therefore restrict the presentation (but not the discussion)
as far as possible to one case, which in the upcoming section is the case with
u' # 0.

We proceed with the investigation of the next quadruple of equations from
Tables I and II.



V. Equations in group M =

A. “Grad-Shafranov” equation, order N =3

The GS equation (20) to order N = 3 gives the differential equation

»f _ R af\’ .,
09; +16fy = ‘7—3 “ 507 f2Ghoo — (‘()—22) Glog — 12f5Glo0 — 2f2 P,
0% fs dfs " ,
+ 502 (0891‘10‘0 30 c1n9h00— 3cos? 0 k2P, +6cos9hf3ao ) (66)

If the general forms for f; and f; are inserted, the right-hand side becomes a
Fourier series with mode numbers zero and two. As in order N = 2, a cancella-
tion of the highest Fourier mode in the source terms of Eq. (66) takes place and
prevents secularity of the solution. This cancellation can be confirmed analvti-
cally to all (odd) orders e.g. for terms with G, by evaluation of the first square

brackets in Eq. (32). Integration of Eq. (66) gives
fa(0,8) = fao(s)+ faa(s) cos(20) + faa(s)cos(48) , (67)

where

=23+ w?)GL P — (T4 u)(1 — u?)erk?og + 4Pyool P .
fao(s) = 128(1 — w?)? & o (68)

and

— (3 +u)k? P — 16(1 — u?)cy fazk
64(1 — u?)cy

Ja2(s) =

2G" P, — Pyo
141 290
Pu .
* 21— w3 day (69)

fus is undetermined. G}, by virtue of Eq. (54), now signifies dG /ds.

At this stage a simple test of the REDUCE program developed so far is
possible: in axisymmetry and with purely poloidal fields an exact fourth-order
polynomial solution of Eq. (20) for F(r,0) exists [3]. It must be contained as a
special case in the general form of our fy, f3, faand Gy, Gi. In Appendix A this
is confirmed. In addition. this solution must solve the GS equation (20) exactly.
i.e. without an expansion around the axis. This test has also been successfully
passed. (The FB equation (23), by virtue of symmetry, transforms to Eq. (24)

and is trivially satisfied.)
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B. “Grad-Shafranov” equation, order \ = 4

To order N =4 the GS equation (20) gives:
9 fs
a0

where S5 depends on f; - fy and GY%. If f, - f; are inserted. S; becomes a

+25fs = S5, (70)

Fourier series with mode numbers one and three. Straightforward integration as

in previous orders gives
f5(0.5) = fsi(s)cos O+ fsa(s)cos(30) + fss(s) cos(50) . (T1)

where (for the case of nonconstant ellipticity)

i 4(3u? — 6u + 11)u's + 3(1 + u)(1 — u?)x'u ;
s1(8) = ; — G\ P}
fsa(s) 384(1 — w2 S 11 oo

—16(7 — 3u)u'k Py + 3(1 + u)(1 — u?)? c1u'k?
1536(1 — )

4 5 (

-]
8]

and

(3u? — 88u — 15)u's — 15(1 + u)(1 — u?)x’ .
53| S = T" P2
f5s(s) 768(1 — u?)3 ! 11

(3 + 22u)u'k + 3(1 + u)(1 — u?)

P

+ 384(1 — u?)2ciu’
2(3 + Hu)u'k + 5(1 )(1 — u?)w’ 1faak
. ( —|—au)u.h + 5(1 + u)( U)K k2P, Cl.f«l;h (73)
1024(1 — u?)cyu’ 4c;

For v = 0 the coefficients f5; and fs3 are similar, except that u’ in the denomina-

tor cancels, and they contain fs3 = f}5 = const explicitly. f55 is undetermined.

