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ABSTRACT

We investigate wave propagation and absorption in the vicinity of the first ion cy-
clotron harmonic resonance. Two regimes, dominated by mode conversion to Bernstein
waves and by ion cyclotron damping, respectively, are identified, depending on the value
of k| and the density and temperature of resonant ions. With the help of analytic so-
lutions of the fourth order finite Larmor radius (FLR) wave equations we derive simple
expressions for the reflection and transmission of a fast wave impinging on the resonance,
and for the efficiency of mode conversion through the resonance layer.

We also investigate the solutions of the second order wave equations obtained by
order reduction. This approximation eliminates the short wavelength Bernstein waves,
and replaces mode conversion by an equivalent power sink. As well-known, the reduced
equations reproduce exactly the results of the full FLR wave equations if absorption at
the “spurious” wave resonance is interpreted as mode conversion. We also show that
the solutions of the order reduced equations can be used to obtain accurate estimates of
direct ion cyclotron harmonic damping in the mode conversion regime. Absorption in
the cyclotron damping regime can be obtained from the WKB solutions. Simple inter-
polation formulas covering both regimes are suggested, and compared with numerical
results obtained with the FELICE code.

The results obtained can be used to evaluate the heating efficiency of a given antenna
and for fast modeling of this heating scenario without extensive numerical calculations.
Applications to ASDEX Upgrade and ITER are presented.




1 - Introduction.

Ton cyclotron heating at the first harmonic, w = 2();, is an attractive heating scheme
in the fusion reactor because of its insensitivity to the plasma composition: it can be
applied to the optimal D-T plasma mixture without requiring further ‘minority’ species
whose concentration could be difficult to control. Since its efficiency increases with the
plasma pressure, it should perform at least as well as typical minority heating schemes
if the ion temperature of the ohmic plasma exceeds 3 to 4 keV. At high power and low
collisionality first harmonic heating is likely to produce tails of suprathermal ions, which
might participate directly in fusion reactions and enhance the reactivity.

A disadvantage of first harmonic heating is that it requires a frequency twice as
high as that for fundamental heating of the same species: this can imply more severe
constraints for generators, transmission lines, and particularly for the antenna design.
This disadvantage is minimized by heating the relatively heavy tritium: this choice also
avoids parasitic absorption by a particles. On the other hand the higher frequency might
offer more chances to non—conventional launcing structures, such as resonant cavities or
folded waveguides, which might be better compatible with the reactor environnement.

In medium size tokamaks first harmonic heating is usually more difficult to imple-
ment than minority heating because of the low temperature of the ohmic plasma. This
can be circumvented using some pre-heating, for example by neutral beam injection,
which is usually also available on experimental tokamaks. Also, as well-known, first
harmonic heating of deuterium should be avoided, because it is next to impossible to
avoid contamination by some hydrogen, which tranforms the scenario into a typical
minority heating one.

As most ion cyclotron heating scenarios, first harmonic heating in tokamaks is im-
plemented by launching the fast (compressional) cold plasma wave (FW); the frequency
is chosen to coincide with the first harmonic ion cyclotron frequency close to the plasma
center. Two mechanisms compete to damp the fast wave in the vicinity of the reso-
nance, namely ion cyclotron absorption and mode conversion to the lowest ion Bernstein
wave. Elsewhere, Transit Time damping by the electrons can also be of importance if
the electron temperature is large enough. Here, however, we will concentrate on wave
propagation and absorption in the vicinity of the ion resonance.

Mode conversion near the first harmonic cyclotron resonance is a consequence of a
confluence between the fast wave and the first ion Bernstein wave (IBW) [1]. The latter
is a nearly electrostatic wave which propagates at frequencies just below 2{}, i.e., in
the tokamak, on the high field side of the cyclotron resonance. The confluence occurs
because near w = 2(); the finite Larmor radius corrections to the dielectric tensor shows
a ‘resonant’ behaviour. This decreases the wavevector of the hot plasma wave, while
the wavevector of the FW, which depends only on the cold plasma contributions to the
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dielectric tensor, is not affected by the resonance. The IBW is a backward wave, so
that, if dissipation is weak, the confluence causes a narrow frequency gap in which both
waves are evanescent. In the tokamak there is a region of evanescence just to the high
field side of the cyclotron resonance, which screens waves launched from the low field
side from the mode conversion layer. This effect was discovered by Weynants [2], who
pointed out that the width of the evanescence region increases, hence the efficiency of
mode conversion decreases, with increasing plasma pressure.

The IBW excited by mode conversion propagates toward higher magnetic fields,
i.e. away from the cyclotron resonance, with rapidly decreasing wavelength. Ion cy-
clotron absorption of this wave therefore does not occur. Although a detailed investiga-
tion of the damping of the IBW is not easy, it is nevertheless clear that the associated
power flux is finally thermalised. This will occur through Electron Landau damping
if the parallel wavenumber increases sufficiently due to refraction in the non—uniform
tokamak configuration [3]. Alternatively, if k remains too small, IBWs can be absorbed
by stocastic ion heating as soon as their perpendicular wavelength becomes shorter than
the thermal ion Larmor radius. This effect is not described by the linear theory of wave
propagation, but is well documented by numerical studies [4], and can easily be taken
into account in numerical solutions of the wave equations [5]. Mode conversion must
therefore in any case be regarded as an energy sink for the externally launched FW; its
effects on the power balance between species, on power deposition profiles, and on the
distribution functions, however, are more difficult to investigate than those of direct ion
harmonic damping, and are not yet fully understood.

A true confluence giving rise to mode conversion, however, occurs only when IC
damping is weak, i.e. for nearly perpendicular propagation. For larger values of n|
the Doppler broadened region of strong cyclotron damping and the evanecence domain
overlap, so that the two roots of the dispersion relation miss each other in the complex
plane. This suppresses mode conversion in favour of direct cyclotron absorption. For
a single mode, therefore, one can speak of two regimes, dominated by mode conversion
or by cyclotron damping, respectively, depending on the value of n) and on the density
and temperature of the resonant ions.

