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A one-dimensional boundary-value problem of dissipative plasma equilibrium in
a cylinder is formulated and analytically solved. As regards the data, axial sym-
metry and uniformity along the axis of the cylinder are assumed; as regards the
solution(s), a given periodicity along the axis of the cylinder is imposed. Viscous
stresses and resistance are the dissipation processes taken into account, while a
particle source and an externally driven electric field sustain the pressure gradient
in the plasma. Plasma density, coefficients of viscosity and resistivity are given
smooth functions of the radius. After analytically solving the boundary-value
problem, a functional setting of the equations is established and a problem for
weak solutions is formulated. The main achievement of the analysis is a rigorous
uniqueness and nonlinear stability result for the analytical solution found; since
such a solution describes a merely radial flow of the plasma across nested magnetic
surfaces, what is derived is a sufficient condition for the lack of cellular convec-
tion. Finally, the significance of the physical model introduced in this paper, and
herein theoretically analysed, is pointed out in view of possible computational

work which might yield valuable insight.

1. Introduction

In research on controlled thermonuclear fusion, the one-fluid magnetohydrody-
namic (MHD) model is commonly adopted to study the containment of the
plasma. Since the dissipative processes active in a laboratory plasma (viscous
stresses, resistance, friction), as well as the inertia of the plasma, are typically
much weaker than the electromagnetic force and the pressure gradient, the above-
mentioned model is most often used in the ideal plasma approximation (Freidberg

1987) in which the dissipative terms and the inertia are disregarded.

However, the MHD equations that include inertia, viscosity and resistivity

have the same mathematical structure as the Navier-Stokes equations (Sermange
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& Temam 1983; Spada & Wobig 1992); therefore, some insight into the macro-
scopic behaviour of the plasma may be obtained from the extensive mathematical

and experimental literature concerning ordinary hydrodynamics.

The nonlinearity of the Navier—Stokes equations may give rise to bifurcation
phenomena and onset of instability with consequent production of striking flow
patterns. The two phenomena most often considered are Taylor—Couette flow and
Rayleigh—Bénard convection, to the theoretical and experimental investigation of
which much effort has been and is being devoted (Chandrasekhar 1981). We
recall that instability appears (or, mathematically speaking, the solution of the
Navier—Stokes equations undergoes a bifurcation) when the external forces acting
on the system become strong enough and/or the dissipation processes become

weak enough.

Thus, the conjecture that similar phenomena may also take place in a lab-
oratory plasma seems well grounded; they may be expected to occur when the
source which sustains the equilibrium pressure gradient is large enough and/or re-
sistivity and viscosity coefficients are small enough. As we have recalled above, in
typical experimental conditions encountered in research on controlled thermonu-
clear fusion, the dissipation processes are very “weak”. Indeed, experimental
observations seem to indicate that the macroscopic behaviour of the plasma, e.g.

in a stellarator, may have the nature of cellular convection or even turbulent

convection.

In this paper, we analyse a dissipative MHD model of plasma equilibrium
whose equations account for inertia, viscosity and resistivity; the pressure gradient
is sustained by a plasma source and by an externally driven electric field. The
plasma is assumed to be enclosed in an infinite cylinder along the axis of which
all physical quantities are assumed to be periodic. Plasma density, resistivity,

viscosity coefficients and plasma source are given smooth functions of the radius

3




only. An axisymmetric boundary-value problem is formulated and an explicit
analytic solution is found which describes the simple radial diffusion of the plasma.
The original problem is fewritten in terms of new unknowns (difference between
the old unknowns and the solution found). A functional setting of the latter
equations is established and a problem for weak solutions is rigorously formulated;
the zero element of the function space is obviously a solution for all values of
the data. The main result of the analysis is a sufficient condition under which
the above-mentioned trivial solution is unique and stable. Such a condition is
discussed, paying particular attention to the effect of the presence in the model
of the density gradient, viscosity gradient and resistivity gradient, which makes

the model analysed in this paper quite general; it generalizes the model recently

analysed by Spada & Wobig (1992).