C. “Force balance” equation, order N =5

From the FB equation (23) one obtains to order N = 5 a differential equation for

(5 of the form:

a /- . . -
400f3 55 (Gafa) = Ns. (74)
If f, - f5 and Eq. (54) are inserted, this becomes
ad ;. N; .
90 (G;zfz) = R = Ds (r2)



where

N; = nsols) + nsa(s)cos(28) + nsy cos(44) (76)
and

Ds = doof? = 4oofay[l — ucos(20)]° . (77)

The coefficients nsp - nsy are linear and homogeneous in u'. &', (#')*/u'. G}
and fi,. In order to avoid too much inflation of the text by formulae. whose
structure but not whose details are relevant, such as here, they are not shown.
For the same reason further intermediate results to be derived below are also
not rendered explicitely, in particular, since with increasing order the number of
terms strongly increases.

Periodicity of G, and f; in @ requires that

CRsdf = 0. (78)

0
In contrast to Eq. (47) N5 depends on #. The integrals

¥ cos(nf)dd _
Lmun(u) = /o [1 — ucos(20)]™ L79)

which can also be looked up in integral tables, are found by using the algebraic

computer language MATHEMATICA to be
Io = (24 u?)c(u), Isp = 3uc(u), Iy = 3u’c(u). (80)

The common factor ¢(u) = 7(1 — u?)~*/2 drops out of the homogeneous equation

(78), which assumes the form
w? fi,(s) + 2uu' fag = w'(s)ma(u) + mo(u) GY 4+ ' ma(u) G} . (81)

In its derivation Eq. (62) has been used in order to express x’ in terms of u’. my(u)
is a rational function of u with denominator 768(1 + u)(1 —u?)* ¢}. Its numerator
is a polynomial of seventh degree whose coefficients depend on k., k., ¢ and
P,. P,. The function ma(u) is

P2(3u* + 3u? — 2)

- 1926?” (1 — u2)5/2 '

o
o

ma(u) =

The factor v/1 — u? in the denominator originates from a factor o and Eq. (51).
Tt turns out that dms/du = my, so that Eq. (81) can be integrated exactly with

respect to s. One obtains

«*fas = La(u) + ma(u) Gy - (83)




S

Li(u) = [u/(s)mi(u)ds = [my(u)du is a “simple” rational function of u (no
logarithms present). It contains an arbitrary integration constant cy,.

Equation (83) determines one of the two functions fy4(s) and G1(s) if the other
one is specified as an arbitrary (periodic) function of s. If © = ug = 0 somewhere
along the axis at discrete positions sg. with u/(sg) # 0. (' (s0) is determined and
faa(s0) is free. If u* = ui, = 0.5( mﬁ 1) ~ 0.4574 at discrete positions s 5.
with u'(s12) # 0, such that my ~ 3u? + 3u? — 2 = 0. then fy(s;.) is determined
and G is free.

We solve Eq. (83) for fyy and insert it into Eq. (75). It follows that

a “r 7%"5 Q

%(szz) = Rs = 730.5) (84)
with

Rs = Rso(s) + Rsa(s) cos(260) + Ry cos(46) . (85)

The coefficients R;,, are of the same type as the cofficients ns,.. The second
equality in Eq. (84) explicitly shows the # dependence of the denominator. Equa-
tion (84) is to be integrated with respect to 6. This involves indefinite integrals
T,y of the type

cos(nfl) dd ”
— : 86
Lrun () ,/ [I — ucos(28)]™ (50
REDUCE finds the following expressions for the required Zsg, Z5, and Ts4:
Tl = ~ [3sin(460)u + 2sin(260)u* — 8sin(20)] u
) = 8(1 —u?)2f3,
24 u? -
—i—ma(u,ﬂ) 5 (bf)
T _ [(2u® + 1) sin(46)u — 2(u* + 2) sin(26)]
) = - S(1— w2 f2,
Ju .
+ 31 ey 4%0) (88)
_ [(5u? — 2)sin(460) — 2(u?* + 2)u sin(26)]
e = = 81— w273,
9.2
bt ot ). (89)