These concepts, of course, should not be applied without qualification to heating ex-
periments as a whole. The n|| spectrum of typical FW antennas is always broad enough
to cover both regimes. In the case of antennas with more than one conductors, which
allow some spectral shaping, mode conversion can be further suppressed by chosing an
antisymmetric configuration. It is useful to have simple and reliable formulas for the
efficiency of the various damping mechanisms as functions of ny: by folding them with
the expected antenna power spectre, one can rapidly estimate of the performances of a
given heating experiment, before performing extensive numerical simulations.
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The plan of this report is as follows. In the next section we write down the finite
Larmor radius (FLR) wave equations appropriate for the situation of interest, and we
discuss the corresponding dispersion relation and the WKB solutions. In section 3 the
FLR wave equations are solved by contour integrals in the limit of small ion cyclotron
damping. The comparison of the asymptotic behaviour of these solutions with the WKB
solutions provides connection formulas from which the fraction of power transmitted,
reflected and mode converted are obtained. Similar connection formulas have been
obtained by many Authors for transit through ion-ion resonances [6]-{7]. The wave
equations near a first harmonic resonance, however, have a somewhat different structure,
and slightly different techniques must therefore be used [8]-[9]. Nevertheless the results
are of the well-known “Budden” type [10], and are expressed in terms of the optical
thickness of the evanescence layer, just as those obtained for ion—ion resonances.

In section 4 we discuss the application of the order reduction technique [11] to the
present problem. The reduced wave equations are of second order, since IBWs are
climinated, and can be solved in terms of Whittaker functions. As in other applications
of order reduction, the connection formulas thus obtained give exactly the same power
balance between transmission, reflection and absorption as the fourth order FLR wave
equations, provided absorption is identified with mode conversion. The corresponding
power sink in the reduced equations is due to a “spurious” wave resonance localized near
the layer where mode—conversion would take place. This wave resonance is of a rather
unphysical kind, since it corresponds to a singularity of both the electric and magnetic
field of the waves which satisfy causality at infinity (true wave resonances usually give
rise to logarithmic singularities only in the wave magnetic field). Nevertheless the
domain in which the solutions of the reduced equations cannot be trusted is quite thin,
and does not extend to the position of the ion cyclotron resonance. In section 5 we use
this circumstance to estimate direct ion cyclotron absorption in the mode conversion
regime. Ion cyclotron absorption in the limit of large kj is obtained using the WKB
solutions, and formulas interpolating between the two regimes are suggested. They
compare very well with numerical results. These formulas provide a complete elementary
description of linear fast wave propagation and absorption near a first harmonic ion
cyclotron resonance.

In section 6, the analytic results are illustrated with applications to ASDEX Upgrade
and ITER. The plasma parameters are summarized in Table 1. Those of the ASDEX
Upgrade case are below the nominal performances of this device: they have been chosen
as an example of the rather “unfavorable” low density, low temperature target plasmas
available in medium size tokamaks. First harmonic heating can nevertheless be success-
ful if the ohmic temperature can be raised to about 2 keV. The parameters of ITER
have been adapted from the recommendations of the European Group on ICR Heating
and Current Drive for code validations. Conclusions are summarized in section 7.



2. — Wave equations and dispersion relation.

2.1 — Finite Larmor Radius wave equations near the first harmonic cyclotron reso-
nance. Cyclotron harmonic damping and mode conversion to the ion Bernstein wave can
be quantitatively investigated by solving the wave equations in plane-stratified geome-
try in the FLR approximation. The correct form of these equations has been obtained
by [12]-[16]. Neglecting for simplicity the electron inertia, and keeping only the h.f. FLR.
ion current which is “resonant” near w = 2();, these equations can be written (lengths
are measured in units of k, = w/c)
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where

are non-resonant and of order zero in the Larmor radius (electron contributions have
been taken into account through charge neutrality), while

1 wga Utzha
Az = P ToaZ(T+2a) (3)
[+
is the finite Larmor correction resonant near w = 2{};; here
w — ZQca
Ty = Lo 4

and Z(z) is the Plasma Dispersion Function. For large argument —z Z(z) — 1, so that
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We stress again that the resonant behaviour at w = 2().; shown by this coefficient singles
out Ay among all other FLR contributions to the dielectric tensor, and justifies the
approximations made to write Eq. (1). In a tokamak we will rerite (5) as

Az
x

Ao g = 5B (ko) (6)

where R, is the position of the harmonic ciflotron resonance, z the horizontal distance
from R,, and only the contribution of the heated species has been retained.




2.2 - The Dispersion Relation. The first step in the investigation of the wave equation
is to discuss the local dispersion relation, which can be immediately obtained by assum-
ing that the coefficients of Eqgs. (1) are constant, and inserting a plane-wave solution.
With d/dz — ing, n2 +n2 = n?, we obtain

2204+ [(n2 = 8) + (2 — R)\] nd + (2 = R)(n2 = 1) = 0 @
Exactly this equation can be obtained from the full hot—plasma dispersion relation by
expanding in the Larmor radius, neglecting the electron inertia, and keeping only the
jon FLR term which is resonant at w = ;. The importance of some of the omitted
terms will be estimated below by comparing the solutions of this “reduced” dispersion
relation with those of the complete FLR and of the full hot—plasma dispersion relations.

‘We will abbreviate

2.2
2 2 2 VRVL
vy =nj—A Q=== 5" (8)
N

so that g is the asymptotic perpendicular index of the FW. We assume that B, in-
creases to the left; then v > 0, v <0, but vZ = (v% +v;)/2 > 0, so that the fast

wave is propagative, g% > 0; we will actually assume ¢} > n2 to have real wave fronts.
With these notations, the two solutions of Eq. (7), developed for |\;| < vZ, are

2,2 g\ 2%
=~ — >~ 1—-1[—= — 9
nl VT 1+ GR% (a/20d) ‘?F[ 2 (ug 5 ©)

for the FW, and

22 2.2 202
- (B emp) + E - By (10)
for the BW. Here
he. = -—(V?{/V%) >0 (11)

The shear cold—plasma wave has been eliminated by the zero electron inertia approxi-
mation; it can be shown that this is justified as long as the very mild condition

8mnT _ me
= — 12
B Blo- i (12)

is satisfied.



The factorization (9)—(10) breaks down near the first ion cyclotron harmonic. The
confluence between the two roots which occurrs there is due to the resonant behaviour
of the FLR term A;; this is in contrast to usual wave resonances, which are due to zeros
of the cold-plasma coefficient v/. In spite of this difference, mode conversion and wave
propagation near w = 2(2; are essentially the same as near ordinary wave resonances.

