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Abstract

A brief summary of energy methods for linear stability in dissipa-
tive magnetohydrodynamics is given. In this case, the methods are
equally efficient for fixed and free boundary problems. Linear asymp-
totic stability has implications in nonlinear stability, at least for a
modest but finite level of perturbations.

Sufficient conditions for nonlinear stability of dissipative magneto-
hydrodynamics flows are obtained and applied to the time dependent
magnetized Couette flow. The fluid has a plate as boundary and
nonlinear stability is unconditional. The range of stable Reynolds
numbers is rather modest i.e. of the order of 272 ~ 20.

Nonlinear stability of force free fields can be treated very success-
fully for all values of dissipation and all levels of perturbations. It
requires, however, the presence of perfectly conducting fixed bound-
aries. Finally, a special inertia-caused Hopf bifurcation is identified
and illustrated by an appropriate example.

*to appear in ” Proceedings of Workshop on Energy Methods in Free Boundary Prob-
lems of Continuum Mechanics”, Oviedo, Spain, March 21-23, 1994




1 Introduction

Energy or more generally Lyapunov’s methods are an elegant tool in the
study of stability of fluids [1] . Though their efficiency in the stability of
shear flows was rather limited, the applications in the area of magnetohydro-
dynamics (MHD) were not only clear and elegant, but led to important tools
like the ‘Energy Principle’ of ideal MHD [2] and subsequent work for dissi-
pative MHD [3] . This is certainly due to the nontrivial stability problems
of MHD equilibria without or with small flow.

Energy methods for fluids with free boundaries need a special attention,
however, in Hydrodynamics (HD) as well as in MHD. The ‘Energy Principle’
of MHD [2] is derived for a free plasma vacuum interface, and the dissipative
‘Energy Principle’ [3] can be made so by making the resistivity infinite outside
the plasma core. This happy situation is valid only for the linearized stability
problem.

Energy methods for nonlinear stability of free boundary problems seem to
be very hard to establish. None is known to me in MHD . Even worse is the
situation of compressible MHD. Compressibility causes large difficulties in
terms of nonvanishing surface integrals even for the fixed boundary problem.
This paper is organized as follows : Section 2 summarizes briefly the status of
energy methods in linearized resistive MHD . Nonlinear stability of dissipative
MHD flows with fixed boundaries is the subject of section 3 . Section 4
specializes on the important case of MHD equilibria without flows . Hopf
bifurcations due to overstability are treated in section 5 . Finally, conclusions
and outlook are given in section 6 .

2 Energy methods in linearized resistive MHD

First, the equations for MHD equilibrium and the linearized resistive MHD
dynamics around equilibrium are given. Then, a sufficient stability condition
with respect to purely growing modes is derived (see [4]). Limiting cases of
physical interest and implications for nonlinear stability are also discussed.
Resistive MHD equilibria generally have a flow which, for simplicity, we
neglect in the equation of motion, but which we keep in Ohm’s law. The




equilibrium equations are given by

JxB = VPO, (]_)
V-B =0, 2)

As usual B is the magnetic field, J = V x B, E is the curl-free electric
field, V is the flow velocity due to resistivity 7o and F, is the pressure. The
‘existence’ of magnetic surfaces is assumed and the resistivity is taken as
constant on these surfaces. The equations of the linearized perturbations are

pE+ VP —jxB-JIxb = 0, (4)
e+ixB+Vxb—mI—nj = 0, (5)
Vxe = —b, (6)

V-b = 0, (7)

, j = Vxb, (8)

B-Viji+b-Vpe = 0, (9)

P, = —yPV-£—¢-VPB, (10

where p is the mass density, Pi, j, b, e and 7, are the perturbations of,
respectively, pressure, current, magnetic field, electric field and resistivity.
The boundary conditions are n-b =n- ¢ = 0, where n is the normal to a
perfectly conducting wall.
Let us express e and b in terms of the vector potential A and take the

gauge of zero scalar potential :

=il

b = VxA,

with the boundary condition n x A = 0. We insert j from eq.(5) into eq.(4)

to obtain a system written in terms of ¥ = ( i ) P

N + PU 4+ QU =0, (11)

where N, P and Q are given by, respectively,

_(r 0
- (50)




P:(B/’?DX("'XB) (---xB/nu))
—(---xB/n0 1/mo 1

and

V(=vPo(V - ...)) =J K (W % i) }
—V(...-VP) —1/noVFP(B- V)V x... Vi)
+B/no x (Vx V x--+)

0 VxV---
+3/no(B - V)7HV x ... Vo)
—V/pg XV Xx---

The first two matrix operators are symmetric and positive. The last
operator Q is obviously not selfadjoint. For this reason we cannot find a
Lyapunov functional which would lead to a necessary and sufficient condition
for stability as in, for example, [5] or [6].