2(1 — u?)°/2

[S]
o



Here f3, =1 — ucos(28), and

]_(
a(u.d) = arct.an( 1T ~ tan b‘) . (90)

— U

All Z,,.,. consist of two parts: a purely periodic part, with the sin terms in the nu-
merator. and a secular part, with arctan. If Eq. (84) is integrated with respect to
8, the secular terms on the r.h.s. cancel exactly. This is a consequence of Eq. (78).
which forbids a net secular contribution. Owing to f3, in the denominators of
Eqgs. (87)-(89) and Eq. (39) the integrated Eq. (84) assumes the form
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Gaf: = Ts = 72(0.5)° (91)

where the second equality explicitly shows the ¢ dependence of the denominator.

T5 has the structure

Ts = Tspsin(20) + Tsqsin(46) | (92)
where the coefficients ng, T54 are again rational functions of u, homogeneous and
linear in v’/, &', (&')*/u’, GY.

On the right-hand side of Eqgs. (91) an arbitrary function of s, say h,(s) should
have been added. The periodicity condition that [;” G2df = 0 determines h,:

< Ts/ fa >
ho(s - f
i) = — s (93)
where < -+ > stands for [Z” - --df. Since T’ is antisymmetric and f, is symmetric

with respect to 6. it follows that hy, = 0.

Before we come to a summary of this subsection, let us remember (see Section
IV) that configurations with circular magnetic axis merit special attention. In
the first case. with non-constant ellipticity u(s), see Eq. (63), all results obtained
so far in this subsection remain valid in the limit £'(s) — 0, or else, if no &’ is
present, by putting &, = k. = . The ellipticity u(s) remains a free function.

In the second case. with u/(s) = 0, see Eq. (65), the coefficients ns;, 7 = 0, 2, 4
in Eq. (76) have to be rederived. It turns out that the free constant fi3 = f53
drops out. and moreover they are identical to their general (x' # 0) form if one
puts £’ = 0 first and then ' =0 afterwards. In Eq. (81) all terms with factor u’
vanish in this case. so that Eq. (83) holds, with I4(u) = cj4 = const. Similarly,
in Eq. (91) Ts remains valid in the limit { #" = 0, then v’ =0 }.

Summarizing the results of this subsection, one finds that the functions fy4(s)

and (75(0.s) are determined. Looking back to analogous Subsection IV.C, we
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see the parallels: f;;(s) and Gl(ﬁ.s) are determined there, namely in Eq. (51)
(reading it from right to left) and in Eq. (54), which can be written in the form
G1(0,5) = 0.

The field lines, to this order. could be non-plane since dG,/d4 is not a priori

identically zero.

D. “Force balance” equation, order N =6

The results obtained so far for f. fa. f4, fs and G, G5 will be inserted here in
the order N = 6 contributions of the FB equation (23). Extrapolating from the
previous subsection and Section IV.D, we expect that fs5(s) will be determined.
and an extra condition on the so far free functions might be imposed. The
number of free functions, alas. is not particularly large anymore: «(s) is free.
and for k(s) = const, by way of compensation, u(s) is free. These two functions
therefore are in danger of being restricted.

To order N = 6 one obtains from Eq. (23)
o f3 (= 10fafak cos 0 + 11 fsfo + 6 f2 fs + 4 f2 sin 6) G,
+400f3 (5fs — 3far cos 0) Gy + Vs(0,s) = 0, (94)

where V5(0, s), even if expressed in its original form as a function of f, - f5 and
(71, is a rather lengthy expression.

