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ABSTRACT

The divergence of Braginskii’s ion gyroviscous tensor is expressed in in-
variant form for localized modes. The only localization assumption is that
the wavelength of the modes across the magnetic surfaces is shorter than the
equilibrium scale length. Therefore, localized modes of both the first kind —
singular modes — and the second kind — ballooning modes — fall within
the scope of the description. General toroidal equilibria are considered as well
as applications to simplified equilibrium models. Applying the invariant form
to expressions appropriate to ballooning and singular modes recovers several

previous results.




I. INTRODUCTION

Recently, considerable attention has been paid to Braginskii’s two-fluid theory [1],
e.g. for ballooning modes in Refs. [2] - [5], low-n singular modes in Refs. [6] and [7],
edge-localized modes (peeling and Mercier) in Refs. [8] and [9], and drift waves in Ref.
[10]. Using Braginskii’s two-fluid equations to investigate collisional effects is valid
only for a collision-dominated plasma in which the mean free path of the particles is
shorter than any characteristic length scale in the problem of interest. This is usually
violated in fusion plasmas [11, 12]. In the above studié, however, Braginskii’s two-fluid
theory is shown to yield results in good agreement with those parts of kinetic theory
which are amenable to a fluid description. For this reason, only the ion gyroviscosity
is considered here. Actually, one of the central and the most complicated aspects of
applying Braginskii’s two-fluid theory is the treatment of the viscous tensor. Note
that the gyroviscous tensor given by Braginskii is in a form decomposed into Eulerian
coordinates, while for fusion studies convenient coordinates could be, for example,
magnetic coordinates [13]. This is the motivation for expressing the divergence of
this tensor in invariant form. With this invariant form one can easily solve difficulties
induced by complicated geometry.

There are several studies treating Braginskii’s gyroviscous tensor. For ballooning
modes the tensor was expressed in the WKB form in Ref. [2]. For low-n singular modes,
an expression with certain special assumptions can be found in Ref. [6]. Reference [10]
also contains an expression for the gyroviscous tensor. But, in fact, it keeps only
those terms which contain second-order derivatives of the velocity of the ion fluid, and
drops many terms which are significant for localized modes. Therefore, to the authors’
knowledge, a general invariant expression for the divergence of Braginskii’s gyroviscous
tensor is still not available.

Because the gyroviscosity effect is important only for localized modes, attention

is limited here to these modes. The only localization assumption made is that the




wavelength of the modes across the magnetic surfaces is shorter than the equilibrium
scale length. Therefore, the expression covers localized modes of both the first kind —
singular modes — and the second kind — ballooning modes. The expression is given
for general toroidal configurations. In addition, several simplified equilibrium models
are discussed.

Applying expression for the divergence of Braginskii’s gyroviscous tensor to both
ballooning and singular modes recovers several previous results.

The remaining part of the report is organized as follows: In Sec. II, the invariant

expression is derived; Sec. III presents applications and the discussion.

Il. INVARIANT EXPRESSION

The divergence of Braginskii’s ion gyroviscous tensor IT was obtained in Ref. [1].

With the introduction of standard subscript notations for vectors and tensors, it can

be expressed as
V-II = 04(13Waap + 14Waap), (1)
where
7s = MP/2B, (2)
7« = MP/eB, : 3)
Woas = o(6hscom + Ehcam) KW, @
Wiag = (HoHuepn + HpHyEoyu) HyWos, ()
Wi = OV+0,V,~ 36,00V, (6)




where V) is the velocity of the ion fluid, M is the ion mass, e represents the ion charge,
P denotes the pressure of the ion fluid, 855 = (6ap — HoaHp), 6ap = 1 when a = B,
otherwise zero, €4, is the antisymmetric unit tensor, and H = B/B, with B being
the magnetic field. .

