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Abstract

The inverse cascade of the mean square potential A in a 2D magnetofluid
randomly forced at small scales is studied by numerical simulations. One
finds the spectrum A, ~ 2.66?4/ *k=7/3. The cascade proceeds by coalescence
of current filaments, which is a fast reconnection process owing to high tur-
bulent resistivity. Statistics of év; and §B; are strictly Gaussian, also in the
condensation phase of Ay at £ = 1. Only when the coherent magnetic field
intensity exceeds that of the fluctuations, non-Gaussian statistics in § B; oc-
cur, which are, however, entirely due to the static magnetic structure and
not associated with intermittency of the small-scale turbulence, the latter
remaining Gaussian.
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Two-dimensional (2D) magnetohydrodynamic (MHD) turbulence has re-
cently attracted considerable interest (see e.g. [1] - [4]). Contrary to 2D
Navier-Stokes turbulence, which is fundamentally different from that in 3D,
2D and 3D MHD turbulence have many features in common. In particu-
lar both exhibit a direct spectral cascade of the energy E = EV + EM =
3 J(v*+ B*)dr and an inverse cascade of a pure magnetic quantity, the mag-
netic helicity H = % JA-B dr in 3D and the mean square magnetic potential
A= % [ a*dr in 2D, where a is the component of the vector potential in the
third direction. It is generally believed that inverse cascades are the origin
of self-organisation, i.e. formation of large-scale coherent structures, for in-
stance the isolated vorticity eddies observed in decaying 2D Navier-Stokes
turbulence result from the inverse energy cascade [5]. The latter has recently
been studied [6], showing that contrary to the behavior in the direct cas-
cade the statistics of the velocity field increments are Gaussian at all scales.
Only after the self-similiarity of the inverse cascade process is broken due to
condensation in the largest possible wavelength non-Gaussian statistics are
generated which are attributed to a revival of intermittency of the small-scale
turbulence. The question arises whether this behavior is a special property of
the 2D Navier-Stokes system, which obeys a particulary simple equation, or
is a more generally valid feature of inversely cascading systems. We therefore
consider the inverse cascade of A in 2D MHD, which is a more complex sys-
tem than 2D Navier-Stokes but still allows numerical simulations with high
spatial resolution.

When turbulence is excited by injecting A with the rate ¢4 into some
wavenumber range around k ~ kg, the spectral properties for & < ko are
determined by the inverse cascade of Ax. A simple Kolomogorov-type di-
mensional analysis yields (see e.g. [1])

Ay = CalPk, (1)

where C4 is a (possibly not universal) constant. The spectrum (1) corre-
sponds to an almost flat magnetic energy spectrum, EM = k2A; o k~1/3,
The kinetic energy spectrum E} cannot be determined in this way. The
usual way relating E} and E} in the direct energy cascade is provided by
the Alfvén effect [7], that due to the influence of the large scale magnetic

field small-scale fluctuations v, B are tightly coupled forming Alfvén waves




such that EM ~ E}. The Alfvén effect is, however, expected to be weak
in the inverse cascade process because of the absence of a significant large-
scale field. Direct numerical simulations of the inverse cascade in 2D MHD
turbulence have previously been performed [8]; however, the resolution (up
to 642 collocation points) used was too small to identify an inertial range,
and the statistical properties were not addressed. In this Letter we present a
series of simulations of rather high resolution (up to 1024?). The main points
investigated are the spectral behavior in the inertial range of the inverse cas-
cade, the dynamics of the cascade process and the statistical properties in
the self-similar cascade and the condensation phases.

The 2D incompressible MHD equations are conveniently written in terms
of a and the stream function ¢ assuming uniform mass density p =1 :

oa+v-Va= D, + f,, (2)
3tw+V'Vw—B'Vj=Dw+fu, (3)

where the magnetic field is B = Va x %, the velocity v = V¢ x Z, the
current density j = —VZ2a and the vorticity w = —V?¢. D, and D, are
the magnetic and kinetic dissipation terms. In order to concentrate dissipa-
tion at small scales we use higher order diffusion operators, D, = —nsA®a,
D, = —vsA®w, which have been found in studies of decaying turbulence

[3] to allow efficient energy absorption without perturbing the inertial range
properties. The external forces f,, f. are applied in a narrow wavenumber
band Ak around ko, where ko = 100 for 5122 resolution and ko = 250 for
10242 resolution, Ak = 5, and 74 = v4 is chosen such that the residual dis-
sipation for k < ko is very small. In most cases reported here we choose
white-noise Gaussian random forces. The Aj cascade is most clearly ob-
served, when the system is driven only magnetically, f, = 0. If f, ~ f,, but
both are uncorrelated, the coupling of energy and potential into the system
is rather inefficient. The case where f,, and f, are correlated, corresponding
to the injection of cross-helicity K = 1 [v-B d7 is not treated here, all cases
considered having K = 0. The case f, > f, will be briefly considered at
the end, while the main part of this work is restricted to purely magnetic

driving, f, = 0.