Since 9(G4.f2)/96 and G4 f; are both available from Eqs. (84) and (91), respec-
tively, it is advantageous to regroup the first two terms of Eq. (94) according]y.
It follows that

0o (2f2far cos O — Ofafy + 6f2fs + 4f2ksin0) fo - Gafs

+4ao(5.3—3fgxcosa)f§%(Ggfg) +Vs(8,s) = 0. (95)

If Eqs. (84) and (91) are inserted, some of the factors f; in the numerators and
denominators are cancelled. With previous results for f; - fs one obtains from

Eq. (95)

P2 . "
- Ngm cos(mf) = 0. (96)
98304(1 — u2) ¢} opu'* u fy m_;,;,s: o fzee)

The coefficients Ng,,, m = 1. 3, 5, 7 are fairly lengthy expressions. They contain
first and second derivatives of (s) and u(s), but the latter only in the combination

xk"u' — k'u"”, which can be expressed in terms of £’, u’ and u by means of Eq. (61).
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All coefficients Ng,, are then found to be proportional to u'? so that u'* in the
denominator of Eq. (96) cancels. The factor u® there originates from the insertion
of fis(s). see Eq. (83). At isolated points where v = 0 Eq. (83) should be solved
for GG} instead of fi4. as mentioned in Section V.C above. in order to avoid this
spurious singularity.

The present discussion refers to the cases with noncircular or circular axis.
both with u’ # 0, see Section IV. For " = u’ = 0 the discussion will be resumed
below.

All Ng,,. m = 1. 3, 5. 7 have the same form. namely
AT — 2N
-‘\6111 =u Nem

= UI? (‘\'6mu + A'\-Smb f5.5 + -\vﬁmc f;s + "\-Gmd G; + -\maE GYJ - (QT)

i.e. theyv are linear in fs5(s). fis(s). Gi(s) and GY(s). The Nena - Nome depend

on k. &', v and u'.

From Eq. (96) it follows that the four equations
Nem = 0, m=1, 3, 5,7, (98)

must hold. There are thus four linear inhomogeneous equations for four un-
knowns, fss5. fi., G} and GY.

We treat first the most general case, namely configurations with noncircular
axis, #'(s) # 0. In this case Eq. (62) relates «(s) and u(s). Their derivatives are

related by the equation

’ —hy !
= e S . ()9
YT True )

All four unknown functions (X7, X3) = (fs5,G}) and (X3, Xy) = (, G can
then be expressed in terms of u, v’ (and the constants ¢i, kv, Key €14, P1, P2).
REDUCE finds rather involved expressions of the form

. Ap(u)
Hgyg = . =1.2 100
= R (100)
and
}{m _ -4771(“) LI’ ) i = 3 4 {101}
B (u)

Here. A,, and B,, are polynomials of up to eleventh degree in u. In addition. B,
and By are proportional to V1 — u?.

(]
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Two compatibility conditions have to be satisfied. namely X{(s) = \3(s), and

X3(s) = X4(s). Both conditions assume the form

v =0. n=1.2. (102)

h = pa

I

Both the numerators D, and the denominators E, are again polvnomials in u
and. in addition. E, is proportional to /1 — uZ. Although the details of the
numerators do not matter much. as will become clear presently. they are at least
rudimentarily shown in Appendix B in order to keep the discussion less abstract.
A short discussion with regard to the zeros of the denominators B, and E, is
given in Appendix C.

Equations (102) can, in principle, be satisfied in four cases: the case u’ = 0.
the two mixed cases v’ = Dy(u) = 0 and v’ = Dy(u) = 0 and the case D(u) =
Dy(u) = 0. By assumption, we have u’ # 0 (in agreement with the noncircular
axis case k' # 0, see Eq. (99)). This already eliminates three of the four cases.
The fourth case is Dy(u) = Dy(u) = 0, where D;(u) and Dy(u) are polynomi-
als of eleventh and ninth degree, respectively, which depend on the parameters
Ky. Key €1, 14, P1, see Appendix B. Depending on these values. the condition
Dy(u) = Dy(u) = 0 may or may not have one or more real solutions . In any
case, countably many fized values of u are obtained. This, however. is in contra-
diction to the assumption u'(s) # 0 for a continuum of s values. which requires
that a continuum of u values should satisfy Eqs. (102). This eliminates the fourth
case as well.