This paper is organized as follows. In §2, we give an account of the model
and the formulation of a boundary-value problem whose unknowns are the scalar
pressure, the flow velocity field and the magnetic field. In §3, our functional set-
ting of the equations is introduced; suitable function spaces are defined and a
problem for weak solutions is established generalizing the techniques of mathe-
matical hydrodynamics. In §4, we obtain and discuss the uniqueness and stability
result. Finally, in §5 we concisely summarize our main results and point out the

questions that seem to deserve further consideration.

2. The model

In the first place, let us introduce the following subsets of the space R® (with
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a,L > 0): :
D = {(z,y,2) € R®,2% 4 4 < ¢?}

L = {(z,y,2) € R?,2? + ¢* = a?}
= {(z,9,2) e R®,52 + 12 < a0 < z.< L}
00 = {(z,y,z) e R®, 22 + 2 = a®,0< z < L}
00© = {(z,y,z) e R}, 2%+ y®> < a?,z = 0}
QL) = {(z,y,2) e R*, 22 +¢* < a?,z =L}
We assume that the plasma is enclosed in the fixed, infinite cylinder D, whose
radius is a and whose boundary is I'. Also, we shall assume that all physical
quantities are periodic along the z direction with a periodicity length equal to L:
thus, Q is the fundamental region of periodicity and Q") is its lateral surface,
AN is its bottom, QL) is its top.

Moreover, let e;, e,, e; be the unit vectors along the z, y, z Cartesian axes;
and let e,, ey, e, be the orthogonal unit vectors associated with the cylindrical
co-ordinate directions r, ¢, z.

We shall be concerned with steady states of the plasma whose behaviour is

described by the following one-fluid, dissipative MHD equations:

p(v:-V)Vv+Sv=-Vp+jxB+08[v(6v+ V)]
2 (1)
+9|(c-3) v

nN=E+vxB+ee, (2)
j=VxB (3)
V-(pv)=S§ (4)
V:-B=0 (5)

Here, p is the plasma density, v and ( are two coeflicients of viscosity, n is the

resistivity, v the flow velocity field, B the magnetic field, j the current density
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field, p the scalar pressure, E + ce. the electric field where E = —V and ee. is
externally driven, S a particle source which together with € sustains the pressure
gradient in the plasma. Moreover, vy = v-ex and O = -6% (k = z,y,z), repeated
indices are summed, and po = 1 throughout this paper.

The third term and the fourth term on the right-hand side of equation (1) are
the viscous force per unit volume (Landau & Lifshitz 1959, p. 48). As a matter of
fact, such a viscosity does not well describe the viscous stresses of a magnetized
plasma. A more accurate expression, if the plasma may be assumed to be collision
dominated, would be given by the Braginskii viscosity (Braginskii 1965); in this
connection, Spada & Wobig (1992) have recently carried out a rigorous analysis
of the Braginskii viscosity in a suitable functional framework. On the grounds of
their results, the following analysis might be generalized in a straightforward way
by adopting the Braginskii viscosity; the only reason why we choose the viscosity
appearing in equation (1) is to maintain the analysis simple with respect to this
issue.

According to our model assumptions, equations (1)~(5) are eleven scalar
equations for the eleven scalar unknowns p, ¢, v, B, j. We assume that p, v, (,

n, S, € are given quantities and, specifically, that
€ = constant
p=p(r),v = v(r),¢ ={(r),n =1(r), S = S(r)
psv,¢,m, S € C([0,d])
Moreover, we assume that
p(r) > 0,v(r) > 0,{(r) > 0,n(r) >0 for all r € [0, 4]