As shown in [4], one can, however, write a sufficient condition for stability
against purely growing modes in the form

§W = (¥,QU) >0, (12)

where the scalar product is defined with purely real quantities. Only the
symmetric part Qs of Q survives in eq.(12), but if a symmetrized form for
eq.(12) is wanted, it is easy to construct Q*, the adjoint of Q, by integration
by parts, and use Qs = (@ + Q%)/2 instead of Q in eq.(12).

Criterion (12) implies volume integrations which can be reduced to inte-
grations on the magnetic surfaces and integrations across them. The operator
(B-V)~! in eq.(12), which comes from integration of eq.(9), is singular across
the rational surfaces (1/z singularity). This singularity is physically prohib-
ited by the breakdown of eq.(9) due to a finite heat conduction & (k) 18
assumed to be infinite and &1 = 0 for eq.(9) ). In fact, 71 should not become
infinite on the rational magnetic surfaces, but small. It is then natural to
define the integrations across the surfaces in the sense of Cauchy principal
parts (no delta functions) as in [6]. Note here that these singularities are
not aggravated by the above-mentioned symmetrizing integrations by parts,
because they occur on the surfaces.

Let us now write §W explicitly:




6W = [ dr(yR(V-€)* + (6 VR)V-¢)
+fdr(VxA)2—/dr§xJ-VxA+
+p [ dr3(A - € xB)Y(B-V)(1/10)(Vro- V x A)
_de(A—g x B)-V x (V x A)1/no. (13)

If we choose in éW the MHD test function A = ¢ x B, then §W reduces
to 6Waymp(see [2]). In the tokamak scaling (large axial wavelength and
magnetic fields) and for J = e,J, noJ = ct-, € = e, x VU,V =0, §W reduces
to the necessary and sufficient condition found in [6] for fixed boundary. If,
in addition, we make the resistivity infinite outside a certain plasma core, we
obtain the equivalent of a vacuum in that region, and a full ‘Energy Principle’
with free boundary is obtained.

It is more convenient to treat 6W in Hamada-like coordinates especially
for the term (B-V)™!, which also appears in [6]. The symmetrization of
Q, if desired, can be done either analytically in the same coordinates by
integration by parts or after discretization in the case of numerical evaluation
by computing the adjoint matrix. .

The equilibrium quantities in eq.(13) should satisfy equations (1)-(3).
To determine the contribution of the last integral in eq.(13), one requires a
knowledge of unavoidable [7] Pfirsch-Schliiter- like flows, which are important
especially for stellarators. The flow in a tokamak can probably be neglected
if the aspect ratio is large enough and the poloidal currents are weak. One
can then take V X 7oJ ~ 0 as in [6].

The main advantage of (13) is that it can be numerically evaluated by
spectral methods well known in ideal MHD stability and recently extended
to MHD stability of stellarator equilibria. A second positive aspect is that
this approach to resistive MHD stability is the only one which takes real
geometry into account together with the complex flows it generates, and in
an exact way at that.

One can ‘upgrade’ conditions (12)-(13) for two limiting cases of physical
interest : 1) for @, &~ € small, which relates to the ‘tokamak scaling’. The
condition becomes necessary and sufficient for stability with respect to all
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modes (not the purely growing only). 2) N = 0, or neglecting inertia in
which case the conditions (12)-(13) become sufficient for stability with re-
spect to all modes. In addition, simplified versions of (13) can be obtained
through physical or natural choices of the test function space. These points
are discussed in detail in [3].

Before we proceed to the full nonlinear stability problem, let us mention
that linear asymptotic stability of dissipative systems imply nonlinear sta-
bility for a restricted level of perturbations. In other words, linear stability
of such systems provides already some finite basin of attraction in functional
space. The boundaries delivered by the estimates theorems may be, however,
much smaller than actual boundaries as will be seen in the next sections. For
a discussion of such estimates for fluids see [8].