Equation (1) needs to be linearized for linear stability analyses. In linearization
Eq. (1) one of the quantities V,, P and B, must be considered as perturbed. Note
that there is one derivative operator upon V, in W,,. Therefore, the lowest-order terms
for localized modes in Eq. (1) contain terms having second-order derivatives of per-
turbed velocity. But, as will be shown, the terms containing cross-field second-order
derivatives of the perturbed velocity reduce to a gradient of a scalar, and hence con-
tribute only the same-order effects as the terms containing first-order derivatives of
the perturbed velocity for the parallel momentum equation and the vorticity equation,
which is obtained by operating V-(B/B? X - - -) on the momentum equation. Therefore,
the calculation should keep the next-to-lowest-order terms, i.e. the terms which are of
the same order as the terms containing first-order derivatives of the perturbed velocity.
In the linearization, upper-case letters are employed to denote the equilibrium quan-
tities (except 73 and 7,) and lower-case letters to denote the corresponding perturbed
quantities; boldface is introduced to denote vectors.

We are going to prove that in the linearization of Eq. (1) for localized modes it
is sufficient to consider v, as a perturbed quantity. To do so, we introduce some
notations. A} and A, are introduced to denote the wavelengths of the modes across
the magnetic surfaces and on the surfaces perpendicular to the field lines, respectively.
R is used to represent the curvature radius of the field lines, and a the scale length
of the equilibrium plasma pressure. It is assumed that the wavelength of the modes
parallel to the field lines is longer than or of the order of R, the frequency of the modes
is of the same order as the diamagnetic drift frequency of the modes w,, and A, is of the

order of or larger than A;. We are interested in unstable localized modes. Therefore,




the compressional Alfvén mode is assumed to be suppressed, so that

V:§ ~ k&, (7)
which leads to
En 5t
el (8)

where § is the displacement of the field lines with £, and £, , these being its components
on and across the magnetic surfaces, respectively. The perturbed velocity of the ion
fluid v is ordered to be w.§. The perturbed parallel velocity v is assumed to be of
the same order as or less than w.{x. The equilibrium velocity V, is assumed to be
of the order of the equilibrium diamagnetic velocity. To prove this assertion, it is
sufficient to use the terms containing (0, P)(8Lva), with 8, being the derivative across
the magnetic surfaces, as representative of terms containing ,v, and to compare them
with terms containing the perturbed pressure p and magnetic field b,. Thus, one has

the following ordering sequences:

(0LP)(0rvA) PEN’

P(aibu)(aJ-V"r) Y b_uA_A
B@P)Oron) = Bén (10)

To proceed, the ideal-MHD equations are employed to estimate the ordering for the
perturbed plasma pressure p and magnetic field b,. Noting that the ideal MHD adi-
abatic law reads p = — €:VP — 4PV - £ and utilizing Egs. (7) and (8), one has
p/ P being either of order (AL/AA)(€a/a) or of order {o/R. It can also be proved that
the quantities b,/B are either of order (AL/AA)(€a/a) or of order {s/R by noting that
b =V x £ x B and by employing Egs. (7) and (8). Therefore, the ordering analyses
in Egs. (9) and (10) indicate that, when As/R is of order A, /a, it is possible to ignore




p and b, contributions in the linearization. Alternatively, one has (An/R) > (AL /a),
which leads to (AL/AA) < (a/R). This indicates that the modes in this case are of the
first kind [14]. For localized modes of the first kind with Ax/R > (A1 /a), the frequency
of the modes can be proved to be lower than that of the ion acoustic wave along the
magnetic field lines if the ion gyroradius is smaller than £, which is a prerequisite
for using Braginskii’s two-fluid theory. In this low-frequency regime, it can be proved
that the plasma tends to be isobaric along the magnetic field lines and the Alfvén wave
is suppressed in such a way that p/P and b,/B are both of order (AL/AA)(én/a) [7].
Therefore, the ordering analyses in Eqs. (9) and (10) indicate that p and b, contribu-
tions can also be ignored in this case. As a result, V, in Eq. (1) can be considered as
the only quantity to be perturbed.

