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ABSTRACT

Calculations of the neoclassical transport rates due to particles trapped in the helical
ripples of a stellarator’s magnetic field are carried out, based on solutions of the bounce-
averaged kinetic equation. These calculations employ a model for the magnetic field
strength, B, which is an accurate approximation to the actual B for a wide variety of
stellarator-type devices, among which are Helical-Axis Advanced Stellarators (Helias)
as well as conventional stellarators and torsatrons. Comparisons are carried out in
which it is shown that the Helias concept leads to significant reductions in neoclassical
transport rates throughout the entire long-mean-free-path regime, with the reduction
being particularly dramatic in the »~! regime. These findings are confirmed by
numerical simulations. Further, it is shown that the behavior of deeply trapped particles
in Helias can be fundamentally different from that in classical stellarator/torsatrons;
as a consequence, the beneficial effects of a radial electric field on the transport make

themselves felt at lower collision frequency than is usual.




I. INTRODUCTION

As a refinement and further development of the original Advanced Stellarator
concept [1], the Helical-Axis Advanced Stellarator (Helias) [2] has been formulated
as a means of greatly reducing the Pfirsch-Schliiter equilibrium current which flows in a
stellarator plasma while also maintaining a global magnetic well. This combination al-
lows finite-pressure configurations with average beta, () > 5%, with minimal Shafranov
shift of the plasma column and only small changes in the vacuum rotational transform
and shear profiles [3]. That these favorable characteristics may simultaneously exist for
real magnetic fields has been demonstrated using an optimization procedure based on
the observation that the shape of the outermost magnetic surface completely determines
the properties of the confinement region [2,4] (thus allowing the solution of boundary
value problems during optimization, with parameters describing the shape of the last
magnetic surface serving as the optimization variables). In a subsequent step, the
desired magnetic field is realized using a finite number of discrete current-carrying
non-planar coils [5-6]. Taken together, the advantageous physical properties of the
magnetic field and the ability to realize such a field through the use of modular coils
makes the Helias concept particularly favorable for future stellarator development; these
points weighed heavily in the decision to base the design of the future large stellarator
Wendelstein 7-X [7] on the Helias concept.

Along with their desirable MHD properties, Helias configurations have favorable
neoclassical transport characteristics as well, both in the collisional (plateau) and
collisionless (long-mean-free-path) regimes. In the plateau regime, the reduction of
the Pfirsch-Schliiter current leads to a neoclassical particle flux, I', which is less than
that of an axisymmetric device of equal aspect ratio and rotational transform [8]. The
amount of reduction depends on the particular Helias configuration, but typically
the ratio Tgetias/Tazisym lies between 1/6 and 1/2. On the other hand, classical
stellarator/torsatron devices strictly satisfy I'sse1/Tazisym > 1 [9].

The transport characteristics of the various Helias configurations are more difficult
to quantify in the long-mean-free-path (Imfp) regime. In this case the detailed structure
of the magnetic field plays a crucial role with particles trapped in local helical-ripple
wells giving rise to the dominant transport mechanism. It has been pointed out that
some Helias fields have a small variation of the minimum value of B along a field line
[8] and hence are similar to so-called “drift-optimized” stellarator fields [10-13]. Other
Helias fields are “quasi-helical” [4], i.e. in magnetic coordinates their harmonic structure
approximates that of a straight cylindrical stellarator. In this latter case the magnitude
of the toroidal modulation of B is much less than the inverse aspect ratio, €, and hence

the radial drift of particles away from magnetic surfaces is reduced. One would expect
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in both of the above cases that neoclassical transport losses in the Imfp regime should
be reduced. Monte Carlo simulations have also been carried out for several Helias
configurations with encouraging results [14,15).

What has been lacking thus far, however, is a detailed analytical examination of the
neoclassical transport characteristics of Helias in the Imfp regime. Such an analysis has
been complicated previously by the limitations of the existing analytic theory; these
arise principally because (i) the simple, one-helical-harmonic magnetic field models
which have most often been assumed do not provide an adequate description of a
Helias field, and (ii) a single theory capable of handling the entire range of low collision
frequencies did not exist. Both of these shortcomings have been largely overcome by
the advent of a power-series solution of the bounce-averaged kinetic equation which is
valid for all collision frequencies characteristic of the long-mean-free-path regime [16].
The extension of this solution to deal with a more general model magnetic field — one
which provides an equally accurate representation of B for Helias configurations and
conventional stellarators and torsatrons — is one of the principal topics of this paper
and is described in Section IIL

To further aid in clarifying the favorable transport characteristics of the Helias,
the bounce-averaged kinetic equation will also be solved in the v~! regime (the more
collisional end of the Imfp regime where the transport coefficients scale inversely with
collision frequency) by means of the more conventional asymptotic analysis. This
solution is presented in Section IV. The result is instructive because it explicitly shows
the dependence of the neoclassical transport coefficients in this regime on the interplay
of various magnetic-field quantities and because it allows a direct comparison with the
more general results obtained in Section IIL

All results are derived in a general form, greatly facilitating a comparison of specific
Helias configurations with other stellarator-type devices. This comparison is carried
out in Sections IV and V. Also presented in Section V are numerical results obtained
by application of the well-known Monte Carlo simulation technique; these provide
independent confirmation of neoclassical transport coefficients obtained analytically.

Discussion of the results and concluding remarks are given in Section VL

II. THE MODEL MAGNETIC FIELD

Before proceeding to these topics, however, some general comments are in order,
especially with respect to the model magnetic field which will be used. Throughout this
work, the magnetic coordinate system (r, ¢,0) [17] will be employed; here r is a flux
surface label, related to the toroidal flux through the expression 1 = Bor?/2, and ¢,0
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are toroidal and poloidal angle-like variables, respectively. In this coordinate system, a
sufficiently general expression for the magnitude of the magnetic field is given by

B : .
B~ ; C'm,e(r) cosmpg cos £6 + Z Sm,¢(r) sinmpg sin £0, (1)

m,e
where p is the field period number.

An accurate representation of any real stellarator/torsatron field typically requires
that a large number of terms in the expansions be kept. This is especially true in Helias
configurations for which the magnetic field is produced by a large number of discrete
non-planar coils (typically 10 per field period); high-order m harmonics are present in
a Helias field which would be absent for a continuously wound stellarator. Indeed, the
decomposition of a Helias magnetic field according to Equation (1) invariably yields
more than 50 contributing harmonics. The great majority of these harmonics are very
small in magnitude, however, and one finds that a good approximation to B for both
Helias and conventional stellarator-type devices is obtained if the expansion is limited
to include only m = 0 and m = 1 terms. Given this simplification, it is possible to
construct the model magnetic field

B/By = Cyp — |Co,1| cos8 + Cy,2 cos 20 — ey (r,8) cos(x — pd) , (2)
where the m = 1 harmonics are identified with the stellarator’s helical ripple
ex(r,0) = en(r)(1 — o1(r) cos § — ao(r) cos 26),
the phase angle y is determined from
—cosy = Clen, —sinx = S/ey,
and where the geometric quantities are given by
C=C1,0+Cicos0+-:+ Cyecosth,

S=S51,1sin0+4---+ S1,¢sinfb,
2T
1 2, q2\1/2
en =5 [ dB(C*+S7)N2,
0
1 2
oy = —;fdﬂ(cz + 82)1/2 cos 9,
h
0

2w
gy = ___1._.](16?(C2 +SH)2 cos26 .
TER
0




To illustrate the relative magnitudes of the harmonics which are incorporated into
this model magnetic field and those which are neglected, it is instructive to look at
the general decomposition of B for several realistic magnetic fields. This is done in
Figure 1 for the Helias HS5V10N (the reference configuration for Wendelstein 7-X), for
the Large Helical Device (LHD) heliotron/torsatron [18], for the classical stellarator
Wendelstein VII-A (W VII-A) [19] and for the URAGAN-2M (U2M) torsatron [20]. In
each case all harmonics which attain a magnitude of at least 0.05¢;(r) are shown. For
LHD and W VII-A there are no harmonics with m > 1 which reach this threshold; for
LHD the largest of such harmonics has been plotted to indicate their magnitudes while
for W VII-A, harmonics with m > 1 are truly so small that they cannot be discerned
on the figure. The m = 4 terms in the U2M spectrum are a consequence of the toroidal
field coil set (4 coils per field period) which provides a significant portion of this device’s
magnetic field. Discrete-coil ripple of this type is also present for HS5V10N, however
the large number of modular coils per field period envisioned for the device (10 in this
case) ensures that harmonics associated with this “modular” ripple lie well below the
0.05€4(r) threshold except for the outermost flux surfaces. The effect such harmonics
have on the neoclassical transport characteristics of the device is thus small [21] and
will be ignored throughout the rest of this work.

The smallness of the neglected harmonics is not the only measure of the accuracy
of the model field given in Equation (2), of course, since there is no guarantee a prior:
that higher-order terms neglected in the formulation of ey (e.g. 03 cos 36, o4 cos 46) are
not essential to an accurate representation of the helical ripple. That these higher-
order terms may indeed be neglected is illustrated in the frames of Figure 2, where
the variation of B along a field line obtained from the general expression of Equation
(1) is compared with the simplified model field of Equation (2). In the upper frame
of each figure pair only harmonics with m < 1 have been considered, while in the
lower frame the general expression for B/ By also includes all the remaining harmonics
depicted in Figure 1. In the former case the agreement between the two curves is
uniformly excellent; the additional harmonics present in the lower frames introduce
small, although noticeable, discrepancies. In light of the usual approximations made
in developing a tractable analytic theory, these discrepancies appear acceptable. This
assertion, however, remains to be demonstrated.