3 Nonlinear MHD stability with flow

Following the papers [1] , [9] , [10] , [11] , it is possible to formulate a
sufficient condition for nonlinear stability in HD and MHD . It turns out
that, in case it is satisfied, the system is unconditionally stable i.e. for
all levels of perturbations in functional space. The condition is, however,
satisfied for rather small Reynolds numbers of the order of 20. Let us give
here a derivation, which, though not rigorous in the pure mathematical sense,
is basic and compact. For incompressible fluids and in particular in HD and
MHD the nonlinear terms in the equation of motion are of the quasilinear
type and dissipation is present in the form of material viscosity or resistivity.
More precisely if u is a many components vector field in an L? function space
representing the frame of the fluid motion, u will obey an equation of the

form
1 = A(u)u + Du, (14)

where A(u) is a nonlinear operator depending linearly upon u and D is a
linear negative definite operator if u = 0 at the boundary. A simple example
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A(uju=u-Vu, Du= V2u. (15)

We assume further that
(u, A(u)u) =0, (16)




where the scalar product is given by

(ab) = [a-be, (17)

the integration being done over the volume occupied by the fluid.
To study the nonlinear stability we split u in

u = ug + uy, (18)
where u, is a finite perturbation zero at the boundary and u, satisfies
U = A(uo)uo + Du,. (19)

The equation for u; is then
;= A(y)y, + Luy, (20)

with
Luy = A(uo)u; + A(uy)ug + Du,. (21)

L is a linear operator on u, which in cases like (15) will remain negative
definite if A(u,) and u, are small enough. Taking the scalar product of u,
with equation (20) we obtain

1

5 (1:1111—11). = (1—111 Ll—ll) (22)

by virtue of (16). Since all considered quantities are real we have
(l—llaLl—ll) = (Llla Laul) ) (23)

where L, is the symmetric part of L. Nonlinear stability is then warranted
by Lyapunov methods if
(1w, Lowy) <0, (24)

for all u, satisfying (u;,u,) = finite and u, = 0 at the boundary. Expression
(24) is a sufficient condition for nonlinear stability. The stability problem
is now reduced to the minimization of the hermetian form (u,, Lsu;). This
can always be done for any flow ultimately numerically using standards her-
miteans eigenvalues techniques.




3.1 Application to MHD Couette flows

Let us illustrate the above procedure by studying the nonlinear stability of a
time-dependent MHD flow generalising the time-dependent planar Couette
flow. It consists of a fluid bounded by two horizontal plates, the first plate
at z = 0 and the second at z = h, with velocity parallel to the magnetic field
and both depending only on one coordinate (z) and the time (t):

v = v(z1) &, (25)
B = B(z,t)éy, (26)
satisfying the equations
ov 0*v
E = Ua’:“; — 0, (27)
0B 0*B
B 7]-%2- = 0, (28)
dp B
W ouis = i 29
9z T 0z (29)

where v and 7 are viscosity and resistivity respectively. For simplicity special
solutions of these equations can be taken as

v . a
v = O _esin ([ —z €y, (30)
v

sin/%h
B = - Bo e~ “'sin 2. & (31)
sin %h 7
B2
p = -5+, (32
with the following boundary conditions:
v(0,t) = B(0,t)=0, (33)
v(h,t) = voe ™, (34)
B(h,t) = Bo e " (35)

and f(t) fixed by the boundary conditions on p. In the limit o — 0 this
system reduces to a stationary MHD flow. For By — 0 we have the time de-
pendent Couette flow and when both @ and Bo — 0, we obtain the stationary
Couette flow.




Without going into the details of the calculations and notations, which
can be found in [11], we give an outline of the successive steps leading to the
final result.We obtain first the operator L from (21) and the nonlinear MHD
equations, then extract the symmetric part of L, L; and apply criterion (24)
by maximizing the left hand side of (24). The final results can be summarized

as follows
e For v < 7 the system is stable if

\/_h \/—h
sm\/_h sm\/_h

where
e = M,
v
Boh
B &
v

e For 7 < v the system is stable if

where
Bo. = U_D_}f,
n
Boh
Spm = —.
n

In the limit o — 0 (steady MHD flow) we obtain
Re+ S <2r® for v<ny

and
Rem + Sy < 272 for n<wv.