The roots of the dispersion relation (7) near w = 2{2; in a typical ASDEX Upgrade
plasma are shown in fig. 1 for perpendicular propagation, and in figs 2 and 3 for oblique
propagation. Note that in the limit of perpendicular propagation there is an effective
cut—off for the Bernstein branch at the cyclotron resonance. The dispersion curves for
ITER are similar: the evanescence region is broader, as expected, although much less
than in proportion to the major radius R,: 15 cm if Deuterium is heated, and only 4 cm
if Tritium is heated at 10 keV in a 50%-50% mixture (this is due to the dependence of
)2, L and R on the charge to mass ratio of the resonant ions). The broadening of the
evanescent region at perpendicular propagation with increasing 8 is illustrated in fig. 4
for the case of f.h. heating of Tritium in ITER.

2.3 — Mode conversion versus cyclotron damping. Figures 1 to 3 also illustrate the
transition from the mode—conversion regime to the cyclotron harmonic regime men-
tioned in the introduction, due to the progressive widening of the cyclotron damping
region at the expense of the evanescence region as n| increases. We can derive the
conditions for this transition as follows. Let us first consider nearly perpendicular prop-
agation (i.e. n) so small that coefficients in Eq. (1) are real). Then we can locate the
region of evanescence and the confluences between the two waves by asking for the val-
ues of Az which make the discriminant of the DR vanish. Using for ), its expression in
the limit of perpendicular propagation, Eq. (6), this gives

w——ZQC,-___ﬁ_ h%‘
1

w  '144/RZ (13)

Since h% < 1, the evanescence region lies to the high field side of the resonance, as
anticipated. The horizontal thickness of the evanescence layer is proportional to the
toroidal radius R, and the ion 8; = (w2;/Q%)-(v3,;/c?). Both factors are of course much
larger in a reactor-like plasma than in a medium size tokamak. Since the wavelength
of the fast wave is rather insensitive to the plasma parameters, we can anticipate the
optical thickness of the layer to be also be greater in the reactor case. As seen above,
however, the dependence of h% on the plasma composition can partially compensate for
this effect.

The layer where ion cyclotron harmonic is not negligible, on the other hand, is
characterized by the inequality

w

Ushi
Sqlnnl tch‘l.

(14)

7




where ¢ is a number of order unity (between 2 and 3). Mode conversion will occur,
roughly speaking, if this layer does not extend beyond the midpoint between the two
confluences. This gives the condition

h% Vthi
ﬁil_—Tﬁ; R q|ny| ;i

(15)

The Lh. side grows faster than the r.h. side with the plasma temperature, and is moreover
proportional to the plasma density, which does not enter in the r.h. side. Since the values
of n) which can be launced by IC antennas are nearly independent on the plasma size,
this condition will be more easily satisfied with increasing plasma performances. It
has been pointed out [2] that this circumstance might somewhat reduce the efficiency
of cyclotron harmonic damping in the reactor. It turns out, however, that for waves
excited from the low field side, which encounter first the cyclotron harmonic, this is
only a minor effect.

We can define a critical parallel wavenumber for the transition from the mode conver-
sion regime to the cyclotron harmonic regime as the value of n|| for which condition (15)
is satisfied with, say, ¢ = 2. We have plotted the required n) in fig. 5 for ASDEX Up-
grade, and in figs. 6 for ITER at the first harmonic of tritium. As expected, the critical
value of n|| increases with temperature; in all cases however it remains relatively small
throughout the range of admissible ion temperatures. Clearly, for any reasonable an-
tenna, only a fraction of the launced spectrum will be in the mode conversion regime,
even in the case of a monopole configuration (spectrum centered on n) = 0); with a
dipole (antisymmetric) antenna this fraction can easily be made negligible.

It is also interesting to compare the simplified FLR dispersion relation (7) with the
full hot-plasma dispersion relation. Indirectly, this gives also an idea of the accuracy
of the wave equation (1). Eq. (7) turns out to be very accurate (better than 1%) for
perpendicular propagation, and only slightly less for values of nj above the transition
to the cyclotron damping regime. In this regime, the imaginary part of the FW index is
slightly overestimated (by a few %), and the imaginary part of the BW index underesti-
mated (by 10 to 20%). The origin of these inaccuracies is the omission of electron FLR
terms (in particular in €, = —¢,y), rather than a breakdown of the FLR approximation.
The numerical solution of the full FLR wave equations, which takes these terms into
account, should therefore give very good results in all cases.

2.4 — WKB solutions. In the following we will need rather detailed WKB solutions
to the wave equations (1). We write these WKB solution in the following form:

1 i td _ o z =
Ej(z)zzm[Aanjef Padz L B .G7.e fpad] (16)
('3 s [s 4
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Here j € {+, —} is used to denote components, and « € {F, B} to label the two roots
p2 of the dispersion relation for ng, i.e.

Pz = g3 —m} a7)

Moreover A, B, are arbitrary constants; W, (z) are the WKB amplitude factors; and
Gif j(z) are the polarisation factors. We will chose p, so that the first term always carries
energy or decreases exponentially towards the left (hence p, = —\/;EJZ for backward
waves, po = iy/—p2 for evanescent waves). The polarization factors ij (z) must
satisfy

ro s @aEdn)? o T R 2R (18)

ST +20E+ ) T (paFing)? T
The WKB factors Wy, finally, will be chosen so that in the propagative case the wave
carries a unit of energy per unit area. For this purpose, we need the general expression
for the power flux within the WKB approximation, namely

w * i
Pt To = oo Ro (o) IB? = my Re (B ) - Ro (pa3) B3P} (1)

The last term, 7%, is the kinetic power flux arising because of spatial dispersion.

A) Fast wave. For the FW, to lowest order (A2 — 0), we write

2

v
Gry (L GE = —ﬁci Gr_=( (20)
where the factors
qr Pr T iny 2
_ T R | 21
C+ PrF iny i ICx|* = ¢4 ¢ (21)

are close to unity for n2 <« ¢%. Inserting in Eq. (19) and taking into account that the
kinetic flux is negligible for the fast wave, we have

W2_1 G:i:2 nyI (;f:l:____1 h2 2_ V-%' .
F = 3¢ — ¢ GFl i m ( F)_E(l_ F) =2 5% (22)

B) Bernstein wave. For the BW, in the same approximation, we can write

n n
GE [~V Gt ~1+i%Y 23
i PB ’ PB )

where we have taken into account that nz < g%. This coincides with the electro-

static approximation. As a consequence, the flux associated with the Bernstein wave is
dominated by the kinetic part. Substituting into (19) we get
n A - A
W3 = {|G§|2=Fp—;Re(G§)—72|1+2G§|2}z—72 (24)
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The four independent solutions thus normalized, obtained by taking one of the four
constants A, Ba in turn equal to unity and the others zero, will be called the reference
WKB solutions. Using Egs. (9), (10), and (6) (which always hold in the WKB region),
and taking into account that the BW is a backward wave, these solutions can be written

— 1
E:I: i 5oy P 2 —*_}
F (ZPF)INV% {C:}:VR U4 C:FVL'U.