The accuracy of the model field demonstrated in Figure 2 is of considerable
importance since this field — unlike the general expression of Equation (1) — may
be treated within the framework of bounce-averaged transport theory as described in
the following section; although solutions of the bounce-averaged kinetic equation have
been obtained for more general magnetic fields in the »~! regime [11-13], it is the model

field of Equation (2) which makes it ultimately possible to derive a solution which is

5



o
©3 HS5VION LHD
€ C12:S12
2 p S
) o
o J —Sia
©
o
o
~ —Cia
Q
o
€t
() C [ {
3 k4 © LA
.43 o -43 —L0.1
ad a
Ewn £
< O <C
22 53
S —C =
o% 0.1 o
(i ()
r © o
'3 =S
o
—Ci1
/
o~
21 /
= —C2.3,—S23 1-Co.o
Coo—1
g _00.2031.2
C
01'2 s C2.3,523
8 - == ¢ =313, o
: o
0.0 0.5 1.0 0.0 0.5 1.0
p=r/d p=r/a

Figure 1. Magnetic-field-strength harmonics according to the decomposition given in
Equation (1) are shown as a function of normalized plasma minor radius for the Helias
HS5V10N, the torsatron LHD, the stellarator Wendelstein VII-A and the torsairon
URAGAN-2M. Harmonics which attain a magnitude of at least 0.05¢x(r) for at least
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one value of r have been chosen (for LHD, the largest harmonic with m > 1 has also
been plotted to indicate the magnitude of such harmonics). The inverse aspect ratio,
et = /Ry, 13 shown for each configuration by the dotted line.
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Figure 2. The variation of B/By along a field line for HS5V10N, LHD, W VII-A
and U2M is plotted for the p = 0.5 fluz surface. Two poloidal transits are shown. A
comparison 18 provided of the general ezpression for the magnitude of the magnetic field
gwen in Equation (1) (solid line) with that of the simplified model field of Equation
(2) (dotted line). In the upper frame of each pair of figures, only those harmonics with
m < 1 have been included in the general ezpression for B/By; in the lower frame all
harmonics present in Figure 1 have been accounted for (only one frame appears for
W VII-A since this device has no harmonics with m > 1). The model field is the same
in both frames of each figure pair.




valid throughout the entire Imfp regime. This model field has the additional advantage
that it may be easily simplified (by setting Co,0 =1, |Co,1| = €; and Co,2 = 02 = 0) to
recover

B/By =1—¢€;cos8 — ex(1 — oy cos ) cos(x — pg) - (3)

Stellarators with such a field have received considerable attention in the past decade
as potentially having reduced neoclassical transport (relative to the idealized, single-
helical-harmonic stellarator for which o; = 0). In what follows, the more general
expression of Equation (2) will prove necessary to obtain accurate quantitative results,
however a qualitative understanding is often possible on the basis of Equation (3). For
this reason, it will be worthwhile to discuss here some of the properties of this simpler
magnetic field. .

The model magnetic field of Equation (3) was introduced in Reference [10] and
is the prototype of so-called “drift-optimized” stellarator fields. This field and others
similar to it have been subsequently investigated by many authors using both analyt-
ical [11-13,16,22,23] and numerical [16,24-27] techniques. For such fields, a poloidal
dependence of the helical-ripple profile — represented here by the (1 — oy cos§) term
— leads to a reduction in the radial drift velocity, 7, for the majority of ripple-trapped
particles; hence the name, drift optimized. In this particular case the reduction occurs
for positive oy values (on the other hand, the radial drift velocity is increased for the
majority of localized particles when o; < 0, the so-called “drift-amplified” case). It is
important to emphasize here that the reduction in radial drift velocity occurs for the
majority of ripple-trapped particles, but by no means for all; the remainder — those
shallowly trapped in the local ripples — experience an increase in 7. Whether a drift-
optimized stellarator field is capable of leading to a general reduction of neoclassical
transport throughout the entire Imfp regime has therefore been a controversial question.
In the v~ ! regime the answer is not in doubt. For this range of v values, collisions are
frequent enough to insure that all trapped particles participate in the transport process;
the results presented by numerous authors unanimously confirm that drift optimization
can lead to a significant reduction in the transport rate, given these circumstances.

At the other end of the Imfp regime, however, where the collision frequency is very
low, this unanimity disappears. In this case, in which collisions are rare, the shallowly
trapped particles mentioned above are expected to participate in the dominant transport
mechanism while the remainder of trapped particles do not contribute [28]. This
physical argument has been used to justify claims that the transport rate is increased for
drift-optimized configurations when v is very low, and that drift optimization cannot
be used to reduce the neoclassical losses throughout the entire lmfp regime [12,29].

However, more recent analytical and numerical results have contradicted these initial
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findings [16,27]. In these latter results, certain drift-optimized stellarators continued to
exhibit more favorable transport rates than their non-optimized counterparts even at
very low v, although the reduction was less than that found in the »~! regime.

To determine whether a particular device is drift optimized or not, it is usually
sufficient to look at the signs of the coefficients of the principal helical harmonic
(C1,n,S1,n) and its largest sideband (C1,n+1,51,n+1). As a rule, if the signs are opposite
the configuration will exhibit some degree of drift optimization; if the signs are the same
the device is drift amplified. Applying this rule to the four configurations given in Figure
1, one can classify HS5V10N and LHD as drift optimized while W VII-A and U2M
are drift amplified (which is typical for classical, continuously wound stellarators and
torsatrons [30]). These four devices thus provide an excellent opportunity to clarify the
neoclassical transport properties of drift-optimized/drift-amplified stellarators, using
actual magnetic fields.

The Fourier decompositions of B given in Figure 1 also illustrate an important
trait of Helias which is not typical of the majority of toroidal devices, namely that the
magnitude of the toroidal modulation of B, |Cy 1|, is less than the inverse aspect ratio,
e = r/Ry, for each and every flux surface. The exact ratio of these two quantities
depends on the particular Helias (and can approach zero for a quasi-helical Helias [4]);
for HS5V10N one finds that |Cy1|/e; & 0.4. In contrast, one sees that the usual toroidal
approximation |Co 1| = € is relatively accurate for the three remaining configurations.

This difference has important consequences for the neoclassical transport coefficients as
will be described below.

III. THE BOUNCE-AVERAGED KINETIC EQUATION AND ITS
SOLUTION BY THE POWER-SERIES TECHNIQUE

In the Imfp regime the bounce frequency of particles trapped in the local helical-
ripple wells of a stellarator’s magnetic field is much greater than the frequency with
which such particles are collisionally removed from the wells. As is well known, for these
localized particles the quantity J = § v|dl is an adiabatic invariant of the motion.
The subsequent simplification of the guiding-center drift-kinetic equation which this

invariant allows yields the bounce-averaged kinetic equation [31]

(T)aFm +(9-)6_f _ €n Vegry 0 (A(kz)'—a—f—), (4)

r 36 — ey Al(k?) Ok? k2

where (') and (6) are the bounce-averaged radial drift velocity and poloidal precession

frequency, respectively, and vefs = v/2¢; where v is the 90 degree deflection frequency.
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The “effective” collision frequency, vefy, is the frequency with which trapped particles
are collisionally removed from the local ripple wells. A(k?) = 8(E(k) — (1 — k¥*)K(k))
and A'(k?) = 0A(k?)/0k? = 4K (k) are functions of the complete elliptic integrals of the
first, K(k), and second, E(k), kinds with the argument being the pitch-angle variable
k%, which is given by [11]

B =

I‘C/,U.Bo - Co,g + |Cg’1| cosf — Co,z cos260 + ey
2el 1

where k = mv?/2 is the kinetic energy and g = mv3 /2B is the magnetic moment.
Localized particles satisfy 0 < k? < 1, with the limits corresponding to particles trapped
at the bottom of a helical-ripple well and to those marginally trapped, respectively.
Throughout this work it will be assumed that a large ambipolar potential, ®(r), is
present in the plasma. Given this assumption and the model magnetic field of Equation

(2), the bounce-averaged drift velocities are given by

(*) = Z—d sin9(|00,1] — o1€p{cos n)) . ] sin 26 (C‘o,g + 26 (cos n)),

t €t

(%)

where vg = p/qRy is the VB drift velocity, n = x — p$ and (cosn) = 2E(k)/K (k) — 1.
The function (cosn) satisfies —1 < (cosn) < 1, being positive for the great majority of
k? values as is demonstrated in Figure 3.

Typically the first term in the radial drift velocity dominates and it is instructive
to consider the properties of Equation (5) in this particular case. For the idealized
model stellarator field (#) = vgsin@ is independent of a particle’s depth in a helical-
ripple well. However, this situation changes as soon as o) assumes a non-zero value.
For positive o; values the radial drift velocity of all trapped particles with k?* < 0.83
is reduced relative to the idealized case. (Clearly the relative drift velocity is increased
for shallowly trapped particles, i.e. those particles which satisfy k* > 0.83.) It will be
noted that the reduction in the radial drift is particularly effective for the most deeply
trapped particles. As will be discussed later in more detail, these particles dominate the
transport process in the v~! regime; this explains qualitatively why a drift-optimized
stellarator is successful in reducing the transport level in this regime. If oy becomes
large enough so that oye; 2 |Co.1| one must generally consider the full expression for
(1), as both terms in the radial drift velocity will be of comparable magnitude for a

particular range of k? values.
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In Equation (4) the distribution function has been expanded as a combination of
a lowest-order Maxwellian, Fy,, and a first-order perturbation, f. The usual transport
ordering (6), ves; > (#)/6r, where 6r is the radial scale length of the plasma, has also
been assumed. To solve this equation without resorting to a further ordering scheme in

the ratio of (0) to vesy, it is assumed that the perturbed distribution function may be

written

DB

f or

(Z(k2) +Y(K?)sin 0 + X (k?) cos 8 + W (k?)sin 26 + V (k%) cos 20) :
(The assumption that (9) consists only of the E X B precession frequency has two
notable consequences which should be mentioned here. First, it allows the termination
of this Fourier ansatz for f at the 20 terms; in the large Qp limit, higher-order
harmonics, for which no nonhomogeneous terms appear in the kinetic equation, are
found to have negligibly small magnitudes relative to the harmonics retained above.
Second, it is possible to drop the term k2(9f /0k?) from Equation (4), which should
otherwise appear on the left-hand side of the bounce-averaged kinetic equation [32]. It
has been found that this term only plays a significant role when the VB contribution
to (6) is included in Equation (5) and when Qvp 2 QF [33].)

