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Abstract

Numerical simulations of 3-D collisional drift-wave turbulence reveal
a behavior basically different from that found in previous 2-D studies.
The linear instability saturates due to energy transfer to small k,
leading to formation of convective cells. The turbulence is sustained
by nonlinear transfer processes between k, = 0 and k, # 0 modes, the
latter acting as a catalyst. The system tends to relax to a nonturbulent
poloidal shear flow. Introducing a damping of this flow gives rise to
an intermittent behavior, where laminar periods of zero flux alternate
with bursts of turbulence and large flux, the transitions occuring on

time scale short compared with the linear growth times.



It is now rather generally believed that the cross-field heat and particle trans-
port observed in magnetically confined plasmas is caused by primarily elec-
trostatic small-scale density and potential fluctuations associated with drift-
waves, which are energized by the mean density and temperature gradients
and excited by collisions or kinetic effects. While in the hot core of a toroidal
plasma column fluctuation amplitudes are small én/n < 1072, they become
much higher in the cooler edge region én/n ~ 0.1-0.3. The transport effects
in the edge plasma play an important role for the global confinement prop-
erties. This has become particularly clear by the discovery of the H-mode,
a plasma state of significantly improved (high) confinement. The H-mode
appears to be intimately connected with a drastic reduction of the density
fluctuation level in the edge region. Several theoretical concepts of this tran-
sition (and the transition back to the L-mode, the normal (low) confinement
state) have been presented. In the presently most widely accepted one the
turbulence is stabilized by a strong poloidal shear flow which itself is gener-
ated by the turbulence.

Since the plasma in the edge region is collision dominated, drift-wave turbu-
lence in this region can be described in the framework of two-fluid theory.
In the simplest model one neglects toroidal (i.e. ballooning) effects, restricts
consideration to a slab of narrow radial extent about a resonant surface such
that magnetic shear can be omitted, and neglects ion temperature effects.
The two-fluid equations essentially reduce to the set of equations for the elec-

tric potential ¢ and the density n introduced by Hasegawa and Wakatani).




These are the ion equation of motion

Ng C

1
= . =-V7 nv
Q. B, (Ow + v - Vw) EV”_}“ -+ (1)

and the electron continuity equation
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where v = (¢/Bo)z x Vi, w = V2, and n), = —ng/L, < 0 is the mean den-
sity gradient in the negative z-direction. The parallel current j)| is obtained

from Ohm’s law
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where 7 = vei/w?, is the resistivity. Introducing the standard drift-wave
normalizations ¢ — (e@/Te)(Ln/ps), n — (n/no)(Ln/ps), t = tes/Ln, Vi —
psVi, V) = L))V, with L) a typical parallel wavelength or correlation
length, eqs (1), (2) become

dw+v-Vw = Vi(n—y)+ D" (4)

on+0yp+v-Vn = Vﬁ(n—cp)+D". (5)

Here the coefficients in the parallel diffusion terms on the r.h.s.’s have been

chosen unity, which defines the parallel scale length L,
L= (L,{Te/vrn,ecsue,-)1/2 :

D¥ and D™ represent perpendicular viscous dissipation effects, which in the
present context should only guaranty regularity of ¢, n. Since we want to

localize these effects at the smallest scales, D, D™ are - rather arbitrarily -




chosen as D¥ = ;Lv(f)w, BF = uv(f)n, with g = v.

The nonlinear terms v - Vw and v - Vn conserve the kinetic energy Ef =
fv2dV and the energy of the density ﬂuctuétions EN = [n?dV, respectively.
Switching on the remaining terms the following quadratic forms of n and ¢
behave in a particularly simple way, the total energy E = 1 f(v?+n?)dV and
the generalized enstrophy W = 1 f(n — w)?dV, which follow the equations
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where I' = [nv.dV = — [nd,pdV is the average turbulent plasma flux.

Only the T’ terms may be positive and hence drive the turbulence by extract-
ing energy from the (fixed) mean density gradient.