Equations (2), (3) are solved on a square box with periodic boundary
conditions using a pseudo-spectral method with dealiasing according to the
2/3-rule. The initial state is ax = wx = 0. Four phases can be distinguished.

) (a) Linear stochastic phase. Linearizing eqs.(2), (3) ay = ap + ay, ¢x =
bk, ay = Y; fa(t:)At, we can derive the induced spectra E}M, EY in the initial
period. Because of the white noise property of f, the magnetic energy EM
in Ak increases linearily in time, EM(t) = ¢ t,e = dE™ /dt. Omitting the
straightforward, but somewhat tedious algebra we obtain

1

EY = ay)(Ak)? . e, (4)
. kS
EJI:{ = az(Ak)z'Ic—gEgt'T, (5)

where ay, a; are numerical factors. Hence E,Ef is flat (the same behavior is
obtained in the Navier-Stokes case [6]), while EM o k°. Although the sys-
tem is driven only magnetically, the induced spectral kinetic energy is initially
much larger than the magnetic one, E;’ > E',‘:” , but the latter rapidly catches
up and reaches the former at £ ~ ko, which initiates the nonlinear phase,
where both are tied together, EM ~ E}. Rapid growth of EM, E} contin-
ues, until the induced spectrum in the dissipation range is high enough to
balance the energy input, at which point the total energy saturates, staying
constant henceforth except in the asymptotic condensation phase (d). The
numerical simulations closely reproduce the predicted hehavior, eqs.(4),(5),
as illustrated in Fig.1.

(b) Nonlinear cascade phase. The mean square potential A grows linearly
in time, which drives the inverse cascade process. Figure 2 shows the resulting
spectra of Ay, EM,EY. A exhibits an almost precise k~7/3 law with Cy =
2.6 + 0.2. Since eq.(1) is derived neglecting the Alfvén effect, the present
results confirm that this effect is weak in the inverse cascade. The magnetic
energy spectrum is close to k~'/3, the kinetic one close to k'/3. The reduced
spectrum Eff = E;l‘"f — E) is positive and scales approximately as k4,
It is worth noting that the normalized reduced spectrum Eff/E; o« k7! is
steeper than observed in freely decaying turbulence, where Ef'/E) o« k='/2
due to the Alfvén effect as observed in (3] for the direct cascade. Hence in




the present case the system tolerates larger differences between EM and E}
in the inertial range, which is consistent with the absence of an Alfvén effect.

As the inverse cascade proceeds, coherent magnetic structures increas-
ingly dominate the spatial distribution a(z,y) as illustrated in Fig.3a. These
structures are generated by current filaments of diameter ~ kj', which lo-
cally condense out of the stochastic sea of current density fluctuations. The
cascade dynamics is governed by the coalescence of such magnetic eddies.
Coalesence is much faster than in decaying MHD turbulence [3], since the
high level of small-scale fluctuations induces an anomalous resistivity, allow-
ing fast reconnection. We investigate this effect by comparing the coalescence
of two eddies of the state given in Fig.3a with the corresponding two eddy
system with the same values of 74 = v4 but no small-scale turbulence. The
two systems are illustrated in Fig.4, the coalescencing eddies being those in
the lower left corner. The third eddy in Fig.4b represents the effect of the cur-
rent filaments of opposite sign, since the total current in the system is zero.
The reconnection processes in the two systems are shown in Fig.5, where
d(t), the distance between the current filaments, is plotted. In the second
case reconnection starting at ¢ ~ 46 is clearly much slower. The turbulent
reconnection can be modeled using the results of refs. [1], [9]. Note that
because of the attractive forces between parallel currents magnetic eddies
coalesce more frequently than vorticity eddies in 2D Navier-Stokes turbu-
lence, the latter primarily circling around each other. We also note, that
the quasi-singular magnetic structures seen in Fig.3 are rather different from
the rounded magnetic eddies corresponding to smoothly distributed currents
seen in the inverse A cascade in freely decaying MHD turbulence [3].

As in the case of the inverse energy cascade in 2D Navier-Stokes turbu-
lence [6], the statistics of the velocity and magnetic field increments évi(=
ve(z + 1) — vz(z)), 6B, are found to be strictly Gaussian at all scales. This
seems in fact to be a general feature of inversely cascading systems. We ob-
serve a similiar behavior in a shell model of MHD turbulence (even though
this model does not reproduce the spectral properties of the fluid system).
The statistics do also not depend sensitively on those of the driving forces,
remaining almost Gaussian even for constant forces.