With the above ansatz for f, the bounce-averaged kinetic equation separates into
a set of five coupled differential equations
A

2"+ 07+ "2—1Y+02W= 0,

! " ~xrl a2 =
VA'Y +1/Y+(1-}——2—)X—01V-—

Qt;;t (1 * %) (|Co,1| — o1€p(cos 7?)) o= 3‘;‘2 (00,2 + o2€p(cos 7?)):

Ay = i a2 5
X" 40X —(1—?)Y+01W—0,

75 A T i b 1 g1 2vd V401
IIA’W +iW' 42V — 5 X = _QEet (Co,z +0‘2€h(cosn)) - 2pe, ([C’o,l|—a1€h(cos 77)),
SRS Sy T8
Al 2 ?
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where 7 = vess/QE and the primes denote differentiation with respect to k2. These

equations are then to be solved using the power-series-expansion technique, with

Z(k*) = Y. Zu(k?) = 1 Y(ED) = N Va(RH) 5 KRRy =1)" K (ke

n=0 n=0

oo co
W)=Y Wu(B)*,  V(E) =) Val¥®)".
n=0 n=0
To implement the power-series approach it is necessary to have A(k?)/A'(k?)
and (cosn) expressed in powers of k2. Both of these quantities depend on the ratio
E(k)/K(k). In principle, it is therefore possible to take the power-series expansions
of the complete elliptic integrals and, in turn, to construct the series expansion of this

ratio

E(k) _,_ ¥ () () 4AF) 59(k%)°
K(k)Z 2 16 32 2048 4096

In practice, however, such an approach leads to a double infinite sum in the differ-
ential equations and greatly complicates their solution. This difficulty was avoided
in Reference [16] by truncating the E(k)/K (k) expansion at the first power of k?,
yielding the approximations A(k?)/A'(k?) = k? and (cosn) = 1 — k?; a particularly
simple set of recursion relationships ultimately followed from these approximations.
However, in light of the physical processes which the bounce-averaged kinetic equation
is meant to describe, these approximations appear somewhat suspect. In particular,
for drift-amplified and drift-optimized configurations, the assumption for (cosn) has
the consequence of increasing or reducing, respectively, the radial drift velocity of all
ripple-trapped particles including those which are shallowly trapped.

The most obvious remedy to this shortcoming is to keep higher-order terms in the
expansion of E(k)/K (k). Unfortunately, the convergence of this series is not rapid,
owing to the logarithmic singularity of K (k) at k* = 1, and a large number of terms
is required to obtain a reasonably accurate expression. Instead, in the present work, it
will be assumed that

2 212 242
%:kz——é—({i, (cosn):l—kz—g—%-ll-. (6)
The quantity ¢ in Equation (6) serves as both a tag and a switch (having a value of
either one or zero), identifying terms that were not present in the solution of Reference

[16] and allowing for quick recovery of those results by setting § = 0. Not only are these
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Figure 3. The bounce-averaged ripple phase (cosn) = 2E(k)/K (k) — 1 is plotied as a
function of the pitch-angle variable k* (solid line). Also shown are two approzimations
for (cosn); Equation (6) with £ =1 (broken line) and the result obtained by employing
the series expansions of the complete elliptic integrals and retaining terms through (k?)°

(dotted line).
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expressions simple, they are also relatively accurate as is shown for (cos n) by the broken
line in Figure 3 (note that both the actual and approximate curves pass through zero at
k2 = 0.83). Also given in this figure by the dotted line is the approximation for (cosn)
obtained by employing the series expansion of E(k)/K(k) through the (k?)° term. As
can be seen, this approximation is very little better than that given in Equation (6),
illustrating the slow convergence of this series.

Making these substitutions, one finds that the series may be expressed

(o o]
Z(k*) =Zo+ » (F*)" (sz’ + ¥ 2 + 22 Xo + wPWo + vS,Z)Vo),

n=0

Vi)=Y (k)" (z,?” + ¥ + 2N X, + w W + US,“VO) :

X(k) = (R (zﬁff) + 9 + 2 X + wOW, + vgxw.,),

n=0

W) =) (F)" (z,‘,w) +yMYs + 2" Xo + i Wo + o) Vo),

n=0

V(k?) = Z(xﬁ)"( WM+ yMN¥, + 2V X0 + 0wl Wo + v(V)Vg>

n=0

where the constituent parts of Z(k?) are given by the recursion formula

¢?) = _(01/2)951 B UzQE,W) 1 £(n—1)(n — 2)q(z)

i‘,n2 4?’12 ) qg=zYy,z,w,0

the constituent parts of Y (k?) are given by the recursion formulae

o~/ 4oz +al” | En - 1)(n =2y

in? 4n? 2

Teams ~(1+02/2)a) + 014l )1+ ¢(n—1)(n —2)¢)

qg=YY,T,w,v
n? 4n? :
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with

a¥) =0, n>3

the constituent parts of X (k?) are given by the recursion formula

Y W X
00 - (L=9/260) — gl | 6= (n =Dy
" vn? 4n?

’ q=z)y)m!w)v

the constituent parts of W (k?) are given by the recursion formulae

22 + (61/2)58") + o PRGE 2)2i¥)

n—

W) _ = ,
=2 n? 4n?

v X w
I R GOV ot R e G
n

n? 4n? ?

9=y,T,w,v

with

—% o
GEW) e s (00,2 + o2¢n + Zl(lctl:l' TO 6"))’

= QEE:

S _vaen(,  of
& QE €t 2 4 1
|
|
W) _ (), |
3 4 2 ’ ]

a") =0, n>3
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the constituent parts of V(k?) are given by the recursion formula

V) = 20013 — (01/2)gny (= D)0 = a2y

= =z T,w,v
3 4n2 ’ q Y, T, W,

and the n = 0 coefficients have the values

Do @0, D=0, wP=0, o =0,
z((,y) =0, ygy) =1l :cgy) =0, (Y) =0, (Y) =0,
Do Pog, o1 WP oo, =0,
P L T T L TR, o ¥ | KLV LLATEN IS | AAEN T
0y S e Y W (T g

THE BOUNDARY CONDITIONS

Torcomplete the solution, boundary conditions at k2 = 1 are needed to de-
termine the five unknowns, Z,, Yy, Xo, Wo and V,. For this purpose, the most
rigorous way to proceed is to determine a solution of the ripple-averaged kinetic equa-
tion for non-localized particles; continuity requirements then unambiguously set the
boundary conditions. This has been the approach favored in numerical solutions of
the bounce-averaged/ripple-averaged kinetic equation [27,32,34]. (The terminology
“ripple-averaged” has been adopted here since, of course, non-localized particles do not
“bounce” in the stellarator’s helical ripples. Formally, both averages are time averages,
the bounce average over the periodic motion of localized particles and the ripple average
over the time it takes a non-localized particle to traverse a single helical-ripple well —
see Reference [32] for a thorough physical and mathematical presentation.)

This is also the approach that will be adopted here, although in an approximate
form. First, it will be assumed that the orbits of non-localized particles are completely
described by the parallel motion along field lines, the so-called zero-banana-width
approximation. This is equivalent to ignoring all “axisymmetric” transport processes
and is a common simplifying assumption in the Imfp regime, where the transport due
to locally trapped particles generally dominates the overall transport rate. Second, and
most importantly, use will be made of the fact that (8), = <+(v)r/R > vess in the
Imfp regime (where the r subscript denotes that the quantities in brackets have been

ripple averaged and «+ is the rotational transform), so that a first approximation to f
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may be obtained from a “collisionless” kinetic equation. With these two assumptions
the kinetic equation for non-localized particles may be expressed

2 | 2 0F _
(9),66+k 6k2_0'

The zero-banana-width approximation also allows one to immediately write k2 =
(0k?/06)(8), and further simplify the kinetic equation

of . Ok? Of _
6t ook =" (7)

It is perhaps not immediately apparent why one should expect any solution to this
equation other than the trivial f = 0, and indeed this result has been employed by
numerous authors. The trivial solution neglects, however, the effects of collisionless
trapping/detrapping due to “transition” particles which, in the course of their colli-
sionless orbits, alternate between being ripple trapped and toroidally blocked (executing
tokamak-banana-like orbits). As these transition particles play a crucial role at very-
low values of collision frequency [28], it is necessary to obtain a solution of Equation
(7) which accounts for their presence.