Studies of the Hasegawa-Wakatani (HW) equations (4), (5) have previously
been restricted mainly to two-dimensional geometry?®) by assuming Vﬁ —
—kﬁ = —k? to be a consta,nt,. proportional to the so-called adiabaticity pa-
rameter C' (large values of C' enforce a nearly adiabatic behavior of the den-
sity, n >~ ¢, whence the name). For sufficiently weak viscous dissipation the
last term in eq. (6) is negligible, such that I' and parallel dissipation balance
each other in stationary turbulence, while the viscous term in eq. (7) remains
finite. The spectral properties of quasi-stationary 2-D HW turbulence have
recently been studied in detail in the range 0.1 < C' < 53, In all cases one
finds a maximum of the angle integrated energy spectrum Ejy = [ ExdQy at
k = kg, where kg ~ 1 for C' ~ 1, and ko decreases for both decreasing C'
(ko ~ k,,, the mode of maximum linear growth rate) and for increasing C'

(where ko < k., ko decoupling from the linear instability properties). Hence
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in 2-D the HW system does not exhibit an inverse cascade and condensation
at small k, contrary to the behavior of the Hasegawa-Mima equation®, to
which the HW equations reduce in the limit C' — oo, i.e. n — . It is hence
interesting to investigate the 3-D HW system, where the magnitude of C,
i.e. the k,-spectrum, is established self-consistently. It will be seen, that the
3-D behavior is basically different from that of a 2-D finite-C' system, the
nonlinear energy transfer in k, playing a dominant role.

Several studies of 3-D collisional drift-wave models have previously been per-
formed. In Ref. 6 the HW equations were solved in a cylindrical plasma in-
cluding magnetic shear and curvature, showing the generation of a poloidal
shear flow. In Ref. 7 3-D simulations of drift-resistive ballooning modes have
been presented. The model includes, besides magnetic shear, toroidal cur-
vature, which gives rise to a ballooning structure of the fluctuations. As in
Ref. 6 a poloidal shear flow is generated by the turbulence, which leads to
a strong reduction of the turbulence level and the radial transport. In the
present work it is shown that the basic features associated with the genera-
tion and back-reaction of the shear flow are already described by the simple
straight slab model ignoring magnetic shear and curvature. In this model
k. = k) = 0 modes (interchange modes or convective cells) are linearly sta-
ble. The linear stability properties are, however, dominated by the nonlinear
transfer processes. In addition we find that including a damping of the shear
flow representing the effect of magnetic pumping, an intermittent behavior
of strong turbulence alternating with a quasi-laminar flow is obtained with
abrupt transitions.

The 3-D HW equations are solved in a rectangular box of size 27 L, x 27 L, x

)




27 L. with periodic boundary conditions using a pseudo-spectral method with
dealiasing according to the 2/3-rule. The number of modes (or collocation
points) are N, = N, = 96, N, = 48, and the hyperviscosity p = 107%
which is small enough to concentrate dissipation at high k in the energy and
enstrophy spectra and still prevent spectral accumulation at high k. Modes
are linearly unstable for finite k, # 0 and sufficiently small £, and stable
at large k, due to viscous damping. For the parameters given above the
maximum growth rate Y. = 0.15 is found at ks =0; & = L & = 0.5
(For details of the linear stability properties see e.g. Ref. 2.) In these 3-D
computations spatial resolution is necessarily smaller than in previous 2-D
runs® | where up to 1024? modes have been used. Therefore the focus is
not on small-scale spectral properties but on the dynamics of the dominant
large-scale eddies. In our standard case the dimensions of the computed sys-
tem are L, = L, = 6, which is large enough to allow formation of structures
> ps (kiminps = 0.16), but still small enough to justify neglecting magnetic
shear. The parallel dimensions L, = 6 are chosen such as to locate the most
unstable mode in the lower half (n, = 3) of the k.-spectrum. The time
step At is determined by the requirement that the energy balance (6) be
satisfied with sufficient accuracy. A typical run is illustrated in Fig. 1. The
initial state is given by a low level of random noise of @i and ny. Because of
the linear instability the fluctuation energy grows exponentially up to time
¢t ~ 70, when nonlinear effects lead to a bend-over. We can identify the
nonlinear (quasi-) saturation mechanism by considering the energy spectrum
E(k.) = Yk, Ex, Fig. 2. During the linear instability the spectrum E(k.)