In consequence, it has been proved that the assumption of an up-down sym-
metric MHD equilibrium with noncircular plane axis leads to a contradiction.

We shall proceed with another type of configurations, namely those with cir-
cular axis but again with an ellipticity u(s) which varies along the axis.

We know that u(s) is then arbitrary so far and Egs. (62). (99) do not hold
any more, as discussed in Section IV.D. For v’ # 0, however, the system of
equations (98) is still valid. With ' = &"” = 0 its solution (X;, X, X5, X,) =
(fs5,GY, f35. GY) is obtained just as in Eqs. (100) and (101), except that the
polynomials A, (u). B,,(u) are less involved and depend on & = const. The same
holds for the compatibility conditions of the type of equations (102). They are
as follows:

(8775u> — 6275u + 11950u> — 23610u? — 12309y + 20061) A
(Hu? — 120u 4+ 27)3(1 + u)(1 — u)?¢;

C'I =

x &2u' = 0. (103)



(65u = 8T)(1 +w)(1 —wet"u? , (104)
(5u? — 120u + 27)*V1 —u* P, . |

In the truly toroidal case.  # 0. and on the assumption that v’ # 0 Egs. (103)

(‘2 =

and (104) can never be satisfied both together. (This conclusion holds for 5u* —
120u + 27 = 0 as well.)

In consequence, it has also been proved that an equilibrium with circular axis
and non-constant ellipticity along the axis does not exist.

It thus follows that within our premises nonaxisymmetric equilibria. if theyv
exist, would have a circular axis, a constant ellipticity of the cross section. and.
in view of Eq. (65). also a constant triangularity. Only higher-order terms.
fm>a(0.s), responsible for quadrangularity, etc. could vary along the axis. In
addition. the magnetic field could vary if G;(s) and higher-order G, are not con-
stant, see Egs. (15). In the next section it is shown to be plausible that equilibria

with these two tvpes of nonaxisymmetry do not exist, either.

o
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VI. “Almost symmetric” equilibria

Here we continue the as vet unfinished case, namely configurations with circular
magnetic axis and constant ellipticity v and triangularity fs; of the cross section
along it.

The collected results with regard to the two basic functions F and G. which
determine the magnetic field B and which have been Taylor-expanded in the
distance from the axis. Egs. (28) and (29). can be written as follows:

dfa _ dfs _ 0*Go _ Gy _ G, _ 0 (105)
ds ds ds? a0 ao ‘ .

Independence of f,, and G, of s implies axisymmetry, while independence of &,

of # implies that the field lines are confined to planes, to the respective order. It
will be shown to be plausible that Eq. (105) can be extended to f,, and (, with
larger and larger indices m and n. so that the remaining allowed nonaxisymmetry
(and non-flatness) shrinks more and more. In the limit m, n — oc this would
rule out the last remaining bits of nonaxisymmetry for analytic MHD equilibria
(within the assumed premises).

Reverting to the 0-averaged FB equation, Eq. (81). one finds for u'(s) =0
19200c3(1 — w?)*ul fi,(s) + PE3u*+3u*-2)GY = 0. (106)

Three cases already encountered before merit separate discussion, namely a) u =
0, b) 3u* + 3u? — 2 = 0. and c) neither a) nor b). Cases a) and b), respectively.

give
GY(s) = 0, fyl(s) arbitrary , (107)
fiils) = 0, Gy(s) arbitrary . (108)

The FB equation (95) has to be re-evaluated for the present case ' = v’ = 0. In

case a). for example, one obtains analogously to Eq. (96)

] S Ng, cos(mf) = 0, (109)

61 f2u 1357

with four coefficients N¢ which have to vanish. Omitting trivial nonvanishing

bm

factors. one obtains the following three independent relations:
fiafss = far = 201fir +96f55 = 0. (110)
In consequence. it follows that

fia = fi5=0. (111)
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The right-hand side of Eq. (91) then also vanishes. This implies G = 0. Together

with the equations for the other fim. fsm the final result for case a) is

afy _ 0fs _ 0°Gy _ 090Gy _ :
Bs _ 9s 92 0b = U (112)

The discussion of cases b) and ¢) is slightly longer but analogous and gives the

same result, Eq. (112).