(c) Condensation phase. During the inverse cascade process the ground
state mode A; grows linearly in time as the spectral front propagates to
smaller k. Condensation starts when A; reaches the spectral level (1). Since




the energy flux from ko to smaller % is zero, the total energy remaining
(statistically) constant also in the condensation phase, the growth of the
ground state energy E; = A; results in an energy loss of the higher-k modes
1 < k < ko, i.e. an increase of the spectral index v, B} o< k¥, -

By + Z E.=FE + L S const.. (6)
E>1 presil

The spatial distribution of the coherent part of a in this state consists of
both the ground state potential o sinz + siny and the potential of a pair
of antiparallel line currents (Fig.3b), which has a broad spectrum. Since the
energy associated with the current filaments is larger than the contribution
of that of the ground state k = 1, condensation occurs primarily in x-space
(condensation of current filaments) rather than in k-space. Hence the term
Bose-condensation used in [6] is misleading. Only in freely decaying MHD
turbulence relaxation to the ground state occurs.

The statistics of §B; and év; remain Gaussian also in the condensation
phase. No change at any scale is observed when passing from the state in
Fig.3a to that of Fig.3b. This invalidates the supposition that breaking the
self-similarity of the inverse cascade introduces non-Gaussian statistics. Our
results seem to be different from the 2D Navier-Stokes case [6], where strong
deviations of §v; from Gaussianity are reported to occur in the condensation
phase. This point will be clarified in the following paragraph.

(d) Asymptotic condensation phase. Though the coherent part of the
state in Fig.3b contains most of the mean square potential A, its energy
contribution is still small compared with the total energy E. This contri-
bution grows linearly in time and after reaching a finite fraction of £, the
latter starts to increase, too, invalidating relation (6). In this asymptotic
phase, where the coherent quasi-static field generated by the two current
filaments dominates over that of the small-scale turbulence, the statistics of
§ B, become increasingly non-Gaussian, while those of év; remain Gaussian.
This seems to contradict the expectation, that the strong large-scale field
should couple small-scale magnetic and kinetic fluctuations and therefore
their statistics due to the Alfvén effect. To investigate this discrepancy more
closely, we generate a much further evolved state simply by multiplication
of the current density in the two filaments by some factor £ > 1 and sub-
sequent relaxation until the statistics have reached a new quasi-stationary
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level. Figure 6 shows Fg = (§Bf)/(6BE)® for several values of £. The lower
dashed curve is the Gaussian Fg = 15, while the upper dashed curve gives
F¢ for the static contribution of the x = 50 state. Hence the non-Gaussian
statistics is generated by the quasi-singular structure of the static field near
the filaments of width = kj', while the superimposed turbulent fluctuations
6 B; remain perfectly Gaussian, as found by eliminating the coherent current
filaments by choosing & = 0. This can be related to a recent result concerning
the equilibrium statistics of the MHD fluctuations about a static field [10].
We have also investigated the 2D Navier-Stokes case. Here, too, contrary to
the interpretation given in [6], the non-Gaussian statistics in the condensa-
tion phase are only due to the quasi-stationary flows generated by the two
antiparallel vorticity filaments, while the superimposed turbulence remains
Gaussian.

Finally we want to mention briefly some results for the opposite case of
strong kinetic driving f, > f,. Here the magnetic energy remains small
enough, EM < EY, such that the Lorentz force is negleglible and the fluid
behaves as in the Navier-Stokes case [6] with E} o k~%/3. The magnetic
potential a is essentially a passive scalar. Using the formal analogy between

w and a, both following identical equations, the magnetic energy spectrum

is predicted to be EM ~ E}k* o< k7/3, which is in fact observed in the sim-
ulations. The magnitude EM remains constant. Note that because of the
antidynamo theorem finite driving f, # 0 is required to balance resistive
dissipation.

In conclusion, we have shown that the inverse cascade of A; in 2D MHD
turbulence proceeds by coalescence of current filaments. The reconnection
of the associated magnetic flux a is a rapid process due to the anomalous
resistivity generated by the high level of small-scale turbulence. The statistics
of 6B, and év; are Gaussian througout. This seems to be a robust general
feature of inversely cascading turbulent systems, which does not depend on
the way of forcing or the self-similiarity of the cascade, which is broken in
the condensation at k& = 1 without changing the statistics. Only in the
asymptotic condensation phase, when the quasi-static field dominates over
the fluctuating one, non-Gaussian statistics in 6 B; arise, which are, however,
entirely due to the static field, while the superimposed turbulence remains
Gaussian. A similiar behavior arises in the 2D Navier-Stokes case, which
gives a new interpretation of the numerical results reported in [6].
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FIG. 1: Time evolution of EM and E} in the linear stochastic phase, ob-
tained from a 1024 simulation with pure magnetic driving, f, = 0.
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FIG. 2: Spectra of Ay, EM, E} in the cascade phase, obtained from the
same state as in Fig.1.
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FIG. 3: Distribution of the magnetic potential a(z,y) in the coalescence
phase (a), in the condensation phase (b), obtained from a 5122 simulation.
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FIG. 4: Magnetic potential a(z,y) of the two states of Fig.5 at ¢ = 43.5,
(a) full simulation, (b) corresponding idealised system.
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FIG. 5: Distance d(t) between two coalescing magnetic eddies: full simu-
lation (full line), two isolated eddies without small-scale turbulence (dashed
line).
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FIG. 6: Fs = (6BP)/(6B#)? in the asymptotic condensation phase.