reflects the linear growth rate with a maximum at k. ~ 0.5, but for ¢ > 70
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the maximum of E(k.) is shifted to smaller k,. Hence the bend-over is due
to a nonlinear transfer in k. from the linearly most strongly driven modes to
weakly driven ones leading to the formation of convective cells. The proper-
ties in the nonlinear phase are illustrated by the transfer rates of kinetic and

density fluctuation energies,

FEEY = Re{ 3z (k x k’)k”«,okrsok_w_k} ; (8)
k, k'

TV(k.) = RB{ > 2 (kx k')nk'@k_krnk} : (9)
k, k'
plotted in Fig. 3 for ¢ = 240, a typical time in this nonlinear phase. Since
TN(0) < 0, there is a strong transfer of E}Y from k, = 0 to k. # 0, where
TN(k.) is almost uniformly distributed and thus drives a broad spectrum of
rather high-k, modes!. On the other hand one finds an inverse transfer of ki-
netic energy E,{"' from high to small k., in particular to k£, = 0. Hence we find
that in contrast to the linear instability the turbulence energy is primarily
generated by the convection of the density at k£, = 0. Since there is no linear
coupling to the potential at k. = 0, a nonlinear process using k. # 0 modes
is needed, the latter acting as a kind of catalyst. In this nonlinear process
both convective cells E(k; = 0) and drift-waves Y-, .o E(k.) are growing.
The nonlinear process is illustrated in Fig. 4. Large-scale convective cells
drive k, = 0 density fluctuations at broad scales k;,. These excite k, # 0

drift-waves, which in turn reinforce the convective cells. (Since the latter

ISince we do not include in the present model the effects of parallel flows and parallel
viscosity, the k.-spectrum is rather flat. There is, however, no spectral accumulation at

large k..




tend to condensate at k; ~ ki, there is no point of increasing the number
of modes and increasing the system size L, since contrary to the 2-D case the
system cascades to the largest possible eddies.) For k., # 0 the k -spectrum
still follows roughly the behavior of the linear growth rate with a maximum
at finite k;. It is interesting to note that only for k£, > 1, ky < 1 the
fluctuations are nearly adiabatic ny ~ @y. While for k, < 1, £y < 1 one
finds @y > ny, density fluctuations dominate ny > ¢y for k., ky 2 1.

In the state dominated by large-scale convective cells, which give rise to
strong energy fluctuations (¢ ~ 240-280), there is the tendency of condensa-
tion to the k, = 0 mode corresponding to a poloidal shear flow. The mech-
anism is related to but somewhat different from that described in Ref. 8. A
main feature of this process, which occurs at ¢ ~ 280, is the quenching of the
nonlinear instability described above, since the driving force I' o< k, in eqs
(6), (7) (corresponding to the vertical arrow in Fig. 4) is switched off. The
small-scale drift-wave turbulence decays, since dissipation now exceeds the
reduced nonlinear transfer rate. The turbulence decay can also be viewed
as the effect of eddy distortion by the shear flow acting on all modes with

k, # 0 independent of k;. As the result the system relaxes to a quasi-laminar

stationary poloidal flow. (It should be noted that because of the nonuniform

velocity shear - the essentially sinusoidal flow profile has two points of van-
ishing shear - the turbulence does not decay to arbitrarily low amplitudes.
Assuming a fixed sinusoidal shear flow results in a stationary rather low non-
linear level of drift-waves located at these points.)

In the present model system imbedded in a homogeneous magnetic field the

poloidal shear flow is Kelvin-Helmholtz unstable if the aspect ratio of the
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computational box L, /L, exceeds unity. Hence for L,/L, > 1 the poloidal
shear flow cannot be set up. Instead the system settles into a turbulent shear
flow state in z-direction (k, = 0), which is possible because of the periodic
boundary conditions used. In this case I' is not switched off, the nonlinear
instability remains active giving rise to continued growth of both convective
cells and drift-waves. Since in a tokamak plasma the poloidal shear flow is
Kelvin-Helmholtz stabilized by the poloidal magnetic field®), we concentrate
on the case L,/L, < 1, where the poloidal flow is stable.