7 is used to denote the linearized gyroviscous tensor. Linearization of Eq. (1) yields
Verw = (0af3)Wsap + (0ana)Wiap + 130aWsap + 740 Wiap
1
= 5(3.:714)'!”3«,6 + (Oat4)Wiap

1

+ Zfit\laﬂ [(6ap5ﬁ-yu + 6ﬂyeﬂ#)qu“y]
3

+ Z’Maa (HaHyepy + HpHyEoqu) Hywp] - (11)

Equation (11) is now evaluated term by term, it being kept in mind that only terms
containing derivatives of the velocity need be preserved. These calculations are tedious,

the results being as follows:
1
5(3an4)w3ap + (Oan4)waap

1 1
= Z(apfh)eﬁwHw (O,v, +0,v,) + Z(aa%)eawﬂ'v(aﬁvn + ,vp)




3 3
T Z(H + V4)epy HyOyv) + Z(aa’?'i)eawHﬁH'rauvll
1 1
= ZH X V(V'F].; : V) + ZV’“ : V(H X V)
1
+ 7 {7 X B) X (VX v) + (Vn x H: V)v} + (Ve x H- Vv
3 3
+ Z(H + Vn4)(H X V'v") + zH(Vﬂ‘; -H x Vv“)
1 1
= EVm VH x v.)+ E(V”“ xH-V)v,
1
- Z(H . V?]4)V Xvy + (H . V?]4)(H X Vv“)

+H [(Vm +H x Vy)) + %Vm - (V x v;_)] : (12)

Oa(Sauepy Hywpy)
2
= €pyw(0uvy + 0,v,)0,Hy + €5y, Hy0,(8,4v, + Oy, — §6pyV - V)
3

= esnO O H, —V X [(v- V)H|+Hx Viv+ 1H x V(V-v)

= SVAHxV)+;HX V=V x[(v- V)H] + SHXV(V-v),  (13)

O (8pv€ayuHywp)

2
= Eayu(0uvp + 0pVu)0uHy + Earyu H,04 (8,05 + Opvy — -3-6;3,,V *v)




= (VXH-V)v+ V(Y X H-v)+ H,06(carbav,) + %(H X V)V - v
= HxVv+(VxH -V)v+V(VxH-v)

—(H-V)va—%(HxV)V-v, (14)

Oa(HoHyepp Hywy) = aa(HaHuH';Eﬁ'vvavv#)

= (V'H+H'V)(H va"), (15)

O (HpHyEaryu Hoywyy)

€amuOa(HpH, Hy)0uv, + HgHyomu(H + V)0uvy + EavuHpHy(0H,)(O,v4)

He o H,06(H,8,v,) + HH - (V x H. Vv))

+[(Hx Vo)) VIH-HH - [(H - V)(V xv)]+ HV - [(H x v- V)H]

H{H -VxVv)(V-H) -H-Vx[H:-V)v]+V xH:-Vy +V-[(Hx v V)H]}

+ [(H x Vv") - V]H. (16)




Inserting the results of Egs. (12) — (16) into Eq. (1) finally yields

1 1
V:® = qu4.V(HXVJ—)+§(V1M XH'V)V_]_

1
~ 7(H-Vn)V x v, + (H- Vi,)(H x Vo)

1
+H [(\7774 “H X Vo) + £ V04 (V X vJ_)]

1 %{%VQ(H XVvy)+ g—H x V?v -V x [(vy - V)H]

+(VxH-V)vi+V(VxH:v)— (H-V)V x v, +3(V-H)(H x Vy))
+ 4H x V(H - Vo)) + 3[(H x Vy)) - VIH + 5(H - VH) x Vy

+H[B(H-vaJ_)(V-H)—:}H-Vx(H-V)VJ_

+7H><(H-VH)-Vv||+3V-(Hva_-VH)]}. (17)
Il. APPLICATIONS AND DISCUSSION

The invariant form of Braginskii’s gyroviscous tensor for localized modes has been
given in Eq. (17). This invariant form makes it easy to evaluate the gyroviscosity effect
on localized modes of different kinds in different geometries.

Note that the only two terms containing second-order perpendicular derivatives of

the velocity of the ion fluid in Eq. (17) can be combined as follows:
-”8—4V2H X V+ 3—’871H x Viv

= V (%H -V x v) + (terms containing only first-order derivatives of v).