The results in Eq. (105) have thus been pushed up two orders of magnitude
for f,. and one order for G,.. In order to find out whether this continues to even
higher order, the next quadruple of equations, namely for M = 3. is also briefly

investigated. A comment regarding arbitrary orders is also made.

A. “Grad-Shafranov” and “force balance” equations, in
group M =3

Just as in lower orders. it is straightforward to solve the GS equation. Eq. (20).
in the orders N = 5 and N = 6 for fg(0,s) and f7(8,s). The result is completely
analogous to Eqs. (67) and (71) for fy and fs, respectively. The terms feo. fo2, feu
and fz1, fra, frs are found in terms of lower-order fm. and Gy, Gy while fee(s)
and fr7(s) remain as yet undetermined.

The FB equation, Eq. (23), to order N =T is

%(G’g‘fg) = R: = % (113)
where

N- = ngo(s) + nra(s) cos(20) + nzy cos(46) + n-g cos(60) (114)
and

Ds = doofi = 4oofso(l —ucos(26)]" . (115)

Periodicity of G3 in @ requires that [§™ R7df = 0. This leads to
1152000 ¢ (1—u?)’u’ feg(s) + P2(15u8+15u* —20u’+8) G = 0. (116)

in complete analogy to Eq. (106).

Again. three cases have to be discussed separately, namely a) u = 0. b)
15u6 + 15u* — 20u® + 8 = 0, and c) neither a) nor b). For cases a) and c), for
example, Eq. (116) can be solved for G%. If it is inserted in Eq. (113) and the
indefinite integrals Zy,(u). Eq. (86), are evaluated by REDUCE. one obtains
(11u® — 8)sin(60) — 6(3u? — 1)usin(46) + 15u? sin(26)

3(15uf + 15u — 20u? + 8) f3, Pi'oo

Gafy =
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F

x 64(u® —1)°ci fhs . (117)

An arbitrary function h3(s) could be added to the r.h.s. of Eq. (117). Similarly
to ho(s) in the previous section. it can be shown that the periodicity condition
leads to ha(s) = 0.

Of the M = 3 quadruple of equations the FB equation to order N = 8 remains

to be analyzed. Analogously to Eq. (96) it follows that

m=17

Z Ngm cos(mf) = 0, (118)

m=1

where a (nonvanishing) denominator was drawn into the coefficients. The sum-
mation extends over odd values of m and comprises eight Fourier modes. A
complete discussion of all subcases is therefore rather laborious and has not heen

attempted. No basic difference to the order M = 2 case, however, is in sight.

The case a). u = 0. is simple enough to be analyzed in a few lines. The
conditions Ng,, = 0. m =1, 3, --- 17. give three independent equations, namely
Flafon = Tk = 430 TLE + 1281 = § . (119)

Hence, one finds that fgg = fi- = 0, and, with Eq. (117), that also Gy = 0.

Altogether. one obtains

afs _ 0f G,  0Gs _ o
P rr = o

The results of Eq. (112) have thus been pushed up another two orders with respect

to f, and another order with respect to G, (in the subcase u = 0 among the
cases u = const of the present section).

There has not been any fundamental difference in the discussion of the quadru-
ple of equations for M = 2 and M = 3, once the conditions £'(s) = u'(s) = 0 were
applied. One expects, therefore, that the results for even larger M would be anal-
ogous. This would eliminate the last traces of nonaxisymmetry for configurations
with circular axis and constant ellipticity along it.