412 2
[ _gph% [ A2
exp {:i:z |:ppcc rye (———21{%) In (2pF]a:l):| }

1/4
gl be L 2s (—z)Y4 ety +Cu
B (2vg)/2 \ =) e of

%
ex 1= —_— —T
p {:F = ( % (—=)

Here the superscripts +, — denote the wave propagating towards the left, to the right,
respectively. The amplitude of the BW solution increases toward the left to compensate
for the decrease in group velocity.

(25)

3 — Solution of the wave equations for nearly perpendicular propagation.

3.1 — Solution by Laplace integrals. Analytic solutions to the wave equations (1) can
be obtained only for nearly perpendicular propagation, so that cyclotron damping can be
neglected, and ); is given by Eq. (6). Compared with the rapid variation of the resonant
term Ao, we can neglect the space dependence of R and L. Then, eliminating E_, we
obtain the single fourth—order wave equation

1 d2 2 2 d 5\2 d
0= |:—§ (EZE —ny) +(ﬂz —R)] {(E-i-ny) ['; (—(E —ﬂy> E+
: (26)
d
+ (EEF —nf,) [(ni ) E+] — (n2-R) (n? - L) E;
Solutions of this equations can bew written in the form of Laplace integrals,

By@) = [ M@ dp (27)

along appropiate contours C;. With some simple algebra one finds

(p) Guphi ol (9269
Ap:(l___) i
p? +p% 5

: il (28)
A2 Az P .. (p—1ipr)
v 2 A28\ (iR @ L, SN ¥ IPE)
(z,7) (I+2V§O‘)p 2% 3 'm " (p+ipr)
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where

pr=1/0k —n2 =qr(, (v =1/1 - (nZ/q}) (29)

is the asymptotic horizontal index of the Fast Wave,

A g% h2 T v 2q
1= 5 e = AR () € =

is the optical thickness of the evanescence layer between the effective cut—off at the
cyclotron harmonic resonance and the mode conversion layer (cfr. above), and

o= qph% +n2 =2(¢% +vi) — ph (31)

The function E,(p) has an essential singularity at infinity, and branch singularities at
p = Lipr on the imaginary axis. The main sheath can be defined by cutting the p—plane
along the imaginary axis between these two points; the principal value of the logarithm
is to be taken on the positive p-axis. Since Ay/202% > 0, E, (p) — 0 for |p| — o0 in the
directions such that

cos 3¢, > 0 ¢p = argp (32)

The contours C; can go to infinity only within the sectors which satisfy this condition.

3.2 — Asymptotic behaviour of the solutions. The points of stationary phase of the
integrand in Eq. (27) satisfy

P2, + 0% =i (2)

vg 2 2 vg : (83)
FigeE (a7 +vg) = [i—m + (¢% + Vﬁ)] + g% h%
2 2

(this notation does not imply A% > 0 throughout; these functions are real for all i@,

however, and both are positive for large and negative z). We write the four saddle
points described this equation as

Pt = +iy/pk — Ai(2) Py = —iy/p} — M () (34)

where the subscripts refer to their position in upper and lower halfplane when z is large
and negative: in this case p}’" are on the imaginary axis just above (below) the branch
points +ipg, while p" are much farther away on the imaginary axis. When z is large
and positive, p=" move toward the branch points, remaining on the imaginary axis,
while p}"" migrate to the real axis and approach +oco. The two pairs of saddle points
exchange their role when z goes through the resonance z = 0.
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Four contours leading to four linearly independent solutions with well-defined asymp-
totic behaviour for £ < 0 and for z > 0 are shown in fig. 7. Remembering that the
Bernstein wave is a backward wave, the identifications are

A)z <0
5 Bernstein Wave propagating towards —oo
% Fast Wave propagating from —oo
ClF Fast Wave propagating towards —co
Cﬂg Bernstein Wave propagating from oo
B)z>0
D% Bernstein Wave evanescent towards +oo
D% Fast Wave propagating to +co
Bt Fast Wave propagating from +oo0
Dy Bernstein Wave growing towards +o0

To evaluate the asymptotic behaviours explicitly, however, we can use the saddle—
point method only for the solutions representing Bernstein waves; for those representing
fast waves the point of stationary phase is too close to the branch singularity, and the
integrals are of the Hankel type instead.

A) Fast Wave-type solutions for large negative . Let us first consider the integral
along CL. The integrand is dominated by the factor e(P+iPF)T a5 long as

21/2 1/2
o+ ipe] << (TS) (—z)™/2 (35)
2

Hence for sufficiently large —z > 0, substituting p = —ipr — 1 /z in the exponential and
putting p = 0 in all other factors, we can write

EL(z) ~ G, (——1:;) 5 /C &=t (-t)—(l‘“’i‘) dt (36)

2 12 3 3
gsh .M _a | A2 P n
G, = -——F—Q—F (1 + 11’3_;) e~ 2 exp {—1. |i—27§- (CBPF = —;) "y In (ZPF)jl } (37)



and the countour Cy runs from +4oco to the origin just above the real axis, encircles
the branch point s = 0 counterclock—wise, and goes back to +oco just below the real
axis. The integral can therefore be evaluated by comparison with Hankel identity for
the Gamma function [12]. The integral along C} is just the complex—conjugate. In this
way, apart for a factor of modulus unity, these two solutions in the left asymtotic region
are found to behave as the normalized WKB solutions E‘% multiplied by the factor

ﬁﬂ q1/2 9 e—(")/2)

e )

B) Fast Wave—type solutions for large positive . The integrals along D}?l can be
treated in the same way as the one along C}‘;l. For sufficiently large > 0 these
two solutions in the left asymtotic region are found to behave as the normalized WKB
solutions E‘% multiplied by the factor

/5 q1/2 4 et(n/2)

' yRI‘(l:I:in/‘.'r) (39)

again disregarding a factor of modulus unity.