-To proceed, it will once again be useful to consider the limiting case Co2 =02 =0,
for which
o (1G] +oren(2k? — 1))

QoL @ s 2¢p (1 — 0 COS 6)

k]

and for which Equation (7) has two possible solutions, depending on the value of oy

1 _ 1Cua gl 1
€h
2 -G
Cr |Co,1| + o1€en(2k% — 1) , |Coal & 016h(2k2 =)D
2e,(1 — 01 cos §)—1
f(k* > 1,6) =
0 v |Coal +o1en(2k* —1) <0
oo, - Ll
€h

—|Co,a| — o168(2k2 = 1))‘”

b= =
f(k" 21,6) = Cu ( 2ep(1 — oy cos §)~1

where G = a1(1 —01)/01, H = —an(1 4 01)/o1, and C1, ar, Cir and ajg are constants to
be determined. Note that the latter of these solutions is only possible when [Co,1| < en,
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and even then it is unlikely to hold for realistic magnetic-field configurations since the
condition —1 £ o7 £ —|Co,1|/en requires that the absolute maximum of B occur on
the outside (@ = 0) of the device. For this reason, this solution will not be considered
further here.

The solution is clearly even in 6; indeed, using the binomial series expansion, the
poloidal dependence of f may be recast in the form of a Fourier cosine series. Doing
so, and requiring continuity of f at k% = 1, the (non-trivial) solution for non-localized

particles becomes

(|Co,1 | + o1 6h) :

(¥ 21,6) =
(ICQ']_I + O'1€h(2k2 - 1))

: (2(1) + X(1) cosf + V(1) cos za) %’i :

where the 6 dependence of this result has been truncated to correspond with the
ansatz made earlier for localized particles. Continuity of the distribution function also
immediately yields two boundary conditions on the portion of f which is odd in 6,

namely

Y(1) = W(1) = 0.

To determine the remaining boundary conditions, continuity of df/0k? at k? = 1 is
invoked; given the assumptions and simplifications which led to Equation (7), however,
this requirement must be restricted to the even part of f. To see why this is so, it is
instructive to consider the results from numerical simulations [27,32,34], where the full
ripple-averaged kinetic equation (including the collision operator and the source term
due to the radial particle drift) is solved for non-localized particles. These simulations
have shown that the distribution function for non-localized particles is indeed symmetric
with the exception of a thin boundary layer of width Ak? ~ (vess/(6)s)!/? just
above k? = 1 which is necessary to insure that the asymmetric portion of the true
Of/0k* ~ Af/Ak? is continuous (this continuity condition also demands that the
removal of the asymmetry in f takes place largely below k? = 1 due to the great
disparity in Qg and (8),). Thus, the boundary conditions Y(1) = W(1) = 0 are a
reasonable approximation to the numerical results (these approximations improve with
decreasing collision frequency) even though Y’(1) and W'(1) will be non-negligible in
value. Clearly, solutions of Equation (7) cannot reproduce this behavior since collisions
have been neglected, and thus continuity of 8f/0k? is limited to the even portion of f

201 - _ (Gl +are) [20) ®)
V(1) 2aren(1 - 01) | (1)

where column vectors have been employed for notational convenience.
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These boundary conditions are satisfying from a physical viewpoint but leave the
constant a; undetermined. In this respect, the numerical simulation of Reference [34]
may once again be of help. This simulation employs an idealized model magnetic
field — that of Equation (3) with oy = 0 — in which case the multiplicative term
of Equation (8) becomes —e¢;/(2arex). The boundary conditions then reduce to those
found heuristically in Reference [16] for the same idealized magnetic field if one sets
a; = 1. The numerical results confirm the validity of these boundary conditions with
the exception that a1 is found to have a value of two; for this reason, af = 2 will be
taken here as well.

These boundary conditions are best understood from a physical standpoint by
considering the trajectories of transition particles during the toroidally blocked portion
of their orbits. For such particles, detrapping at arbitrary poloidal angle § = 6,, the
“distance” (measured in terms of k%) above the trapping/detrapping boundary at any
value of 6 is given by

_ (ICo,1| + o1€1)(cos 8 — cos ;)
= 2e4(1 — o1 cosb) :

It is easy to show that this quantity is maximized at § = 0 where

556 _ (|Co,1] + o1€8)(1 — cos ba)
(F* = Dimax = 2ep(1 — 1) :

Further, by once again using the binomial series expansion, the pitch-angle dependence
of f(k* > 1,6) near k? = 1 may be written as

2aren(l — 1), 4 } { en(k? = 1) }2
———(k* -1 2 1-— —_
exp{ |CO,1|‘|‘0'1€h( S 2l oen) |Co,1| + o1€n Aipai 4

the leading term of which describes exponential decay with a k? scale length given

k-1

approximately by (k% —1)max. In other words, in the vicinity of the trapping/detrapping
boundary k% = 1, the solution of the kinetic equation for the non-localized distribution
function decays exponentially with a scale length set by transition particles in the
toroidally blocked portion of their orbits, and hence one obtains the boundary conditions
given in Equation (8).

For non-zero Cj 2 and o3 a general solution of the type just obtained is not possible.

For parameters of interest, however, it is possible to use the approximate solution

|CU,1| v 300,2 + (o‘leh + 302€h)(2k2 =2 1) -G
2ep(1 — o1 cos § — o4 cos 20)=1 ’

> 1,0) = ¢ (

|Co,1| — 3Co,2 + (01€n + 302€1)(2k*> — 1) > 0

f(k2 2 1,9) =0 y 100,1[ = 300,2 + (0’16h + 30’26h)(2k2 i 1) S 0
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with ¢ = 2(1 — 01 —02)/(01 +302). This solution is exact for o1Co,2 +02|Co,1| = 0 and
is reasonably accurate as long as this quantity is small with respect to 2¢;. Applying
the boundary conditions, one finds that, as before, the odd part of f vanishes at k2 =1
and that

X(1 > |
VE]'; 46h(1 — 11— 0'2) V’glg

These are the boundary conditions which will be employed throughout the remainder

[Z(l)} __ (IGoal + o16n + 3(026n = Coa)) 2'(1)

of this paper.

The power-series solution of the bounce-averaged kinetic equation may be imple-
mented computationally with little difficulty. Beginning from the recursion formulae,
one calculates the individual q(Q) (¢ = 2,9, z,w,v; @ = Z,Y, X, W, V) successively until
the value of n is reached where each q(Q) is a very small fraction of the characteristic
diffusive step size Ar (where Ar depends on collision frequency, being the smaller of
(|Co,11/€t)(va/vess) and (|Co,1|/€t)(va/QE)). For & > 1 convergence is rapid — n = 10
at most — while, on the other hand, the number of terms required for convergence
steadily increases as the collision frequency becomes smaller. Once the individual

(Q) have been determined it is straightforward to apply the boundary conditions and
determme the unknown constants Zy, Yy, Xo, Wo and ;.

With the power-series solution for f complete it is possible to calculate the expected

particle and heat fluxes

]2 [l 5

where the diffusion coefficient is given by
D)= -1 [ a0 [ a2 () ) (v(2)sind+ W(R)sin20) K(K). (9
(==z5 [ a8 | @*(F) " (Y)sing + W()sin26) K. (9)
It will be noted in the above expression that only the portion of f which is odd in
6 contributes directly to the fluxes. The remaining analytic calculations given in this

paper will therefore concentrate on determining expressions for Y (k?) and W(k?) in

various asymptotic limits, while largely ignoring the even part of f.
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IV. ASYMPTOTIC SOLUTIONS OF THE BOUNCE-AVERAGED
KINETIC EQUATION AND THEIR PROPERTIES

The power-series solution of the bounce-averaged kinetic equation, described in the
preceeding section, has the great advantage that it is valid throughout the entire Imfp
regime and not simply for a particular ordering of v. s/ (6). Thus, it not only describes
the “high” (vess > QE, ‘v™! regime’ [31,35]), “low” (vess < Qg, ‘v regime’ [28]) and

“Intermediate” (vefs S QE, ‘p1/2

regime’ [31,36]) collision-frequency regimes of classical
stellarator theory, it also handles the transitions between these regimes. The additional
fact that the power-series solution has been developed for a helical-ripple profile of the
form eg = €ex(1 — 01 cos8 — o3 cos26) also means that it may be applied to a large
number of realistic stellarator configurations.

Despite these advantages, the complexity of the power-series solution and the large
number of terms which is often required for convergence can be drawbacks, for example
if one wishes to determine the precise scaling of the transport coefficients with respect to
such parameters as ¢; and ;. For this purpose it is worthwhile in this section to employ
the more conventional technique of solving Equation (4) in successive orders of a small
expansion parameter, a method which has been used successfully by several authors
to examine neoclassical transport in stellarators with 6-dependent ripple profiles [11-
13,23] (but not necessarily with the form of ey used in this work). These papers have
tended to concentrate on calculating the particle and heat fluxes for a given magnetic
field configuration and have placed much less emphasis on determining the perturbed
distribution function and investigating its properties. Qualitative explanations of the
decrease (or increase) of the transport rates in drift-optimized stellarators have focused
on the decrease (increase) of the radial drift velocity which a particular segment of the
localized-particle population experiences [10,12,29]; these arguments have been touched
on briefly earlier in this paper. Although it is perhaps obvious that a change in () also
leads to an alteration of the perturbed distribution function, this effect has been largely
ignored.

In this section a somewhat different tack will be taken. The bounce-averaged
kinetic equation will be solved for f(6, k?) (without approximations for the functions of
complete elliptic integrals) in the vesf > Qg limit, and in the opposite limit the behav-
ior of the odd part of f for deeply trapped particles will be examined. In both cases,
particular attention will be drawn to the effects of drift optimization/amplification,
effects which will later prove to be of importance in explaining the unique transport
characteristics of the Helias concept. This approach has the additional advantage of

allowing a detailed comparison with the results of the power-series solution.
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In the “high” collision-frequency limit a subsidiary ordering of the perturbed
distribution function is possible, f = fo + f1 + - -+, where the subscript indicates the
order of the small parameter Qg/v,ss. Substituting into Equation (4), the lowest-order

kinetic equation becomes

eg (f) OFw 1 0O (A(kz)afo)_

€ vess Or  A'(k?) k2 ok?