It should be possible to prove by complete induction that the result from a
quadruple M, namely fi; = foars = Gy = Gar = 0. holds for the quadruple
M + 1 as well. In practice, this is found to be a rather lengthy procedure since

four interconnected equations are involved. We therefore do not dwell on it here.
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VII. Discussion and conclusions

The existence of nonazisymmetric toroidal MHD equilibria with mirror symmetry
with respect to an equatorial plane was investigated. Owing to this symmetry
all field lines are poloidally closed around the magnetic axis. Two types of non-
axisymmetry have to be considered: a) a noncircular magnetic axis. b) a circular
axis but variations of the geometry and/or magnetic field along the axis. It was
proved that no equilibrium of type a) exists. As regards type b). it was shown
that neither the ellipticity of the cross section. nor the triangularity. nor higher-
order deformations up to and including the seventh order are allowed to vary. For
still higher orders the same was shown to be plausible. Analoguous results hold
for the magnetic field. Type b) equilibria are thus also practically ruled out. One
has to conclude, therefore. that azisymmetric equilibria with poloidally closed
field lines are in a sense singular: the slightest deformation away from symmetry
destroys the equilibrium.

This result is unexpected: Lortz [22] has shown that mirror symmetry with
respect to a poloidal plane — causing toroidally closed field lines — guarantees
the existence of nonaxisymmetric MHD equilibria (provided the value of plasma
beta is not too large). His result was ‘ndeed of such suggestive power that it
is occasionally cited erroneously as proof of existence under any kind of mirror
symmetry or for closed field lines quite generally; see, for example [14]. The
difference between the present outcome and [22] might be that the equatorial
symmetry splits the toroidal domain into two still toroidally connected domains.
while the opposite symmetry produces two singly connected domains. Also, more
formally. the proof in [22] (an iteration scheme which involves the plasma beta
and which requires a vacuum feld to start with) cannot be applied to the present
case since a poloidal vacuum field without singularity on the magnetic axis does
not exist.

The result does not support Grad’s expectation [9] either that nonaxisymmet-
ric equilibria with all field lines closed are more likely to exist than other ones
because the field lines would be freer to interchange in such a way that condition
(4) could be satisfied.

It proves a posteriori to be fortuitous that the expansion in the distance
to the magnetic axis gave definitive conclusions about nonexistence. The more
common outcome of such expansions is at most an iterative scheme that shows
how to proceed from order 1 to order n+ 1, but which leaves open convergence or
divergence in the limit n — o0: see €.g. [16]. As regards poloidal fields with more

general geometry — without mirror symmetry and with torsion of the axis allowed
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— it remains to be seen whether the method still works as well and whether the
extra freedom gained might even suffice to make a poloidal equilibrium possible.

A final comment on the balance between analytic parts and the use of an
algebraic computer language in the present investigation might be appropriate.
If one goes up to the seventh order in an expansion, as is done here, an algebraic
computer language must of course be applied — mostly REDUCE in our case. It
turns out. however, that a “blind” expansion is rather useless. It is essential to
know by analytic consideration the structure of the equations, for example which
terms can be grouped together into partial derivatives. This alone makes the

computer part workable and transparent.

Acknowledgement

The author would like to thank R. Kaiser for discussions which initiated this

investigation.