C) Bernstein—type solutions for large negative z. We turn now to the integrals
along C};*l. For large negative z the corresponding saddle points p% and pt can be
approximated as

2v% 33
pt o~ i (— ).\Sx) +0 ([mrl/?) = +igp (40)
2
The corresponding integrals can be approximated by
5 1/2
B3, (@) =~ (wf t) A(p™) X @r=h (41)
provided that
v 202\ /2
5o —po| = (55) 02 >1 (12)
2

a condition which is well satisfied in the WKB domain. Evaluating A(p’f_’l), U(z, p‘_"l),
and U, and taking into account that the logarithmic function takes its principal value at
the right end of the paths C‘g", we find that these two solution behave as the normalized
WXKB solutions E‘? multiplied by the factor

9y 1/2
(2mv2)1/? (%s_) e Ei(3m/4) (43)
2
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D) Bernstein—type solutions for large positive z. For large positive z the saddle
points corresponding to Bernstein waves are p‘_f_’l are:

2V2 1/2
A ( sz) +0 (z71) (44)
2

The solutions evaluated along DE" therefore behave asymptotically as

: 2 3/4 2 1/2
EEJ(m) ~ —-\/7_1’{ i} (%) (z)/% exp {:’c% (%) $3/2} (45)

Strictly speaking, the exponentially growing solution always picks up also a contribution
from the other Bernstein—type saddle point, which however is subdominant, and can be
neglected.

3.3 — Connection formulas. Connections formulas can now be obtained by noting
that each of the solutions written above is regular for all finite . The appropriate
path can then be determined by imposing causality on the transmitted waves, and then
deformed to determine the corresponding combination of incident and reflected waves.

A) Fast Wave incident from the low field side. Causality requires: 1) no wave
carrying energy from —oo; 2) no growing solution for z > 0. The first condition excludes
the paths C; and C’g; the second can be satisfied by an appropriate combination
of paths Cz and Cg which run through the forbidden saddle point, such that the
contributions cancel each other. With the help of fig. 8a, it is not difficult to see that
this requires that the integral along Cp be multiplied by the factor 1 — e~2™ and the
integral along Cz by —(1 — e~2™). The two paths can then be deformed as shown
in fig. 8b to d. From fig. 8d, we recognize for large > 0 the contributions from the
incident fast wave E5 with weight 1, from the reflected fast wave with weight 1 —e=2™7,
and from the evanescent BW also with weight 1 — e~2™_ Taking into account the
asymptotic amplitudes of the different waves, but neglecting factors of modulus unity,
we summarize these results as follows:

—(n/2)
1/2 2 € i
Var py VRI‘(l+z'n/1r)EF
22\ /2
— (1—e7?) (2md)'/? (Ts) BE)s. . (z<0)
2

+(n/2)
1/2 2 € =
— \/§pr UR{—__—I‘(I-E-in/‘:r)E F

(46)

+n/2)
+(1—e-2) i,_(iianmE);} (z > 0)
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(the evanescent BW for z > 0 has been omitted for simplicity, since it does not par-
ticipate to power transport). We recall that the basic solutions E)% are normalised to
the same power flux, and that the incident wave is E)z for £ > 0. Using a well-known
identity for the modulus of the I" function and the definition of n we finally obtain the
coefficients of transmission, reflection and mode conversion:

R = (1—e2)2
T =eray (47)
A= (1—e 2M)e 2

B) Fast Wave incident from the high field side. We now must require: 1) no wave
carrying energy from +o0o; 2) no growing solution for z > 0. A similar, but simpler, ex-
ercise leads to the following coefficients of transmission, reflection and mode conversion:

R=0
Ti=e-" (48)
A=1—¢2n

The total energy is strictly conserved in both cases. As usual, mode conversion is
more efficient for waves incident on the mode conversion layer from the high field side
of the tokamak, which suffer no previous reflection at the effective cutoff.

4 — Order reduction for first harmonic heating.

The results (47) and (48) are formally identic with those obtained from the well-
known Budden model [10], which is based on a second order wave equation displaying a
resonance and a cutoff. This suggests to simplify the fourth order wave equations (26)
by suppressing the short wavelength BWs, replacing mode conversion by an equivalent
power sink. This procedure is known as “order reduction algorithm” [11]. The resulting
second order wave equations is easily solved in terms of classic analytic functions; this
will be useful in the next subsection to estimate cyclotron damping. Order reduction in
this context is also of interest because the solutions of the fourth order wave equations
are known in closed form, at least for quasi—perpendicular propagation. Thus a direct
comparison of the ‘exact’ and ‘reduced’ equations is possible.

We perform order reduction by substituting the wavevector k, = pp for —i(d/dx)
in the outer second order operator of the first term in Eq. (26). This tranform the wave
equations into a single second order equation

d 1/d d?
() [5 (2 ) B+ (G b) B =0 2
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with

A 1 v2\%  2pp 7
& = b iy = 7 (kR) (-2) - 22 (50)

The dispersion relation (as usual with n? = n2 +n}) is now

2 iz a%
"L T A0 ey
Comparison with Eq. (9) shows that Eq. (49) describes the FW including FLR cor-
rections, but not the Bernstein wave, as expected. The confluence with the latter is
replaced by a singularity at the point = = —e? (the cyclotron harmonic resonance at
x = 0 gives rise to a peculiar behaviour of the polarization, but the equation itself is
regular there).

Of course, Eq. (49) could be solved with Laplace integrals. It is however more useful
to have solutions in terms of known analytic functions. For this purpose, let

d
Then Eq. (49) becomes

d 2\ d?F Sorgie
(a;-i'ny){(l-i-';)a‘z—-l—(;ﬂp-i- . )F =0 (53)

which, taking into account the conditions at infinity, is equivalent to the Whittaker
equation for F

d*F o 1 Eigh
— - F 54
As anticipated, the singularity at = = —e2 replaces the confluence with the Bernstein

branch. Note also the cut—off at z = ezng, which exists also in the 4th order equation.