The solution to this equation will be odd in 8 (since () is odd in 6), hence fo(1) =0
is the appropriate boundary condition at k% = 1. Also requiring that fy be regular at

k* = 0, one obtains the solution

OF,
or

[ACN o P L (\Itl(k2)sin9+2‘P2(k2)sin29)
€k Veff

with

C
T, (k?) = %(kz 201 + 33% (k2 —1+7—21(%)),
(10)

O2€p

C
To(k?) = ——Egji)—(m —1)+ 3¢,

(k2 —l47— 2I(k2)) ,

and where the function I(k?) is given by

oy [© g FE®) g2 3 (7 21(R)
1= | B —(- kKR 8 32 208

and is plotted in Figure 4. The approximation for I(k?) has once again been obtained
from the series expansions of K (k) and E(k) and is also shown for comparison.

Using the expressions for ¥; and U5, one may investigate the k* dependence of
fo in Helias and compare it with that of conventional stellarator-type devices. An
example is given in Figure 5 for the idealized stellarator magnetic field (|Co,1| = e,
Co,2 = 01 = 03 = 0) and for the four configurations introduced in Section IL Also

shown for comparison are the power-series-solution equivalents

vess 4Y (k%) + 20, W (K?) v, = Yetf (2 4 02 )W(k?) + 01Y (k)

¥, = :
. V4 4—o0f+20;) ’ va (4 —of +207)

for £ = 1 (broken line) and ¢ = 0 (dotted line). The latter curves show that the power-
series results are relatively insensitive to the approximations used for the functions of
complete elliptic integrals. For £ = 1, the analytical and power-series results for ¥;
show excellent agreement in all cases; the modest discrepancies in the ¥y curves are
due to the truncation of the power-series ansatz for f at the 28 terms. The following

points should be noted:
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0.0 0.2 0.4 0.6 0.8 1.0
k2

Figure 4. The function I(k%) which appears in the solution for fy is given by the solid
line. Also shown (by the dotted line) is the polynomial approzimation for I(k?®) which
appears in the text.
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Figure 5. U1(k?) and U3(k?) are plotted for an idealized stellarator, HS5V10N, LHD,
W VII-A and U2M; results are for the p = 0.5 fluz surface. The solid lines are obtained

from Equation (10) while the power-series-solution equivalents are given by the broken
lines (for € = 1) and the dotted lines (for £ =0).
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e For the idealized stellarator ¥; = k% —1. The results for LHD, W VII-A and U2M also
show approximately linear dependence of ¥; on k2, but with an increase or decrease in
the slope of the curve. In other words, the relative changes in ¥; are roughly the same
for all trapped particles.
e HS5V10N clearly does not fit this mold. It is also the only example for which the
magnitudes of ¥; and ¥, are comparable, illustrating the importance for Helias of Cj »
and o5 in the model magnetic field of Equation (2).

To further help in clarifying the effects that drift optimization/amplification has on
neoclassical transport rates, it is useful to introduce the (normalized) poloidal average
of the drift-weighted distribution function,

T /2 -1
3o Vefp T e B PEFN (O
) vi ™ Jo ds(r)fO(Eh) (31"

This quantity represents the principal k? dependence appearing in the particle and heat

flux integrals and thus indicates to what extent the different segments of the ripple-
trapped-particle population contribute to the transport level. Taking the solution for
fo and performing the necessary integration, one finds

C 3 3 3
(kz) |Co,1| — aleh(cosn){‘l, (1+ 203+ —0! +_ @0234_...)

€ 4 32 16

(a1 3
+2‘I' ( 3+1601+32 5+ )}

Co,2 + o2€xr(cosn) 3:ohatdagt vivd
= v, 4-|-Zo'1 +'8"0'2 + 3201 0’2+

+2‘Ill( 3+16 +3202+ )}

Alternately, for the power-series solution of the kinetic equation, one obtains the result

Co,1| — o1€n(cosn) 1 1 I
12y = 1C0al — a1 2 Lesldsnd ogh U9oR SGB(LVA
9o(k") ee(va/Vess) Y1+ 70 -0 — 5% * 128 2t

LE'4Y 2 b K ¢ B
4W(k)(1+16 +32€r2+ )}

_ Co + ozep{cosn) 2 i Ledacedl ~5 trad
W(E") {2 o1 gz 6401 o2+

et(vd/vcff) 8 16
,.Uly(kﬂ) 1+_ +_3_0-2+...) ;
16 32 2

26




Both of these expressions are illustrated in Figure 6 for the given magnetic-field
configurations.

Previously it was asserted — based on the harmonic content of the respective mag-
netic fields — that HS5V10N and LHD should exhibit some degree of drift optimization
while, conversely, W VII-A and U2M are drift-amplified devices. This assertion is
confirmed through the results presented in Figure 6 by reduced (HS5V10N, LHD) and
increased (W VII-A, U2M) values of |go| relative to those of the idealized stellarator.
This figure also illustrates the following points:

o The idealized stellarator represents the simplest case since here the radial drift velocity
of a trapped particle is independent of its depth in a local ripple; this leads to go = k%2 —1,
i.e. deeply trapped particles contribute most substantially to the transport simply
because they have the chance to drift the furthest before being collisionally removed
from the ripple.

® Drift optimization of conventional stellarator-type devices such as LHD is effective
precisely because (7) is smallest for deeply trapped particles. Conversely, for the drift-
amplified configurations W VII-A and U2M, () is maximized at k2 — 0, further
magnifying their contribution.

e Note, however, that in all three of these cases |90 is either increased or decreased -
(compared with the idealized stellarator) for all localized particles although the relative
differences are indeed largest at k2 = 0. This result is perhaps somewhat surprising
since it indicates that the reduction (increase) in the magnitude of f, due to drift
optimization (amplification) is global and is not reversed near k% = 1 by the increase
(reduction) in (r) for shallowly trapped particles.

o HS5VION once again offers a contrast; the go curve indicates a very high degree
of optimization with the relative improvement for more shallowly trapped particles at
least the equal of that exhibited by ones which are deeply trapped. This is a unique
property of Helias magnetic fields which fulfill the optimization principles laid out for
Wendelstein 7-X [7].

Having a solution for f; also enables one to calculate analytical expressions for the
fluxes and the diffusion coefficient in the so-called “y—! regime”

Ll oidnofr ) [612]) 08 OFu
QI | Y S, o

D(k) = et Ay,

where

_ 64¢? 6 1621 ,
SReS ez o~ ger + ppeiAs
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= (Coal (o1 = 30100+ S0t 4 2orop + afort orod +
1=1Coa| | o1 40102 32 16 102 320102 1280102

3 3
—Co,2 (402 % 5012 i

3 ] 9
01202 aF gaf oo 3—2014 + 6—4012022 e )

)
32

3

1 2
gO';-}- 0’1 2+ 01‘20234—---

«42=0'12+40'22— 16

2
-0, 09+

15
4 014 + — 1 012022 +

6

Note that A} is a purely geometrical quantity which contains all information concerning
the magnetic field. To obtain these results, use has been made of

1 1 4
fdk2K(k)=2, jdsz(k)=—,
0 0 3

1
/ dk? k%rf(k):E f dk? K2 E(k) = 28
0 0
1
56 2r 709
de* I(B)K(k) =7 — —, fdk21k2Ek TR
[ raxe == - (#)B(k) ~ 2~ T2

The expressions for the fluxes can be shown to agree with those obtained by previous
authors for more general magnetic fields [11,12].

Designing a stellarator magnetic field for reduced v~! transport is thus a matter
of minimizing its geometrical factor, Ay, to the greatest extent possible. In the lowest-

order approximation, the smallest value possible occurs when

O1€p O9€pR Bl 2520

o o e 11
|Co,1| Co'z 1621° ( )
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Figure 7. The radial dependence of the “effective” helical ripple for v transport, ez,
is plotied in the right-hand figure for the devices indicated. For comparison, the actual
magnitude of the helical ripple, e, (as defined in Section II), is shown on the left. The
effective helical ripple is defined so that .5 = € for the idealized model magnetic field.
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and given that Cp 2 is O(e?), the minimum value of the geometrical factor is found to

be ;
64 ( 109\ 32 (Cop
An(min) & g (1621)6"/ ( & ) '

For classical stellarators and torsatrons, where |Cp 1| = €, it is therefore theoretically
possible to reduce Aj, by almost a factor of 15. In practice, however, the condition on
o1 demanded by Equation (11) is difficult, if not impossible, to realize and one is forced
to accept a lesser degree of optimization. In this regard, the Helias (with |Cp 1| < &)
has a double advantage; not only is the condition on ¢; much easier to fulfill but A4, is
further reduced by the (Cp,1/€:)? term, e.g. by an additional factor of six for HS5V10N.

The calculations presented in this section are perhaps best quantified by intro-

ducing the concept of the “effective” helical ripple for »~! transport,

9 2/3
Eeff = (6—4Ah) ;

When determining neoclassical losses in the v~ regime, it is then possible to treat any
device as though it were an idealized stellarator with a helical ripple given by €.ss. The
radial dependence of this quantity for HS5V10N, LHD, W VII-A and U2M is given in
Figure 7; for comparison, the magnitude of the actual helical ripple, €, is also shown.
The results illustrate how misleading the value of €, alone can be in predicting the level
of v~ transport to be expected in a given configuration. The effective helical ripple
is largest for U2M in spite of this device’s modest values of €; the counter-example is
provided by HS5V10N where €75 < 0.01 across the entire radial cross section. In the
latter case e.ss is a very weak function of the minor radius, indicating that the degree
of drift optimization for HS5V10N steadily improves with increasing p.