As a matter of fact, the density (p) and the pressure (p) are linked by the

equation of state. Hence, the assumption that p is a given quantity reduces the
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self-consistency of the model; but to realize that the following analysis of equilib-
ria where p is given is significant, it is enough to recollect the case of stellarator
equilibria: the experiments show that electron cyclotron heated stellarator plas-
mas typically have very flat density profiles (and very peaky temperature profiles),
and, as to such equilibria, p might be assumed given and uniform. As Spada &
Wobig (1992) have recently pointed out, if p is a given quantity, the mathematical
structure of the equations with which we are dealing is in substance that which
one encounters in the well established theory of viscous incompressible flow. Sim-
ilar remarks hold for the resistivity and the coefficients of viscosity as well, though
a self-consistent account of their dependence upon other quantities does not seem
possible at all outside a computational treatment.

Next, as we said we impose that
the unknowns are periodic in z with a periodicity length equal to L  (6)

We proceed adding to the problem we are formulating the prescription of a

given value of longitudinal magnetic flux:

/ B.e.do=F (7)
an(o)

We supplement our problem with the following boundary conditions:

v = vpe, onT, with vy = constant (8)
I B:e,=0 onT (9)
Exe.=0 onTl (10)

Conditions (9)-(10) reflect the assumption that the boundary is a perfectly con-
ducting wall. As regards condition (8), note that the data must be assumed to

fulfil the compatibility condition ap(a)vo = fy rS(r)dr.
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Note that the boundary conditions (8)—(10) are uniform along the axis of the
plasma column. As is shown by a great many theoretical and experimental results
obtained in ordinary hydrodynamics (Chandrasekhar 1981), this uniformity does
not prevent the solution(s) of the boundary-value problem from having a (non-

trivial) periodicity along the direction at issue.

We have now formulated our stationary boundary-value problem. Let us look

for a solution such that

p=p(r)
v =v.(r)e,
B = By(r)ey + B;(r)e;
Requiring also that the particle source by itself drives no longitudinal current

(which turns out to be equivalent to imposing the regularity condition rBg(r) — 0

as r — (), we obtain:

V= L) Uﬂ r'S(r')dr’] e, = or(r)e, (11)

rp(r

B-2{ [ e | [ e ar e

& 2r [ 7exp [fOF""’”')d ,,] daexP UO ;7((,,’)) ]ez (12)

(')
= By(r)eg + Bi(r)e.

= () F [f or(r') ]
1= T o.(r" 7
n(r) o fua T exp [fo "(( n)) dr” (")

+ et i U n(r;')‘”‘p U o o] e =

= jo(r)eq + J:(r)e:

E=0 (14)




5(r) = — p(r)on(r)5(r) = S(r)oe(r)
{280 [ Bo)] + 0B}
+2{ OO + 20)e40) = S}
+{3 [0 - 3ot oo}

The equilibrium (11)—(15) is uniform along the z direction and describes a merely
radial flow of the plasma across nested magnetic surfaces.

We assume that the above radial force balance is a good appfoxima,tion as
compared with that occurring in magnetic confinement devices such as the toka-
mak in their supposed way of operation. This is the reason why we analyse, in this
paper, a model of MHD equilibrium where the plasma is assumed to be enclosed
in a cylinder: we believe that toroidicity and three-dimensional effects of plasmas
in magnetic confinement devices such as the tokamak and the stellarator are far
less important than the radial force balance as far as the above-mentioned bifur-
cation and instability phenomena are concerned. Also, we recall that, from the
point of view of physics, the cause of the instability with which we are concerned
in this paper is the unfavourable curvature of the magnetic field lines.