The general solution of (52)-(54) can be written

d i
By = (E R ny) Yiin,m (£2ipr(z + %)) (80)

where Y is any solution of Whittaker’s equation with

et =1
e m= 2 (55)

(the signs in the argument and before x must correspond). To obtain the connection
formulas for the order-reduced problem we can now use the well-known asymptotic
properties of Whittaker functions, taking into account that to satisfy causality the
singularity at * = —e? must be bypassed from above.
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A) Incidence from the low field side. In this case the solution on the high field side
must be of the form:

d :
E,=A (EEE s "v) W_i(n/m)m (=2ipr (2 + €7)) (56)

with arg (—iprz) = 7/2 when z < 0, so that asymptotically
E+ . A(—IPF 4 ny) {84'!21 e—‘i{PF(SE"rez)_%]n (2PF|$+52|)}} (57)

for large negative z: this is the transmitted FW. On the positive z—axis we will have
arg (—iprpz) = 3m/2, which is outside the domain of validity of the usual asymptotic
expansions. To overcome this difficulty we use a continuation formula for Wittaker
functions, which we obtain starting from Eq. (13.1.10) of reference [12], and then elim-
inating M,y 1/, using Eq. (1.9.9) of reference [13]:

W_iv.4 (ZPFI:B + €| e"aT") =62"{W_m,§ (—2ipr(z + %))

) (58)
(1 —1k) _ 3
—— W, . 1 2
+ I‘(l o 'LH,) +iK, 5 (+ %pp(a; + € )) }
where now on the r.h. side i = e**("/2), Thus for large positive = we get
By A(—ipF){C—e—'—%’l [ﬁ_i{p’?(z-"ez)"??ln (2pr(z+€))}
(59)

F 1 —1 . 2 n 2

From (58) and (59) we read the coefficients of reflection, transmission and absorption:
R =(1—e 2)?
T =e 2n (60)
A=1-RL-T=(li—e #)e

Except for the interpretation of the “absorption coefficient” A, they are identic with
the results of the full FLR treatment.

B) Incidence from the high field side. In this case

d
By=8 (E . ny) Waitn/mym (+2ipr (2 + €%)) &y

Here arg (ippz) = 7/2 when z > 0, so that

E,~B (% = ny) {e—% e+i{PF(m+62)-;'f In (2?F|z+c2|)}} (62)
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Here arg (iprz) = 7/2 when x > 0, so that

E,~B (di - ﬂy) {e-% cti{pre+e) -2 (mlw+e"‘l>}} (62)
I
for large positive z. For large negative z we will have arg (iprz) = —m/2, so that we

can still obtain the asymptotic expansion directly:

Ey~B (% +’ny) {e+% e+='{w(a=+9)—¥ln(zwlwzn}} (62)

for large negative z. Hence we find

Al
T =e™2n (63)
A=1-R-T=1=¢ >

again in agreement with the FLR results.

The normalized causal solutions representing a fast wave incident from the low field
(right) and high field (left) sides are shown in fig. 9 a) and b), respectively. From the
relative amplitude and phase of the real and imaginary parts of E one can qualitatively
verify the validity of Eqgs. (62) and (63): for example, it is clear that no reflection occurs
for high field side incidence. The singularity at z = —e? is also clearly visible. This
resonance has been introduced to replace mode conversion as a power sink, and is not
by itself physically meaningful. We recall [8] that the wave equation describing cold
ion—ion resonances can also be put in the form of a confluent hypergeometric equation.
In that case, however, the wave electric field remains finite at the resonance, and only its
derivative (i.e. the wave magnetic field) has a logarithmic singularity. Here, by contrast,
the singularity affects already the electric field. As a consequence, the reduced equation
cannot provide a good approximation to the solutions obtained in the previous section
in the immediate vicinity of the spurious resonance. Nevertheless, the discrepancy is
restricted to a narrow layer around the singularity, whose width can be estimated from
the series expansion of Whittaker functions at the origin as half the distance between
the singularity and the cyclotron harmonic:

2

|m+62|5n=% (64)

Apart for the omission of the BWs, therefore, the order reduction algorithm reproduces
well the FW field pattern almost everywhere, and not only in the asymptotic region.
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5 — First harmonic cyclotron absorption.

Direct cyclotron damping at the first harmonic can be easily estimated in the two
limits of weak and strong damping; an interpolation formula between the two cases is
then suggested by the considerations of section (2.2) about the transition between the
mode conversion and the cyclotron damping regimes.

A) Weak damping limit. For nearly perpendicular propagation we can estimate FH
cyclotron damping per transit perturbatively, starting from

+oo d 2
AP, = — / Im (A7) [ (5 _ ny) E+1 dz (65)
To evaluate the field, we assume that the order reduction approximation gives a good

estimate also near the cyclotron harmonic resonance, as suggested by Eq. (64). Us-
ing (52)—(54) we have

d 2 d? 2 2z \°
gon)nf -l(Gn)ef - (25) 0w
|(d$ ny) + (d.’.Bz ny, z + €2 | ' ( )
To avoid interference with the spurious resonance at z = —e? we must impose A Teyel K
€2, or
Vthi Bi
— 67
Iml—— <7 (67)

This is the condition discussed in section 2.2, which characterizes the mode conversion
regime. When it is satisfied, using the appropriate normalizations we finally get:

2

ARy 2\ 2 n hi
5= Zﬁi (—;}-}) (kogrR,) ;——”‘T | Fo(n)|? (68)
: o (-4)
where
. 2
. e” IW_,— n, %(——41'77) + %}ﬁ%ﬁ}}vmi%_ 1 (+4i77)‘ Ifs incidence
|Fo(71)| = (69)

2
el ‘ Wiin 1 (+4in) ‘ hfs incidence

The factors | F(n)|? are shown in fig. 10. Since 7 is practically always much smaller than
unity, however, the approximations |F,|? = 4 for low field side incidence, and |F,|? = 1
for high field side incidence, are usually sufficient. Note that in spite of the apparently
anomalous behaviour of (68) for 8; — 0 there is no singularity, since the this limit is
incompatible with the mode—conversion regime: the fraction in parenthesis is bound to
be small by condition (67).
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B) ICR absorption in the limit of strong damping. In the opposite limit,

Vehi . Pi

— > — 0
M= >3 (70)
Doppler broadening of the cyclotron resonance washes out the Bernstein wave conflu-
ence, and the WKB solution can be used to estimate damping through the cyclotron

layer:

+oo
m
AP, = —gIE P [ tm(h) de = G0 R B ™)
or, using Egs. (25), -
AP; ™ vy
Pave b Qfh = Zﬁt (" V?c;) (kquRO) (72)

C) Interpolation formula. We cover both regimes by using an effective value for
given by

52
Ee PR L 73
LRl L Y (73)
where ayp, is the first harmonic IC absorption at large n, and the parameter
on2 Yy
6% = ——L° (74)

fh 2
v2\2
5. (-4)’
characterizes the transition from the mode conversion regime (6? n < 1) to the cyclotron
damping regime (6? g i

For simplicity, we have ealuated ajp assuming |E4| to be roughly constant through-
out the absorption region. When IC damping is strong, however, this parameter can
become comparable or even larger than unity. A better approximation, which avoids
this inconsistency, is to write

AR,
Py

~ 1 —exp (—Qefy) (75)

D) Suppression of mode conversion by IC damping. With increasing nj, as cyclotron
damping increases, mode conversion decreases with respect to its value at perpendicular
propagation, and is completely suppressed when condition (69) is satisfied. We can
describe this transition by writing

Alny) ~ A(0) =% (76)

For waves incident from the low field side and 675 < 1 this expression can be easily
justified by assuming that cyclotron damping simply depletes the power which can reach
the mode conversion layer. The generalization to larger values of 85 is made by analogy
to the one leading to Eq. (74).
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6 — Examples.