To this point the calculations and results presented in this section have dealt only
with the v~! regime. It has been shown that the Helias concept leads to extremely
favorable neoclassical transport characteristics in this regime due, in part, to significant
alterations in the perturbed distribution function which arise through drift optimization.
Furthermore, these alterations in f have been confirmed by results from two different
solutions of the bounce-averaged kinetic equation. The remainder of this section will
be devoted to a relatively simple calculation of f for deeply trapped particles in the
very-low collision frequency limit. Such particles make no contribution to the transport
in this limit for the idealized stellarator (28] but, as will be shown, this is not the case
for drift-optimized and drift-amplified configurations.

For v.sy < Qg the subsidiary ordering of the distribution function f = f Opfly...

is possible, where the superscript indicates the order of the small parameter 7 =
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Vess/Qp. Substituting into Equation (4) and solving for f 0. one obtains

{cosﬂ (|Cg,1| — o1€n(cos n)) — cos 26 (C’o,z + ozep(cos U))} 3;":1 :

Ud

0 4] k2 =
16,1 = g
(The integration constant has been dropped in this expression since it can be shown
to be independent of both @ and k% and is therefore of no interest in the present
calculation.) For deeply trapped particles it is possible to take (cosn) =1 —k%—(k?)%/8
and A(k?)/A'(k?) = k2, and solve the kinetic equation in the next order,

g k2= 2 Vi € 2 - SO Ol
FH k)= AT (2 + k?) (201 sin 6 + o sin 26) o

where only the leading-order terms have been accounted for in the 8 integration. The
implications this result has for neoclassical transport rates may once again be illustrated

by employing a (normalized) poloidal average of the drift-weighted distribution function

{775 _l?_E_l_ 2w 3 1(&}1 1/2 OF., -1
=321 [Cap s (2)(52)

Again restricting the integration to leading-order terms, one finds for deeply trapped

particles that

2 2 0
s (2) (1) {2 o opa- s}

€h

This result obviously confirms that of Reference [28]; for o1 = o3 = 0 deeply trapped
particles do not take part in the transport. One also observes that g' > 01is a possibility,
representing a megative contribution to the particle and heat fluxes; in other words,
deeply trapped particles contribute to a reduction in the overall neoclassical transport.
Roughly speaking, this occurs for stellarators with 0 < o1 < |Cp,1|/er; LHD is an
example of such a device. Conversely, g* < 0 for drift-amplified configurations (1 < 0)
such as W VIL-A and U2M, so that deeply trapped particles serve to increase the
neoclassical fluxes. This is also the case for HS5V10N which has o1 > |Cp,1|/e€n.

This simple calculation of g! and the preceding comments concern only deeply
trapped particles. It must be anticipated, however, that the transport associated
with transition particles will be affected by drift optimization as well. Indeed, at
first consideration one might expect negative consequences from the increase in (r')
which such particles experience in the ripple-trapped portions of their orbits. Actually,
this turns out not to be the case; clarification of this apparent contradiction will be
deferred at this point, however, and will instead be included in Section VI as part
of a comprehensive look at the variation of the drift-weighted distribution function

throughout the entire Imfp regime.
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V. MONTE CARLO SIMULATIONS OF NEOCLASSICAL TRANSPORT

Numerical methods offer an additional means of investigating Imfp transport and
can thereby provide an independent check on some aspects of the analytic theory. In this
section the Monte Carlo technique is used to obtain estimates of the diffusion coefficient
for each of the devices introduced in Section II and the results are compared with
predictions of the analytic theory. A numerical approach also allows one to determine
what effect additional harmonics — ignored by the analytic theory — have on the
transport rates in the various configurations.

The Monte Carlo code used has been described previously [37] and will only
briefly be summarized here. This numerical simulation is constructed so that particle
orbits may be described either by a complete set of guiding-center equations (accurate
regardless of the complexity of B) or through the iterative conservation of adiabatic
invariants (which is much faster but accuracy suffers as the number of magnetic field
harmonics increases). The complexity of the realistic stellarator fields considered here
rules out this second option and the code was therefore run in a purely guiding-center
mode. The magnetic field is specified through the Fourier expansion of B given in
Equation (1), each device being characterized by its individual harmonics and their
radial dependencies. This point bears repeating; the Monte Carlo simulation employs a
general expression for B and not a simplified model magnetic field (such as that given
in Equation (2)).

Parameters used in the Monte Carlo simulations are given in Table I. In all cases
a stationary background plasma of either deuterons and electrons (D7 , e~) or protons
and electrons (p* , ) has been assumed, with the species having equal densities and

temperatures (i.e. n; = n, = n and T; = T, = T). Monoenergetic electrons (with a

HS5V10N LHD W VII-A U2M

Ry, Major Radius (m) 5.5 3.9 2.0 17
a, Plasma Radius (m) 0.52 0.55 0.10 0.17

By, B on Axis (T) 2.5 3.0 3.0 2.0

p, Field Period Number 5 10 5 4

Test-Particle Energy (eV) 3000 3000 100 100
Plasma Ditngefi DY e pt,e” pt e

T;,T., Plasma Temp (eV) 3000 3000 100 100

Table I. Parameters used in the Monte Carlo simulations of neoclassical transport.
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kinetic energy of eT') served as test particles in all simulations; electrons were chosen
since they offer a much clearer separation of the Imfp regime from the “axisymmetric”
(tokamak-like) results. Only pitch-angle scattering of the test particles was considered;
the collision frequency was varied by changing the density of the background plasma. An
electrostatic potential of the form & = &y(1— p?) has been assumed and two cases have
been investigated. First, the validity of the power-series solution throughout the entire
Imfp regime was tested by setting e®, = 5T'; in a subsequent set of runs, ®; = 0 was
chosen to facilitate a more detailed examination of the »~! regime. Each of these cases
consisted of two subcases, one in which only magnetic-field harmonics with m < 1 were
included in the Monte Carlo simulations, followed by a second in which all harmonics
given in Figure 1 were present.

Results for the p = 0.5 flux surface in the case with e®, = 5T are presented in
Figure 8 as plots of the diffusion coefficient as a function of the normalized collision
frequency vess/Qg. Monte Carlo estimates of D are shown by the blackened circles
for simulations in which B was restricted to m < 1 harmonics, and by the open circles
for simulations in which the full range of magnetic-field harmonics was accounted for.
Power-series predictions of the trapped-particle contribution to D — obtained through
numerical integration of Equation (9) — are given by the solid line for € =1 and by the
dotted line for ¢ = 0. The broken line is the sum of the £ =1 curve and the expected
“axisymmetric” contribution to D, given by the analytic fit

2/3
j e (Db?;/z +D,§§2)

where Dy, = DyD, /(D + D,) and

,Co 1|1/2 'Dng 2 Cg 1 2 Va0 7t Co 1 ¢ 'UdR[)
Dy = ! = - —= _— = - —=
% 2 Qe ] Dy 5\ ¢ Qe Deps 5\ e Q.2 7

are the banana, plateau and Pfirsch-Schliiter diffusion coefficients, respectively, of
standard axisymmetric neoclassical transport theory, modified to handle configurations
for which |Cy,1| # €. In these expressions, ) = ¢B/m is the gyrofrequency and + is
the rotational transform. The following points are worthy of notice:

¢ From a statistical point of view the two sets of Monte Carlo results are indistinguish-
able. Thus, for the four devices considered here, the analytic theory of neoclassical
transport — in which only magnetic-field harmonics with m < 1 are considered —
provides accurate predictions of the transport rates in the case where Qf is large.

e The results are insensitive to the value of € in the v~! regime and are only moderately
affected at lower values of v. The accuracy of the approximations used for the complete

elliptic integrals is therefore not of critical concern.
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Figure 8. The diffusion coefficient is plotted as a function of normalized collision
frequency for the p = 0.5 fluz surface for HS5V10N, LHD, W VII-A and U2M. Power-
series estimates of the trapped-particle contribution to D (from Equation (9)) are given
by the solid line for £ = 1 and by the dotted line for £ = 0. The broken line is the sum of

the £ = 1 curve and an heuristic expression for the expected “azisymmetric” transport
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(given in the text). Results from Monte Carlo simulations in which the magnetic field
was restricted to harmonics with m < 1 are given by the blackened circles; open circles

depict the results which are obtained when the full range of magnetic-field harmonics is
accounted for.
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° Thé expression for the axisymmetric diffusion coefficient, D,, accurately describes
the neoclassical transport in the magnetic field B = By(1 — |Cy1|cos8). To justify
the premise that the total diffusion coefficient may be expressed as a simple sum of
axisymmetric and helical-ripple contributions requires the assumption that the two
processes are entirely independent of each other. This assumption, however, is never
more than approximately valid and often underestimates the total D when the two
contributions are roughly equal in magnitude (this usually occurs in the transition
from the plateau to the v~ regime).