Next, we return to the problem we have formulated and rewrite it eliminating
j by means of equation (3) and ¢ by applying the curl operator to equation (2).
Moreover, we introduce the following new unknowns:

P+=p—D
Vo= oV V)
B.=B-B
Note that v, is a mass flux. Carrying out some trivial calculations and using the

identities

(Vxa)xa =(a'-V)a—aVax

=(a'-V)a—V(a-a')+ axVa;
Vx(axa)=aV-.a'—a'V-a—(a-V)a'+(a’:V)a
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!
(@ xia)bdali=raatiall = aa’*ia"

we obtain the following final problem (we henceforward omit the asterisk):

0 (an) = - (V) Z AT V)S (Y )T .f;v

+(B-V)B+(B-V)B+(B-V)B

v v v
[ ()] (o) - (509)

BI2+2B-B
_v(p+||+)

Vx(nV xB)=[(B+B) V| %—%(v-V)(ﬁ-{-B)

+(B-V)¥-BV-¥—(v-V)B

V-v=0
V-B=0
v=0 onTl

B £ er = 0 on I‘
n(VxB)xe.=vB onT
/ B-e;do=0
an(o)
p,v, B are periodic in z with a periodicity length equal to L

v-e, =0

(16)

(17)

(18)
(19)
(20)
(21)
(22)
(23)
(24)

(25)

and rBy(r,¢,2) — 0 asr — 0, ¢ € [0,27), z € [0,L). Note that we have added

to our problem the condition (25) which imposes that the radial component of

the flow velocity field must be given by expression (11). Condition (25) restricts

the class of equilibria that we consider and reduces the significance of the results

we shall obtain from the physical point of view. The reason why we impose

condition (25) is technical and is connected with the non-uniformity of the plasma
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density: we need that V-(v/p) = 0 in order to obtain a nonlinear stability result.
The mathematical structure of the equations does seem to be deeply affected
by the non-uniformity of the plasma density. In a forthcoming paper, we shall
also present a linear stability result for the above boundary-value problem where
condition (25) is not imposed. Finally, we stress that, if the plasma density is
assumed to be uniform, we could obtain a nonlinear stability result for the above

boundary-value problem without imposing condition (25).

3. Functional setting of the equations
Obviously, p = 0, v = 0, B = 0 is a solution of problem (16)—(25) for all
values of the data. This solution is expected to lose uniqueness and stability if
the plasma equilibrium is driven strongly enough or the dissipation processes are
weak enough. In order to obtain an uniqueness result for the above solution, we
firstly establish a functional setting of the equations. We shall use the following

spaces:
Vi ={ve(C=(Dul))®,
v is periodic in z with a periodicity length equal to L,

v-e,=0inD, V-v=0in D, v=0on I'}

V7 = the closure of V; with the norm defined by

the scalar product (v,v')); = / —:— (8;v) - (8;v') d*z
Q
V= {Be€ (> (DUD),
B is periodic in z with a periodicity length equal to L,

/] B-e,do=0,V-B=0inD, B-e, =0o0nT}
80(0)

V> = the closure of V, with the norm defined by

the scalar product (B,B')); = / n(V x B)-(V x B')d’z
Q
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The bilinear form ((e, #)); actually defines a scalar product thanks to the Poincaré
inequality; this scalar product provides the norm given by ||v|: = {(v,v))1}!/2.
The fact that the bilinear form ((e, ®)); actually defines a scalar product is a very
technical point (Spada & Wobig 1992, and references therein); this scalar product
provides the norm given by ||B|l2 = {(B,B))2}'/2.

Finally, we introduce the product space
Vi=Vi %XV
and equip it with the scalar product
(3,8') = :—*((v,v'))l +(B,B"), forall®=(v,B), & =(v,B)eV

where p. = maX,¢[o,q) p(r). This scalar product provides the norm on V given by
18] = {(@, @)}/,

We proceed now by establishing a weak formulation of problem (16)-(25).

Let us assume that p, v, B is a smooth solution. The first step is to multiply
equation (16) by a test function w € V; and integrate over . It is easy to check
that for all £ € C*®°(D UT), £ periodic in z with a periodicity lengtﬁ equal to L,
we have [,(V¢)- wdiz = 0.