‘We summarize here the parameters of ASDEX Upgrade and ITER which were used
in the examples:

TABLE 1
ASDEX U. ITER (T) (D)
Toroidal radius 1.65 m 7.75 m
Plasma radius 0.5 m 2.25 m
Magnetic field on axis 200 6T
Central density 5.10" m=+*® 1.4'10%? m—3
Central temperature 2 to 8 keV 5 to 20 keV
Frequency 60 Mhz 60.1 Mhz (91 Mhz)

In fig. 11 the fractional power absorbed at the FH IC resonance according to Eq. (75)
is plotted versus ng for the low density, low temperature ASDEX Upgrade plasma. Also
shown are results obtained numerically with the finite-element code FELICE [19], which
solves the complete FLR wave equations in slab geometry. To simulate the idealized
analytic situation with FELICE, the density and temperature were assumed radially
constant, and only the horizontal variation of the magnetic field was retained; the
electron temperature was reduced to 0.1 keV to eliminate damping on the electrons,
and collisional damping as well as stochastic ion damping of the Bernstein waves were
switched off. The waves are launched from the low field side, and outward radiation
conditions (equivalent to matching to the outgoing WKB solutions) are then imposed
25 cm to the inside of the cyclotron resonance (this procedure was stopped at ng ~ 40
(n) =~ 20), because the fast wave approaches the nﬁ = R cutoff at the plasma density
of the example). The code then provides the fractions of power absorbed in the IC
resonance layer, and radiated in the fast and Bernstein waves; the latter is identified
with the mode conversion efficiency. The agreement between analytic and numerical
results is excellent. It should however be realized that the two approaches are not
completely equivalent, as will be discussed below.

At first sight, the decrease of a.ss at large n| might appear surprising: since the
integral of ImA; across the resonance layer is independent from n|, one would rather
expect aeyry to reach a constant value in the cyclotron damping regime. The decrease
however is due to the factor gr in ajy, which is a decreasing function of n), and
approaches zero as the R—cutoff is approached. The fact that this prediction of the
analytic theory is confirmed by the numerical results gives confidence in the estimates
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of IC absorption made in this section. The same good agreement is found in a scan over
temperature at constant ng, fig. 12.

In fig. 13 the fractional absorption by FH IC damping predicted by Eq. (75) is
plotted for ASDEX Upgrade, and in figs. 14 for Tritium heating in ITER, at different
temperatures. It is interesting to note that the heating efficiency in the ASDEX Upgrade
example is larger than that of the ITER/Tritium cases: the latter might be marginal
below 5 keV (first harmonic heating of deuterium would be much more favorable). The
rapid increase of damping with temperature is evident in both cases. It should also be
kept in mind that, once heating has begun, the production of a population of fast ions
will further boost the absorption efficiency. The investigation of this quasilinear effects,
however, requires information from the solutions of the Fokker—Planck equation, and is
postponed to a future report.

The comparison of the analytic and numeric mode conversion efficiency appears at
first less satisfactory, as shown in fig. 15 for the low density ASDEX Upgrade case
at 2 keV. The width of the mode conversion regime, as determined by the exponential
factor in 62 s added in Eq. (76), is very well reproduced. The numerically evaluated mode
conversion efficiency at perpendicular propagation, however, exceeds the theoretical one
by a factor of 2. In the example the optical thickness 7 is close to the value 7,,; = log 2
for which A = 0.25 takes its maximum possible value for low field side incidence. To
explain how the numerically evaluated efficiency can exceed this theoretical maximum
we must exhamine more in details the difference between the numeric and the analytic
approach.

In FELICE a few small FLR terms which were neglected in Eq. (1) are retained.
Moreover, even if density and temperature gradients are made to vanish, gradients in £2;
are retained in all coefficients, rather than in the resonant term A, only, as in the ana-
lytic approximation. None of these differences, however, is likely to be important. The
discrepancy must be attributed to the boundary conditions imposed on the incidence
side. In FELICE, which is a code written for the investigation of IC antennas, a metal-
lic wall is assumed at some distance from the the plasma edge. As a consequence, the
solution chosen by FELICE is not the same as the one used to derive Eq. (76). Eigen-
modes with large standing wave ratio can be excited between the cutoff associated to
the mode conversion layer and the wall. The value of |E,|? in the numerical solutions
therefore depends sensitively on how close the parameters of a given run match those of
an eigenmode. The interpretation in terms of eigenmodes is clearly confirmed by fig. 16,
which shows a temperature scan of the mode conversion efficiency for low magnetic field
side perpendicular incidence in ASDEX Upgrade.

We could easily modify Eq. (76) to take into account metallic boundary conditions at
an appropriate distance from the mode conversion layer. It should be realized, however,
that the importance of eigenmodes is much exaggerated by the slab geometry assumed.
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A better procedure to improve agreement between the analytic and numerical results
consists in summing the geometric series for the wave reflected back and forth between
wall and cutoff; this amounts to substitute A with

A

!

A = 1% (77)
This of course does not take into account the phase relations which periodically enhance
or reduce |E4|? at the cyclotron resonance. Nevertheless, as shown by curve b) in
fig. 15, A’ gives a fair average over the peaks and valleys of the numerical results.
In particular, A’ reproduces correctly the fact that the numerical mode conversion
does not decrease to zero at large temperatures: this is because the decrease of A is
compensated by R approaching unity. In tokamak geometry a similar averaging will be
automatically performed, since for a given ng many poloidal modes my with different
relations to eigenmodes are simultaneously excited [5]. Thus Eq. (77) is likely to be
a better approximation than the numerical integration of the wave equations in slab
geometry. A procedure equivalent to the one leading to Eq. (77) has been used in
ICEVAL [20], a routine which allows a very fast yet accurate analysis of IC heating
scenarios in tokamaks.