It is useful to also present the results of Figure 8 in relative terms so as to shed
further light on the properties of drift-optimized and drift-amplified stellarators in
the lmfp regime. This is best done by normalizing the diffusion-coefficient curves of
Figure 8 to those obtained for the equivalent idealized stellarator (acronym: eis), i.e.
a device with a helical ripple of equal magnitude but which has a magnetic field given
by Beis = Bo(l — €;cos8 — €, cosn). The results of this normalization are presented
for each of the four configurations in Figure 9. At large values of v.5;/S0g these
curves merely reflect the fact that the toroidal modulation of B is not given by the
inverse aspect ratio (one obtains D/D.;s = (Cy,1/€:)?); additional effects due to drift
optimization/amplification only become evident for v.ss/S2g < 30. Here the results are
most easily interpreted for LHD, W VII-A and U2M, as these devices have |Cy 1| = €,
and clearly illustrate that the reduction (increase) of the transport rates brought about
by drift optimization (amplification) is not confined to the v~! regime but is observed
throughout the entire Imfp regime. This confirms results obtained previously for simpler
magnetic fields [16,27]. The curve for HS5V10N demonstrates the dramatic reduction
in neoclassical transport made possible by the Helias concept which combines a high
degree of drift optimization with a significant reduction in the toroidal modulation of

B. This combination is extremely effective for all values of collision frequency.

The accuracy of the analytic results in the ™! regime may be tested numerically
by setting ®; = 0 in the Monte Carlo simulations. Results are presented graphically
in Figure 10 as plots of D versus v for the p = 0.5 flux surface and in tabular form in
Table II for several flux surfaces. The various lines and symbols in Figure 10 have the
same meanings as in Figure 8. Values of the effective helical ripple for v~ transport

are determined from Monte Carlo estimates of the diffusion coefficient, Djs¢, using the

formula
2/3
N2 v /
€eff = 16 U_f Dyc :

Several comments may be made regarding these results.

36




o~ _N\A e
= SR = = ; p
S BN TR o ot —
: ' / :
Ehgl i
()]
=T B
N
=)
(o I L3
&
o L
] —m— HS5ViON [
0 —e— LHD i
] —=—WVi-A |
—o— U2M
1 llllllli | | ||uul'| ] llllllll L] llllllll | Illlllll ) LILLBLLALI
0.01 0.4 1 10 170025 ¥O00 10%

Veff/ QE

Figure 9.  The diffusion coefficient, normalized to that of the equivalent idealized
stellarator, is plotted as a function of normalized collision frequency for HS5VI10N,
LHD, W VII-A and U2M. Results are for the p = 0.5 fluz surface with e®y = 5T




- 1 . 1 il L 1 Illlll' Il L 2 1 1111 1 1 1 L iiLl
OE 1 | E
] HSSV10NE
’6“5': 3
o 3 i
wn g L
s i
(o] - L
E_] 4
() é'._: —————— v 3
T
9 L) 1) IIIIIII L] L] lllllll T L] llllll‘ L} L} LB LA
100 1000 10* 10° 108
v (sec™)
‘__- |ltll| 1 1 lllllll 1 1 Illllll 1 1 1 IIIIIl L 1 =
: LHD
—~. b
O O 7 =
Q3 i
. i:
N\ d st
E S bt ®
Dg.-. ————— —
O 3 o
8 lllll‘ L] ¥ Illllll L} 1 IIlIIl' L] L lilllll L] ]
1000 10% 10° 108

v (sec™1)
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solid curve and an heuristic ezpression for the expected “azisymmetric” transport (given
in the text). Results from Monte Carlo simulations in which the magnetic field was
restricted to harmonics with m < 1 are given by the blackened circles; open circles
depict the results which are obtained when the full range of magnetic-field harmonics is

accounted for.

39



€eff
Device p €n | Power-Series | Monte Carlo| Monte Carlo
Results (m =0,1) |(all harmonics)
HS5VION | 1/6 | 0.0477 0.0053 0.0072 0.0063
1/3 | 0.0528 0.0056 0.0064 0.0074
1/2 | 0.0610 0.0061 0.0057 0.0051
2/3 | 0.0716 0.0065 0.0051 0.0065
5/6 | 0.0833 0.0061 0.0043 0.0063
LHD 1/6 | 0.0060 0.0052 0.0056 i
1/3 | 0.0235 0.0197 0.0242 0.0239
1/2 | 0.0533 0.0421 0.0422 0.0473
2/3 | 0.0962 0.0712 0.0844 0.0865
5/6 | 0.1527 0.1054 0.1292 0.1308
W VII-A | 1/6 | 0.0031 0.0034 0.0026 %
1/3 | 0.0058 0.0069 0.0059 Vi
1/2 | 0.0088 0.0108 0.0098 %
2/3 | 0.0115 0.0148 0.0129 *
5/6 | 0.0141 0.0190 0.0170 *
Uz2M 1/6 | 0.0292 0.0536 0.0549 0.0560
1/3 | 0.0310 0.0609 0.0689 0.0678
1/2 | 0.0349 0.0749 0.0984 0.1028
2/3 | 0.0424 0.0942 0.1406 0.1687
5/6 | 0.0516 0.1234 0.1866 0.2065

Table II. Analytically and numerically determined values of the effective helical ripple
for »~! transport are compared for five flux surfaces for the devices considered in
the text. The analytic values were obtained from the power-series solution of the
bounce-averaged kinetic equation. Monte Carlo results are given in which the numerical
simulations (a) were restricted to include only magnetic-field harmonics with m < 1,

and (b) incorporated the full spectrum of B harmonics. An asterisk in the latter column

indicates that the magnetic fields of cases (a) and (b) are identical.
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o A shortcoming of the analytic theory presented here is the neglect of some of the
effects which non-localized particles have on the diffusion coefficient. This neglect is
embodied in the zero-banana-width approximation and in the boundary conditions
Y(1) = W(1) = 0 (the boundary conditions on the even part of f, however, do
account for the effects of transition particles). As a consequence, the analytic results
generally underestimate D at the onset of the »~! regime, an effect which has been
alluded to previously. This behavior is clearly exhibited in the frames of Figure 10
although its degree varies from configuration to configuration (a result which has also
been observed in [26]). To address this problem, numerical solutions of the full ripple-
averaged kinetic equation have been developed [27,32,34]. These have the drawback,
however, of requiring much more computer time (factors of between 10* and 10%) than
the power-series solution described here in Section III.

e For HS5V10N and W VII-A, the relative statistical errors for the Monte Carlo values
of D satisfy o/(DpeV/N) S 0.3 (where o is the standard deviation and N the number of
test particles). These configurations have small values of € s¢ so that the v~! scaling of
the diffusion coefficient first appears at rather low values of v; finite computer resources
force one to consider these cases with small numbers of test particles. For LHD and
U2M simulations one obtains a/(DMc\/Iv) < 0.2

e In a comparison of the power-series and Monte Carlo results (for m < 1), one finds for
the inner flux surfaces (p < 0.5) that the analytically determined value of D is usually
to be found in the interval Dy;c — 0/v/N < D < Dyc + 0/v/N. The analytical and
numerical results agree less well for the outer flux surfaces. In particular, for U2M, the
Monte Carlo estimates of €. ¢ are considerably larger than the analytic values.

e Including higher-order magnetic-field harmonics in the Monte Carlo simulations has
no statistically significant effect on the diffusion coefficient for the inner flux surfaces.
A modest degradation in confinement is observed, however, for the outer flux surfaces
of HS5V10N and U2M.

e The favorable transport characteristics of HS5V10N, predicted by analytic calculations
based on a model magnetic field, are confirmed by Monte Carlo simulations which

account for the full complexity of B. In particular, the result e.ss(r) < 0.01 is verified.
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VI. OBSERVATIONS AND CONCLUSIONS

In Section IV, two poloidal averages of the drift-weighted distribution function were
introduced and used to investigate the behavior of deeply trapped particles in the limits
> 1 and ¥ < 1. By employing a generalized form of these averages it is possible to
explain what is perhaps the most interesting aspect of the results depicted in Figure 8,
namely that for HS5V10N, the maximum value of the diffusion coefficient in the Imfp
regime does not occur for # & 1 (as it does for the other three devices), but is instead
shifted to a considerably lower value of collision frequency.

It is easy to verify that

Q1 o ; €EH 12 0Fn »;
el wer(2)(52)

reduces to the expressions for go(k%) and g¢'(k?) in the appropriate limits and is

g(k*) = max {9,07'}

continuous at # = 1. In what follows, however, it will prove more instructive to use a
slightly modified version of g(k?), denoted by

g(k?)

~ 2 1.
g(k%) = max {7,071}

Plots of this latter quantity not only reveal which portions of the trapped-particle
population are important to the diffusive process, they also represent a normalized
measure of its magnitude.

First consider an idealized stellarator magnetic field. For large values of collision
frequency the »~! result § = (k% — 1)?~! is obtained. As was pointed out previously,
this result clearly shows that deeply trapped particles are mainly responsible for »~!
transport, drifting furthest off of their original flux surface before being collisionally
removed from the local ripple. The radial excursions of trapped particles are thus limited
by collisions and this remains true until the effective collision frequency, vy, becomes
small enough that such particles have the chance to complete a significant portion of a
poloidal transit before being collisionally detrapped. At this point the radial excursion is
limited collisionlessly by the poloidal precession frequency, 2, signifying the end of the
v~ regime. The most deeply trapped particles are the first to experience the beneficial
effects of Qp and there exists a transitionary range of collision frequencies in which
shallowly trapped particles continue to exhibit »~! behavior while the contribution to
§(k?) from the deeply trapped particles begins to decline. The transport coefficients
attain their maximum value for v.ss ~ Qp and then decrease with decreasing collision
frequency as the contribution made by deeply trapped particles falls rapidly, more than

offsetting the enhancement experienced by particles which are more shallowly trapped.
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Since the trapped-particle trajectories are independent of k2, the contribution that
deeply trapped particles make to §(k%) must ultimately fall to zero in the limit 7 < 1,
as was shown in Section IV.