In a real toroidal plasma column a poloidal flow is damped collisionally due
to magnetic pumping!®. Modelling the effect we introduce at ¢ = 400 a
damping term —awy into eq. (1) for modes with either k&, = 0 or k, = 0,
where o is a phenomenological parameter. Figure 5 illustrates the subsequent
evolution for & = 107%. During the period ¢ ~ 400-440 the shear flow decays,
at first exponentially ~ e=2** then more rapidly due to nonlinear processes,
to a low amplitude, which reintroduces the turbulent flux I' and in its wake
the drift-wave turbulence. The dynamic state is similar to that in the first
turbulent phase 200-280 and terminates rather abruptly by the regeneration
of a poloidal shear flow state, which again suppresses the nonlinear instability
and the turbulent flux. The behavior of alternating periods of shear flow and
turbulence, appearing in a burst-like manner, continues. The average dura-
tion of quasi-laminar shear flow states is roughly proportional to a=!. The
spatial distribution of ¢ and n in the turbulence phase and the shear flow
phase is illustrated in Fig. 6. (If only the poloidal shear flow is damped, the
system switches rapidly into a turbulent state of dominant radial shear flow,

which as mentioned before leads to unlimited growth of all fluctuations.)
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In conclusion we have shown that 3-D collisional drift-wave turbulence is ba-
sically different from the behavior of a 2-D system with a given adiabaticity
parameter C. The turbulence is not driven by the linear instability mech-
anism, but by a nonlinear process where large-scale convective cells excite
k. = 0 density fluctuations. From these energy is transferred to a broad
spectrum of k, # 0 drift-waves, where energy is partly dissipated partly
transferred back to the convective cells. There is an inherent tendency to
generate a shear flow, either in poloidal direction (k, = 0), or, if this flow is
Kelvin-Helmholtz unstable, in radial direction (k, = 0). While in the case
of a poloidal shear flow the turbulent flux I, is switched off, leading to rapid
turbulence decay, the fluctuation level is growing without saturation in the
case of a radial shear flow. Introducing an explicit damping of the shear flow,
representing the effect of magnetic pumping in a toroidal plasma column, gen-
erates an intermittent turbulent state, where laminar periods of almost zero
flux alternate with turbulent periods of large flux. The transitions occur very
rapidly on time scales short compared with the linear growth times. This
behavior may be related to the dithering H-mode'") and the grassy ELM’s!?

observed in tokamak plasmas.
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Figure Captions
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1 Time evolution of (a) the total turbulence energy E, (b) the drift-
wave energy (k, # 0), (c) the turbulent flux I'.

2 k, energy spectrum in linear instability phase ¢ = 60, in the nonlinear

phase ¢ = 100.

3 Density and kinetic energy transfer functions TV (k,), T (k,) in the

phase of strong turbulence ¢ = 240.
4 Schematic illustration of the nonlinear instability mechanism.

5 Time evolution of £ and T' for the same run as shown in Fig. 1,

continued at ¢ = 400 with a shear flow damping o = 1072,

6 Contours of ¢(x) and n(x) taken for three different cross sections
x = const, y = const, z = const (z-direction is vertical), illustrating
the 3-D spatial distributions (a) turbulence phase, t = 453, (b) shear
flow phase, t = 512.

12




104

106

1076
200
180
160
140
120
100

80
60
40
20

-20

1 1 1 1 1

50

100

150 200 250 300 350 400
t




107°

1076




t=240

—80F
-120
-160 -

2.5

1.5

0.5



drift-waves

convective cells
¢ (k, =0)




100 200 300 400 500 600 700 800 900

1400

1200

E(k,

1000

800 [

600 -

400

200

300

250 |+

200

150 -

100

50

0

-50
0



N

N




73, 64