Appendix A: Exact Shafranov solution

An exact solution of the MHD equations (1) in toroidal geometry. with purely
poloidal magnetic fields B = curl A. sometimes called Hill's vortex, can be found.
for example, in [3]:

\J

A = A, = 0. Ao == el {Bl]

where 7. 6. = are cylindrical coordinates, and the flux function ¥ is given by
22
U(r.z) = %F (2R 7 —de?s? ) . (B.2)
W, and a are constants. R is the major radius of the configuration. dP/d¥ =
const is assumed.
In our formalism we have in axisymmetry F'(r,0) = F2(0)r? + fa(8)r + fa(B)r
It implies u(s) = const and G1(s) = const. With the choice ¢; = 1/(1 —u?) there
results og = 1. With P, = 0 our solution contains four free constants: fag. . faa
and fs. The remaining fm, are fixed and given by Eqs. (44), (68) and (69). Total

agreement with the Shafranov solution is achieved if we take faz = f35, fua = 2.

where
1
i = Eh‘fzo(1+3'u)- (B.3)
s s _
far = 5"\ fzo( + du) . (B.4)

Surprisingly, f3; agrees with f3; from Eq. (63).
After transforming to cylindrical coordinates 7., z it follows that

l—u 1—u ,.4 (‘3 9 1+ u 2) B
- o e i R — = . Bb5
o 4r? 2 P\ T - (B.5)

With the identifications ¥ = (u—1)x*R"/4 and a? = (14u)/(1—u) the two fluxes
U and F agree (apart from a constant which reflects a different normalization on

the magnetic axis).
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Appendix B: Functions D;(u), Ds(u)

The functions Dq(wu). Ds(u) are given by

Dy = [ pi(u)r] = dpa(u)rert + 2ps(w)rln? + Aps(u)rn’

—8ps(u)rir, — 64ps(u)r® | Py

—256 [p,—('li)HE—QPB(II)HCHF“GGUPQ(U)h'g ] (14u)*(1—u)erepgpiy. (B.1)

D, = {[ 'qu(u)f{j - qu(u)ﬁ.cﬁfﬂ + qg(u)ﬁszf - 6Q4(U]H§H1.

—16q5(u)h':.1 | PL—128 [ ge(u)k, — 22¢g-(u)k. | (1 +u)*(1 — u)clc;,iﬁ,.}
x 36(1 — u)c?ﬂu? ; (B.2)

where p., ¢, are polynomials in u alone. Most of them are fairly long and it
would not make much sense to display them all. It should suffice to give a few of

them here:

pi(u) = 1800u'! — 46107u'® — 2167384 — 119759u® — 255664u"
—1705590u® + 874796w° + 1091354u” + 290936w> — 352943w°

—185946u — 108811 (B.3)
po(u) = (45u” + 55u” + 118u® 4 46u® — 91u — 45)(1 + u)® (B.4)
q(u) = 5u® —146u® — 103u* + 220u> — 973u? + 670u — 9 (B.5)
gr(u) = (5u+3)(1+u)’ (B.6)
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Appendix C: Critical denominators

The denominators By, (u) and E.(u) in Egs. (100)-(102) have the following com-

mon form H;.i=1,2,---,6:
Hi(u) = a;h(u)(14u)" (1 —u)® (VI—u?)" . (C.1)

where h(u) = (3u® 4+ 11u? = 231u+65)x, +2(5u* — 120u + 27)(u + 1)k, the a; are
constants. and. in order of occurrence, b;-by = 1. bs = bg = 2, the ¢; and d; vary
from 0 to 5. and ¢; = €3 = €5 = 0, e = €4 = ¢¢ = 1. The denominators might
vanish at up to three critical values u. of u if the third order polynomial h(u) =0
has real solution(s) with u? < 1. At these discrete values the conclusions to be
derived below with respect to noncircular-axis cases would not hold, a priori.
Vanishing of h(u) implies that the determinant of the system (98) is zero.
According to the theory of linear systems of equations there is then either no
solution or the coefficients of the unknowns have to satisfy a number of side
conditions. These would only involve u and u’, so that, in addition to u, also u’
would be forced to take on special values (possibly nonreal). More over, at least

one side condition, which we happened to look at, assumes the form
C = ku' =0, (C.2)

where k(u) is again a rational function of w. Its numerator and denominator,
in general, differ from those in Eqgs. (102). The same conclusions as with the

numerators £, # 0 can therefore be reached.
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