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)




For the time-dependent Couette flow (Bo — 0), we have

£ h
Re—Y"— < o2, (44)
sin /% h

and for the stationary Couette flow (o, Bo — 0)
Re < 27°. (45)

The critical value 272 ~ 19.7 for the Reynolds number calls for some
comments. The extremalization for the Couette flow in HD has been done
in the literature by constraining the variations to be divergence-free (see e.g.
[12]). As a consequence of that the critical value of 20.7 is found. This gain
of 5% in the critical value is paid by a very sophisticated derivation which
would not be tractable in the case of the generalized unsteady MHD Couette
fAow considered here. This justifies our procedure, which allows compressible
test functions for the extremalization.

The sufficient condition (24) is general and robust, but also too stringent.
It is fulfilled in HD and MHD only if the Reynolds and magnetic Reynolds
numbers are small enough. Since viscosity and resistivity especially for hot
plasmas are small, condition (24) would allow only a very low level of electri-
cal currents and flows. Linear stability analysis and experimental evidence,
however, seem to show that in some cases, values for currents and flows far
beyond those allowed by condition (24) occur without any sign of gross in-
stabilities. In the next section force free fields will be shown unconditionally
stable for any value of the resistivity.

4 Nonlinear stability of MHD equilibria with-
out flow

The stability of complex systems such as fluids or plasmas is usually inves-
tigated in the linearized case. Obviously, the linearization is done in order
to simplify the analysis and obtain a first insight into the problem. This is,
however, by no means sufficient for practical stability for the following rea-
sons : If a system is linearly stable, it implies stability only for infinitesimal
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perturbations. If it is linearly unstable, it may saturate at a low or high level
in the nonlinear regime. Since for practical situations the perturbations are
finite and the saturation levels critical, the study of nonlinear stability, espe-
cially for fluids and plasmas, becomes an important and sometimes crucial
issue.

In hydrodynamics (HD) the planar Couette flow and the Poiseuille flow
in a circular pipe are both linearly stable for all Reynolds numbers (see [12]
and [13]). In practical situations turbulence occurs at Reynolds numbers
larger than roughly one thousand. It is attributed to nonlinear instabilities
or instabilities due to finite perturbations. This view was lent support by
simple amplitude expansions [13] and numerical calculations [14] .

In HD and magnetohydrodynamics (MHD) exact sufficient criteria for
nonlinear stability exist (see [1], [10] and [11]). Such criteria are powerful
and robust, and provide nonlinear stability for arbitrary perturbation lev-
els. In other words, they ensure so-called unconditional stability, which in a
certain sense is too good and is not needed for practical stability, since the
perturbations can be assumed to be limited in an experiment, especially if
one wants to avoid strong vibrations etc. Accordingly, the critical Reynolds
numbers delivered by these criteria are too low, of the order of 5 (see [1]) and
20 (see [11]). :

Unfortunately, no rigorous criteria are available in HD in the range of
Reynolds numbers larger than roughly 20 . This lack of knowledge is precisely
in the range where the nonlinear stability margin will probably depend upon
the perturbation level. This is equivalent to saying that what is missing is a
knowledge of the basin of attraction of the unperturbed solution in functional
space. For very low Reynolds numbers 5 to 20 the basin of attraction is
infinite and for very large Reynolds numbers it is probably infinitesimal or
very small.

Fortunately, the situation is not as bad in MHD. It is possible there to find
unperturbed equilibria with zero flow which are unconditionally stable for all
magnetic Reynolds numbers. A first example is the case of so-called force-free
fields, whose nonlinear stability was recently analyzed by the author [15].
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4.1 Nonlinear stability of force-free fields

Let us assume as unperturbed solution
j=AB (46)

with A = ct. bounded by a perfectly conducting wall.