In order to shorten the notation, we introduce a trilinear form on (H! (Q))3

(see Spada & Wobig 1992) by setting
b(a,a’,a") = La;(@ia;)ag d*z
This form is continuous.
Thus, the previously mentioned projection of equation (16) yields the follow-
ing (weak) equation:

(v, w)h =—b(v,%,w) +b(B,B,w)—b(v,\"r,W)—fQ%v-wd:"z

—b(p\?,%,w) +b(B,1§,w) +b(]§,B,w) (26)

v v v
bl =Vp,w,v +b(v,w,——\7 )-{-b(w,v,V(—))
i (92 G ) ks p
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which is obtained by carrying out some easy calculations, mainly integrations by
parts. Note that p does not appear in equation (26).

Next, let us deal with equation (17) and remember we are assuming p, v, B
to be a smooth solution; by multiplying equation (17) by a test function C € V,
and integrating over ) (Sermange & Temam 1983; Spada & Wobig 1992), we

obtain the following (weak) equation:

(B, C)), =—b(I§+B,C,%) +b(%,C,]§+B>

= b(Ban‘.}) +b(fd",C,B)

(27)

To derive equation (27), we have carried out some easy calculations, again mainly

integrations by parts, used the boundary condition (8) and the identity
b(a,a’,a") = —b(a,a",a’)

which holdsif V-a=0in D,a-e, =0on T, and a, a', a” are periodic in z with

a periodicity length equal to L. Moreover, we have used the identity

/ [V x (nV x B)]- Cd’z = (B, C)) —/ PV B) e ] O
Q an(t)

= (B, C)), —UU/ B-Cdo
an)

whose derivation is easy and where the boundary condition (22) is used.

In order to shorten the notation, let us define the following mapping;:

AV xV — R

(2,9') — A(2,2')
A(®,d') = —[— b (v,%,v') +b(B,B,v') —b(v,v,Vv)
S 3 ( e M 1) N ! s ]
“v-v'd®z—-b|pv,—,v | +b(B,B,v')+b(B,B,v
e V') +8(B,B.v) +b(B,B,v)
lfonts) (gl ()
_b(B+B,B',%)+b(%,B’,B+B)
— 5(B,B',%) + b(¥,B',B)
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where & = (v,B) and ® = (v/,B’). Note that the mapping A is manifestly
linear in the second argument but nonlinear in the first one.
Now, we add equations (26) (multiplied by 1/p.) and (27); thus, we obtain

the following (weak) equation:
(2,7) = A(2,9) (28)
where ® = (v,B) and ¥ = (w,C).
We can now establish the following weak formulation of problem (16)-(25)

(Spada & Wobig 1992, and references therein):

PROBLEM (weak solutions). Under the previous hypotheses concerning the
data, find ® = (v, B) € V such that equation (28) is satisfied for all ¥ = (w,C) €
V.

This problem might be reduced to solving a nonlinear equation, containing
a completely continuous operator, in the space V. This step is advantageous if
one wants to prove the existence of at least one weak solution (see, for example,
Spada & Wobig 1992); but we already know that ® = 0 is a solution for all values

of the data.

4. The uniqueness result
We conclude this study by dealing with the uniqueness of the trivial solution
of equation (28). It is possible to obtain a sufficient condition for uniqueness in
the following way. Suppose that ® = (v,B) € V is a weak solution. Let us define

®, = (psp v, B); one can easily check that ®, € V. Therefore, we have

v v
A@,2,) = (2,2,) 2 1" ~b( 5957, )
where we have carried out an easy estimate. Using the above estimate for ||®||?,

and carrying out a great many further estimates, we can obtain the final estimate
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||2||*> < A||®@]|?, where A does not depend on ®. The derivation of such a final
estimate is a long calculation where, however, one must only apply the Cauchy—
Schwarz inequality for sums and for integrals and the same techniques as those
relevant to the derivation of equations (26) and (27); moreover, it is advantageous

to use the identity
b(a,a’,a")—b(a",a’';a) = / [(V xa') xa]-a"d’z
Q

Thus, if A < 1, then ||®|| = 0, viz., ® = 0: the trivial solution is unique. This