This evolution of §(k?) with collision frequency is illustrated in the top frame of
Figure 11 with results obtained from the power-series solution of the bounce-averaged
kinetic equation (for £ = 1). Parameters for this idealized stellarator have been chosen
to facilitate a direct comparison with the p = 0.5 flux surface of LHD. This figure clearly
illustrates the progression of §(k?) from the »~! regime (represented here by the # = 3
curve) into transition (v.ss = Qg), after which the contribution of the deeply trapped
particles rapidly diminishes (7 = 0.3 and # = 0.1) and finally goes to zero (# = 0.03).

This process is repeated in the lower frame of Figure 11 for the actual LHD param-
eters at p = 0.5. Although the relative contribution of the deeply trapped particles has
been reduced, these particles nevertheless continue to dominate the transport for 7 2 1
and the evolution of §(k?) with collision frequency is qualitatively the same as that of
the idealized stellarator. When # becomes small the deeply trapped particles do indeed
make a positive contribution to §(k%) (as predicted in Section IV) but this effect is a
minor one when compared to the reduction in the magnitude of §(k?) experienced by
the shallowly trapped particles.

In the case of HS5V10N, it is instructive to begin by considering a “simplified”
version of the device which retains its actual values of Cy; and €, but for which the
drift optimization has been “removed” (by setting o; = g = 0). Such a configuration
illustrates the consequences which reduction of the toroidal modulation of B has, by
itself, on the neoclassical transport rates; the results are plotted in the upper frame of
Figure 12. Qualitatively, the §(k?) curves are again the same as those found for the
idealized stellarator. Quantitatively, the magnitude of each curve has been reduced by
a factor of (|Co,1|/€:)®, where @ = 2 in the v~! regime and then decreases slowly in
value with decreasing collision frequency, tending toward a =1 as # — 0.

The high degree of drift optimization present for the actual parameters of HS5V10N
leads to a quite different evolution of the §(k?) curves, however, as can be seen in the
lower frame of Figure 12. Here, (#) &~ 0 for a range of k2 values, thereby guaranteeing
that particles in a particular region of phase space are unimportant to the transport
process, regardless of the value of 7. In the current example this occurs near k? = 0.4,
L.e. for particles which would otherwise be among the first to be affected by the E x B
precession frequency for # < 1. As a consequence, the beneficial influence of Qg on the
neoclassical transport rates is “postponed” for HS5V10N. Instead of peaking shortly
after the end of the v™! regime (vefy ~ QE), the diffusion coefficient continues to

increase with decreasing collision frequency, finally reaching its maximum value for
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Figure 11. Top— The evolution of
g(k?) with collision frequency is
presented for an idealized stellarator
(LHD-like) with the parameters
|Co,1l = € = 0.071, e, = 0.053 and
o1 = 0 = 0. These results were ob-
tained from the power-series solution
of the bounce-averaged kinetic equa- ~
tion (for £ = 1), requiring n = 8, 9,
18, 19, 30 terms for convergence from
highest to lowest collision frequency,

respectively.

Bottom — The evolution of §(k?)
with collision frequency is presented
for the p = 0.5 fluz surface of LHD,
with the parameters Co; = —0.069,
e, = 0.071, ¢ = 0.053, oy = 0.315
and oo = 0.040. These results were
obtained from the power-series solu-
tion of the bounce-averaged kinetic
equation (for € = 1), requiring n =
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Figure 12. Top — The evolution of
§(k?) with collision frequency 1is
presented for a “simplified” version of
HS5VION, with the  parameters
Co,1 = —0.020, ¢, = 0.047, ¢, = 0.061
and Cpa = 61 = 09 = 0.  These |

results were obtained from the power-

series solution of the bounce-averaged

kinetic equation (for & = 1), requiring
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v &~ 0.1; only at this point is Qg finally successful in effecting a reduction in the
transport rates for HS5V10N.

The ©# = 0.03 results for HS5V10N are further confirmation of the calculation
presented at the end of Section IV and also provide an example in which the transport
due to deeply trapped particles remains an appreciable fraction of that attributable to
particles which are shallowly trapped. As in the case of LHD, transport ascribed to the
latter has been reduced relative to a device with o; = o5 = 0, suggesting that this may
be a general property of drift-optimized configurations.

At first consideration this property would seem to be rather surprising, given the
increase in the radial drift velocity which shallowly trapped particles experience in
drift-optimized magnetic fields. A physical explanation of this seeming paradox may be
obtained from the heuristic expression for the diffusion coefficient due to a collisional
random-walk process y

D %u §
where Ar is the characteristic radial step size of the diffusive process and F is the
fraction of particles involved. To simplify the calculation it will be assumed that
Co,2 = 02 = 0 and that in describing the transport due to shallowly trapped particles
for # <« 1 it is sufficient to consider the behavior of transition particles. (Recall that
transition particles alternately occupy ripple-trapped and toroidally blocked states.) In
the toroidally blocked portion of their orbits, these particles experience no radial drift
(the zero-banana-width assumption), hence their diffusive radial step is determined by

the () which they undergo while ripple trapped and is given by

AT (E‘?_EJ_ he M(cosn))

~
QE €t €t

where the overbar indicates that an average value of (cosn) has been taken. Transition
particles occupy a fraction of pitch-angle space which is approximately given by the
fraction of particles which are toroidally blocked [38], i.e.

F % (ICoa + 2e + oren) * — (2e1) /.

For configurations which satisfy 2e, > |Co 1|+ o1¢€4, this result may be simplified using

the binomial expansion and the heuristic expression for the diffusion coefficient takes

2 2 1/2

va Co, O1€h e, v
Dox | —— 1———(cos :
(QE a) ( Coal ’”) (Gl

For g1 = 0 this reduces to the usual v-regime result [28,38,39]

Do (1) [Coaler" v
Qg el ;

the form

46




It is then straightforward to show that drift optimization leads to a reduction in v-
regime transport if the average value of (cosn) satisfies

[Caalkl.. aren \"*
(cosn) > e 1+[C0’1| !

For drift-amplified devices the sense of the inequality must be reversed and one can show

that (_coT-q) < —0.5 is necessary to effect a reduction in the v-regime transport due
to transition particles. Referring to Figure 3, one sees that this condition is impossible
to fulfill; coupled with the additional losses attributable to deeply trapped particles
(demonstrated at the end of Section IV) it is clear that a drift-amplified stellarator
must have larger v-regime transport rates than a comparable idealized device. This
observation is supported by the very-low-v results for W VII-A and U2M given in
Figure 9.

For the drift-optimized examples considered in Figures 11 and 12 the inequality
requires that for LHD, (cosn) > —0.473, and for HS5V10N, (cos) > —0.371. The
variation in k? which a transition particle undergoes in the ripple-trapped portion of
its orbit may be estimated from [27]

Ak? = L’;ﬂ ~ ‘—’4l+ é’ilc"—’lli%.
E E €t 46}, or
Again referring to Figure 3, one sees that a variation of this magnitude is more than
sufficient to insure that the inequalities are satisfied. These two examples provide
illustration of a general result: the favorable neoclassical transport characteristics of
drift-optimized stellarators are not confined to the y=? regime, but extend throughout
the entire Imfp regime.

As a final observation, it should be commented that all specific calculations pre-
sented in this paper were for vacuum fields and for the “standard” configurations of
the devices being considered. Modified configurations — whether the modifications are
due to finite plasma pressure or alterations in the currents carried by the magnetic-field
coils — may be handled equally as well. All that is required is a knowledge of the
modified B in flux coordinates and that it be possible to accurately approximate this
magnetic field using the model for B given in Equation (2).

In conclusion, solutions of the bounce-averaged kinetic equation have been pre-
sented which may be used to determine the neoclassical transport in stellarator-type
devices caused by the presence of localized particles, i.e. those trapped in the helical
ripples of the stellarator’s magnetic field. The most general of these solutions is valid for

the full range of collision frequencies which constitute the long-mean-free-path regime.

47




The remaining solutions are appropriate only for a particular ordering of the kinetic
equation (being asymptotically valid in the limit of a small expansion parameter) but
provide important physical insights. All calculations assume a model magnetic field
which is an accurate approximation to the actual B for a wide variety of stellarator-
type devices, including Helias configurations as well as conventional stellarators and
torsatrons.

The solutions of the kinetic equation have been used to investigate the neoclassical
transport properties of the Helias HS5V10N (the reference configuration for Wendelstein
7-X), as well as those of LHD, W VII-A and U2M. These four configurations also
allow one to examine the features of neoclassical transport in drift-optimized (HS5V10N
and LHD) and drift-amplified (W VII-A and U2M) stellarators, using actual magnetic
fields. It has been confirmed that drift-optimized devices exhibit improved neoclassical
confinement throughout the entire Imfp regime; conversely, drift amplification results
in universal degradation of the confinement. It has also been demonstrated that the
Helias concept leads to large reductions in neoclassical transport rates relative to the
levels typical in conventional stellarators and torsatrons. This reduction is particularly
dramatic in the »~! regime — the losses in HS5V10N are comparable to those of a
conventional stellarator with e, < 0.01 — but is significant for all other values of
collision frequency as well. Further, the high degree of drift optimization in Helias alters
the role deeply trapped particles play in the transport process; as a consequence, the
transport coefficients reach their maximum values at lower values of collision frequency
than is usual.

These results have been confirmed numerically with Monte Carlo simulations. In
most of the cases investigated, particle diffusion coefficients determined analytically
agree well with the statistical estimates obtained numerically. The discrepancies in the
remaining cases are in all likelihood a consequence of the simplified manner in which
non-localized particles have been treated in the solutions of the kinetic equation. Work
is currently underway to alleviate this shortcoming by solving the full ripple-averaged
kinetic equation, i.e. by solving simultaneousiy the appropriate kinetic equations for

localized and non-localized particles.
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