The equations of motion are those of incompressible MHD with a material
resistivity n constant in space and time. For any finite perturbations v of the
velocity field with n-v =0 at the boundary and A of the vector potential
with n x A = 0 at the boundary the equations of motion are [15]

\.f-’rV‘VV:JOXB]-l—leBo-i-j]XBl, (47)

with V-v =0,
A =v x (Bo+B1) — i1, (48)
B, = V x (v x (Bo + B1) = nj1)- (49)

Taking the scalar product of (47) with v and that of (49) with B, adding
and integrating over the volume, we obtain
0

dr :
_a_tf_z_(v2+Bi)=AdeVXBoB1'—/d7-n.ﬁ (50)

Many quadratic and cubic terms integrate to zero because of the boundary
condition being taken as perfectly conducting. Taking the scalar product of
(48) with By, we can solve for v x Bo- By, and, inserting into (50), we obtain

9 d 5 -
EEj%(vhrﬁf—,\A-v><A)=—"q]d?f(.ﬁ—)\B1-Jl) (51)

or

%]dT%(vz—k(VxA)?—)\A-VxA) = —n]d‘r((VxVxA)Q-
AV x A -V x V x A). (52)

Since (52) also holds for the linearized case, which was discussed a long time
ago in [16], we reproduce the proof given there for the sufficiency of

| /dT%((VxA)z—,\A-VXA)EU (53)
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for nonlinear stability. Note first that n x A = 0 impliesn -V x A =0 at
the boundary, so that if (53) is satisfied for n x A = 0, then the right-hand
side of (52) will be satisfied for n - V x A = 0. By means of the Lyapunov
theorems the expression under the time derivative of the left-hand side of
(52) is a Lyapunov function if (53) is verified. Condition (53) is sufficient
for stability independently of the values of the resistivity and viscosity. As
mentioned above, there is nothing like this in HD .

4.2 Two-dimensional perturbations

A less spectacular example in MHD is the nonlinear stability of a straight
z-pinch or tokamak surrounded by perfectly conducting walls. Here it is pos-
sible to prove nonlinear stability with respect to 2-dimensional perturbations
if the current density is homogeneous, the velocity of the unperturbed fluid
v being zero. The equilibrium is given by

AV = Jy=—P'(¥), (54)
jo = e.Jo, (55)
Vo = 0. (56)

U denotes the flux of the poloidal magnetic field, Jo is the current density
in the z direction and P(¥) is the pressure as a function of ¥. A constant
magnetic field B, in the z direction could be added without changing the
shape of ¥, which is determined by (54) for any given boundary condition
on U.

The MHD equations of motion for an incompressible fluid with mass
density equal to unity are

a g . .
a_:_]_v-vV — _]1XB0+J0XB1+J1XBl_VP1+ﬂAV$ (57)
JB .
- atl —V x (v x (Bo+ B1)) + 7V % j1, (58)

where v and B, are finite perturbations of the velocity and the magnetic
fields having n - v = n - By = 0 at the boundary. Taking the scalar product
of (57) with v and that of (58) with B;, adding and integrating over the
volume, we obtain
%% (vi+ B3)dr = ]v-jo x BqdT — p/(v x v2)dr —n/(v x B?). (59)
13




Many quadratic and cubic terms integrate to zero because of the boundary
conditions. The right-hand side of (59) would be negative if the first integral
on the right-hand side of (59) vanished. We now prove that this is the case
if jo = ct. Introducing the vector potential, we have

/vij-VxAd'rz/A'(jo-Vv—v-Vjo)drz[). (60)

The last equality is due to the two-dimensionality of v and the assumption of
a constant vector jo. This means that the expression under the time deriva-
tive on the left-hand side of (59) is a Lyapunov function, from which non-
linear stability follows. Again this condition is independent of the Reynolds
and magnetic Reynolds numbers, in contrast to, for example, [11], but the
stability is unconditional.

For the above two examples we were able to obtain sufficient and uncondi-
tional stability conditions without limitations on the Reynolds numbers. Our
examples are of course special and contain an important ingredient vo = 0,
i.e. no flow in the unperturbed state. This is nontrivial only in the MHD
cases. In contrast, the criteria [1], [10] and [11] are very general but imply
severe limitations on the Reynolds numbers. The examples given in this note
and the general criteria [1], [10] and [11] have one thing in common, viz-they
all deal with unconditional stability.

As mentioned at the beginning, this is not necessary for practical stability.
If we want to get rid of unconditional stability in our proofs, we have to deal
with finite basins of attraction in functional spaces. Practical stability is tied
to this very difficult problem.