condition is explicitly

a .M 1/4 @ py? pht 1/4
ot ([ )" ([ 280) o

a S Vpl2 2
-|—27rL1/2* fr(—-—-i——-—) dr

(2xL)"'"p | gt
a s =12 ~2 1/2
e e e
pt aenp

1/2
+(2?TL 1/2 1/2[ ]¢+J )d] M, M,

1/4
+ (2xL)Y/4 ( / ";;‘2 dr) M; <1
0

Here, M; = M;(a,L;v/p) is the imbedding constant of the compact imbed-

ding V; — L4(Q) (Spada & Wobig 1992, and references therein); and M, =
M,(a, L;n) is the imbedding constant of the compact imbedding V2 — L(Q).

We point out that uniqueness and stability of equilibrium (11)-(15) are
very related properties. Here, we only say that, if the deviation from equilib-
rium (11)—(15) may have a time dependence, one can easily obtain the estimate
a ([ ]2) /dt < 20\ — ]| @|12, where 8]l = [Jy (o7 IV + B?) &*]'"”.

As one could expect, in condition (29) the dissipation processes manifestly
appear to be stabilizing whereas the source terms appear to be destabilising.

(Note, however, that v appears to be destabilising in the terms containing the
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plasma density gradient; this is another sign of the fact that the non-uniformity
of the plasma density deeply affects the mathematical structure of the equations.)
Condition (29) shows the manner in which they are stabilizing or destabilising,
and, in one sense, contains all the physics of the boundary-value problem we have

analysed in this paper.

5. Concluding remarks

In this paper, we have formulated and analytically solved a one-dimensional
boundary-value problem of dissipative plasma equilibrium in a cylinder. Viscous
stresses and resistance are the dissipation processes we have taken into account,
while a particle source and an externally driven electric field sustain the pressure
gradient in the plasma. Plasma density, coefficients of viscosity and resistivity are
given smooth functions of the radius only. The radial force balance given by the
analytical equilibrium (11)-(15) has been assumed to be a good approximation
as compared with that occurring in magnetic confinement devices such as the
tokamak in their supposed way of operation. Moreover, a functional setting of the
equations has been established and a rigorous uniqueness and nonlinear stability
result for the solution (11)-(15) has been obtained; it is expressed by condition
(29).

Several questions seem to deserve further consideration and analysis.

As regards the results presented in this paper, it would be interesting to plot
the analytical equilibrium (11)—(15) with parameters relevant to controlled fusion

research. Also, condition (29) merits further analysis. We refer to a forthcoming

paper for these questions.

If the plasma is driven strongly enough, or if the dissipation processes are
weak enough, the equilibrium (11)-(15) loses uniqueness and stability and a new

stable equilibrium bifurcates. It would be of great interest to understand at least
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the chief features of the bifurcating equilibrium. In this connection, we draw
attention to the very nice results obtained by Montgomery and co-workers and
presented in a recent series of papers (see, especially, Agim & Montgomery 1991;
Shan et al. 1991). We intend to address this issue for the model that we have
analysed in this paper. ‘

Moreover, as we wrote after equation (25), in a forthcoming paper we shall
also present a linear stability result obtained without imposing the stringent con-
dition (25).

Finally, we believe that a thorough computational analysis of the boundary-
value problem formulated and theoretically analysed in this paper would yield
valuable insight and might help explain some as;pects of the macroscopic be-
haviour of the plasma in typical experimental conditions encountered in research
on controlled thermonuclear fusion. That would require a lot of work and time,
as well as the co-operation of various competences; as we believe that it would be

worthwhile, we hope to pursue this aim as well.

Thanks are due to Dr H. Wobig for pointing out to me the correct inertial term in
equation (1) and for suggesting that my initial assumption of axial symmetry of the

solution(s) might be relinquished.
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