This shows that the terms containing second order derivatives in Eq. (17) can be

9




reduced to a gradient of a scalar except for terms containing first-order derivatives. If
only B:(V-#)and V- % X V - 7 enter into the eigenmode equations, this gradient
makes contributions of the same order as the terms containing first-order derivatives.
That is why we make the calculations oﬁ the terms containing first order-derivatives
of v.

We first consider equilibria with (|[VP|/P) > (VB,/B), which is assumed in many
cylindrical and slab models. In this case, only the terms containing derivatives of P and
second-order derivatives of the velocity of the ion fluid need be kept. The perpendicular

component of the divergence of the gyroviscous tensor in Eq. (17) is reduced to

MP_, M M
(Vom)y = 55V HXV)+5—=VP - V(HxXV)+;—=(VPxH-V)v. (1)

This result completely coincides with that in Ref. [15]. Note that Eq. (18) is also true
of the edge localized modes [8, 9].

Next, we turn to the ballooning modes. Replacing the nabla operators in Eq. (17)
by tk, with k being the perpendicular wave vector, and introducing the perturbed
electrostatic potential ¢ and the perturbed pressure of the ion fluid p to represent the
perpendicular velocity [2],

B x V(Ne¢ + p)
NeB? :

Vi

with N being the density of the ion fluid, one can express the divergence of Braginskii’s

gyroviscous tensor for ballooning modes as follows:

B-(V-w) = — iwlNMByj+i(ws + 3w,)NMBy

(p+ Neg)

+ bB - V(p+ Neg) + =

B . V(Bb;) (19)
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and

V[% X (V-ﬂ')]

: bfed p\N- b ([ed p
P o ), ¥ P I o U e i
= z:.u,,‘,Ne2 (T, +P) +:a(w,,+3w,5;)Ne2 (T, +P
NeB b;v
5 2 B-V(qu), (20)

where

Wy = w*(1+qi)s

T,

w = TEBXVN-k,

- 8T

" = FmN’

; K MT.

= ap

1 T
wp = [xB-v(P+38)| o,
i T

wp = ( X 'VB)e—Ba,

and T; is the temperature of the ion fluid. Equations (19) and (20) are exactly the
results given in Ref. [2]. When the aspect ratio is large, only the first term in Eq. (20)
remains, and then the result used in Ref. [5] is recovered.

For localized modes of the first kind, one has A\; <« Ax. This leads to v; =
(v°/|VS]) < (v*|VS|/B) = va, where S is the volume inside a magnetic surface, u is
defined by B = VS x Vu, v5 = v+ VS and v* = v - Vu. Taking into account this

11




behavior of the modes, one can, after laborious calculation, obtain [7]

B-(V-w) = —iw NMBy— 2}—9-%";2(13-%0%‘:J’L_l
- iy () & @
and
v. [; X (V- w)] = zwf:NMIV;SP%v +eﬁ;|vs12
2 lH[VSPB v%—‘;ﬂ o %-2%(3 : vwmﬂ%}’?
+ 2%-‘:3(13 vB)vspZi 4, (22)

where 0 = J - B/B? and z = § — S, with Sp labeling the reference rational magnetic
surface. Noting that B - V(p + Neg¢) = 0 for the localized modes of the first kind, one
can see that Eq. (19) coincides with Eq. (21), as well as Eq. (20) with Eq. (22) when
the WKB ansatz is also made in Eq. (21) and Eq. (22).

In all these examples we see that directly usiﬁg the invariant form in Eq. (17) is more
convenient than using the form decomposed into Eulerian coordinates in Ref. [1]. Note
that Eq. (17) is obtained under the sole localization assumption that the wavelength
of the modes across the magnetic surfaces is shorter than the scale of the equilibrium.
Therefore, Eq. (17) is more general than the results in Ref. [2] for ballooning modes
and the results in Refs. [6] and [7] for localized modes of the first kind. Although we do
not present any practical applications of Braginskii’s two-fluid theory, because treating
the gyroviscous tensor is one of the most complicated aspects of such applications, the
tractable expression of the divergence of the tensor in Eq. (17) can be considered to

have overcome one of the obstacles to applying Braginskii’s two-fluid theory.
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