5 A manifest Hopf bifurcation

In this section we consider the case for which condition (12) is satisfied and
prove that, if the inertial term can cause some additional overstability, the
modes appearing in this way meet the requirements of the centre manifold
theorem [17]. This means that they can be stabilized nonlinearly through a
Hopf bifurcation, resulting in a limit cycle or nonlinear periodic oscillation.
If N # 0 in equation (11), inertia-caused overstable modes can occur : In a
special example [18] , the overstability occurs only in the compressible case,
primarily at the magnetoacoustic resonance.

14




Let us now consider the case for which (12) is satisfied but (11) is over-
stable for N # 0. Any overstable mode of (11) is given by

£ = Teliwtnt (61)
where w and v are real and satisfy

(72 — W?)(T, NO) + (T, PT) + (T,Q,¥) = 0, (62)
9w (T, NU) + w(¥, PT) + (¥,Q,¥) = 0. (63)

We see from (62) and (63) and, generally, from the reality of the operators
in (11) that £&* = U*el=“#)" is also an eigenmode of (11). It follows that the
modes due to the inertia operator N always come in pairs with opposite sign of
the real frequencies but the same growth rate, all other modes being damped
because of (12). These features are precisely the principal ingredients of the
centre manifold theorem [17]. In summary, if (12) is satisfied, inertia-caused
overstability can lead to a Hopf bifurcation resulting in a periodic nonlinear
oscillation.

Let us illustrate the occurence of the overstability and the Hopf bifurca-
tion by choosing the operators N and P of (11) proportional to the identity.

nI¥ + pI¥ + (Q. + Q)Y = 0, (64)

~ where n and p are positive numbers.
If the eigenvalue problem for @, + @, can be solved, we have

(Qs + Qa)\_pm = Am\j[lm (65)

with
A = AmR + 1A mI- (66)

)\, and U, are, in general, complex, though (64) involves only real quantities.
If we make the ansatz ¥ = U,,e“m!, the eigenvalues of (64) w, are related
to the A, by the following equation

nw2+pw+,\n+z'}q=0, (67)

valid for each pair of eigenvalues A, and wy,.
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Let us split w in real and imaginary parts, then (67) can be written as a
svstem

nwh —ud) +pon+dn = o (65)
LU[(Q?'LLUR—:'p)+/\[ = & (69)

Inserting in (68) the value of w; obtained from (69), we have

2
nAj

2 _
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Since n and p are positive, it is easy to make schematic plots of the left
hand side (lhs) and right hand side (rhs) of (70) (see Figures 1 and 2). Let
us consider two cases : first, some Ag < 0 (Fig. 1), and second, all Az > 0
(Fig. 2), which follows from the validity of (12).

rhs

|
I
I
I
I
[
I
I
|
|
i
I
|
l —
I

p/2n Wp

Fig.2 Ag>0

We see that, if some Ag < 0, the system (68, 69) has always a positive
root wg (see Fig. 1), which means instability. Let us note that a violation
of (12) for a ¥ which is not representative of the eigenfunction, does not
necessarily imply that Ap <0 . i

In case Ag > 0, the crossing point leads to an instability only if Ap < 7—‘:—}
(see Fig. 2). As mentioned above and in [19] the unstable crossing cannot
occur for n &~ 0 or A; very small or p large. Starting from a small n, for
Ar > 0 and A; and p fixed, we obtain an overstability by increasing the value




of n until
n)x%

as explained in [20].

6 Conclusions

Energy methods appear as a powerful tool in MHD stability in the linear
case as well as in the nonlinear one. The energy methods of the linear case
are efficient for fixed and free boundaries. The linear stability problem is es-
sentially reducible to a Hermitean form, which can be minimized analytically
or numerically. For general geometries, codes similar to those considered in
[21] lead to many applications.

At present, energy methods are also efficient for nonlinear stability as
long as no free boundaries are considered. The ability to find statements,
especially for force free fields in general geometry, is possible if the fluid is
bounded by a perfectly conducting wall. The same is true for the nonlinear
stability of flows in HD and MHD. The assumption of incompressibility seems
also essential for the derivation of criteria in nonlinear stability. This situa-
tion is, hopefully, only due to technical reasons, perhaps because the known
criteria are unconditional. Unconditional stability seems to be theoretically
more accessible, though it is not needed experimentally.
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