The reason of the good agreement between the analytic and numerical results for
cyclotron damping is also clear: R is nearly zero in the cyclotron damping regime.
Eigenmodes of the kind just described can be excited only for low n, satisfying condi-
tion (66).

Figs. 17 and 18 show A versus ny for low field incidence at various temperatures for
ASDEX Upgrade and ITER. In Asdex, mode conversion efficiency is nearly maximum
at 2 keV; hence, as T; increases, A(ng) broadens but decreases. In ITER, on the other
hand, A reaches its maximum only at large temperature, T; =& 20 keV. On the other
hand, in terms of n|, the range in which mode conversion takes place is much narrower
in ITER than in ASDEX Upgrade, in agreement with the results of figs. 5 and 6.

7 — Conclusions.

By solving the linear wave equations near the first harmonic of the ion cyclotron
frequency, we have obtained simple analytic expressions for the fractional IC absorption
and mode conversion in this heating scenario. The analytic results have been found
to be in excellent agreement with numerical simulations. They can be conveniently
used for a reliable first estimate of the heating efficiency of a given experimental setup,
preliminarly to more sophisticated simulations.

We have identified to regimes, one dominated by mode conversion, the other by
cyclotron damping, analogous to those which characterize IC minority heating. The
cyclotron regime, which requires a sufficiently large n, is more favorable for plasma
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heating, since it corresponds to larger fractional absorbtion per transit, and avoids
eigenmodes which can adversely affect the mode conversion regime. The critical value
of n)| increases with temperature, but is always relatively small; antisymmetric anten-
nas can easily be made to radiate mostly in the cyclotron damping regime. In addition
to give quantitative information on well-known dependencies of the heating efliciency
on the partial ion pressure, n, the toroidal radius, and other plasma parameters, the
analytic results also stress the importance of coefficients that depend on the plasma
composition. Thus, in spite of the higher temperature and larger major radius, first
harmonic heating of Tritium in ITER is found to be somewhat less easy that first har-
monic heating of Hydrogen in ASDEX Upgrade. First harmonic heating of Deuterium
in ITER would be much more favorable; unfortunately it has several disadvantages
(interaction with « particles and with Hydrogen contamination, higher frequency).

The analysis performed here is obviously incomplete, since it is confined to the lin-
ear theory, and neglects the quasilinear modifications of the ion distribution function
under the effect of heating. In turn, the production of a sufficient number of suprather-
mal ions will favorably influence absorption. A frame for the description of the effects
of deviations from thermal equilibrium on wave propagation and absorption is being
developed [21]-[22]. To use it within an analytic approach, however, one needs informa-
tion about the solution of the Fokker—Planck equation; a separate investigation of the
quasilinear effects is underway.

Aknowledgments. The content of section 3 is largely based on work made in
collaboration with Dr. M. Ottaviani during the preparation of [8].
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Fig. 1 - Dispersion relation in the vicinity of the first harmonic resonance;
ASDEX Upgrade,n_ = 5103 ¢ni®; B=2T; T =2 keV; f = 60 Mhz
(100% H), perpendicular propagation.
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Fig. 2 - Dispersion relation in the vicinity of the first harmonic resonance;
ASDEX Upgrade, n, = 5103 ceni®; B=2T; T=2keV; f = 60 Mhz
(100% H), n, = 25,
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Fig. 3 - Dispersion relation in the vicinity of the first harmonic resonance;
ASDEX Upgrade, n_ = 5103 cni®; B=2T; T = 2 keV; f = 60 Mhz
(100% H), n ,=5.0.

Fig. 4 - Dispersion relation in the vicinity of the first harmonic resonance;
ITER, n_ = 1.410'* cm™ B=6T; 50% D, 50% T, f = 60.1Mhz (first
harmonic of Tritium), perpendicular propagation.
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Fig. 5 - Critical n; vs temperature, ASDEX Upgrade, n 8= 51013 cm3;
B =2 T; H-D plasma; f = 60 Mhz.
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Fig. 6 - Critical nyy vs temperature, ITER,n,= 1410 cm ; B=6T;
f = 60.1 Mhz (first harmonic of Tritium).
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Fig. 7 - Laplace contours in the p-plane for the solution of the wave
equations near the first cyclotron harmonic resonance.
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a) Weighted Laplace contours for large positive x to eliminate the growing
Bernstein wave solution.
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b) Equivalent Laplace contours for large positive x.

Fig. 8 - Laplace contours to obtain the connection formulas for low field side
incidence.
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d) Final deformation of the Laplace contours, which gives the wei ghted solutions

for large negative X.

Fig. 8 - Laplace contours to obtain the connection formulas for low field side

incidence.
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Fig. 9 - Causal solutions of the reduced wave equations. ASDEX Upgrade

low density plasma, 1 = 0.418.
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Fig. 10 - The factors IF(T])I2/4 for low field side incidence, and lF(n)l2 for
high field side incidence.
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Fig. 11 - Fractional power absorption by first cyclotron harmonic damping
Versus n ; ASDEX Upgrade low density hydrogen plasma.
Full curve: from Eq. (75); dots: numerical integration of the FLR
wave equations with the FELICE code.
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Fig. 12 - Fractional power absorption by first cyclotron harmonic damping
versus temperature, ng = 25; ASDEX Upgrade hydrogen plasma.
Full curve: from Eq. (75); dots: numerical integration of the FLR
wave equations with the FELICE code.
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Fig. 13 - Fractional IC absorption at the first harmonic versus ng for the

ASDEX Upgrade low density plasma at different temperatures.
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Fig. 14 - Fractional IC absorption at the first harmonic of Tritium
versus n ¢ for ITER at different temperatures
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Fig. 15 - Mode conversion efficiency for low field side incidence,
versus n, ; low density ASDEX Upgrade plasma, T, =2 keV,
a) from Eq. (76); b) taking reflection into account, Eq. (77);
¢) the dots are numerical results from the FELICE code.
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Fig. 16 - Mode conversion efficiency for low field side incidence, perpendi-
cular propagation, versus temperature. Low density plasma, ASDEX
Upgrade. a) from Eq. (76); b) taking reflection into account, Eq. (77);
c¢) the dots are numerical results from the FELICE code.
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Fig. 17 - Analytic mode conversion efficiency versus n, for low field incidence;
low density ASDEX Upgrade plasma at different temperatures.

Fig. 18 - Analytic mode conversion efficiency versus n o for low field incidence;
ITER first harmonic heating of Tritium, at different temperatures.
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