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Abstract

A self-consistent calculation of the antenna current distribution and fields in an axisym-
metric cylindrical geometry for the ICRH antenna-plasma coupling problem is presented.
Several features distinguish this calculation from other codes presently available.

1. Variational form : The formulation of the self consistent antenna current problem
in a variational form allows good convergence and stability of the algorithm.

2. Multiple straps : Allows modelling of (a) the current distribution across the width of

the strap (by dividing it up into sub straps) (b) side limiters & septum (c) antenna
cross-coupling.

3. Analytic calculation of the antenna field and calculation of the antenna self-consistent
current distribution, (given the surface impedance matrix) gives rapid calculation.

4. Framed for parallel computation on several different parallel architectures (as well
as serial) gives a large speed improvement to the user.

Results are presented for both Alfvén wave heating and current drive antenna arrays,
showing the optimal coupling to be achieved for toroidal mode numbers 8 < n < 10 for
typical ASDEX upgade plasmas. Simulations of the ASDEX upgrade antenna show the
importance of the current distribution across the antenna and of image currents flowing
in the side limiters, and an analysis of a proposed asymmetric ITER antenna is presented.
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1 Introduction

There were several motivations for the development of this theory and its implementation in a
computer program.

1. Present tokamaks have ICRH antennas with a physical size of the same order as the
vacuum wavelength. The Faraday shield acts as an additional capacitive load to the an-
tenna strap, making it into a slow wave structure (typically up to a factor of 2), further
decreasing wavelength along the antenna strap. For example the ICRH antennas on AS-
DEX upgrade are \/2 resonant at 70 MHz, and the operating frequency for 2nd harmonic
Hydrogen is 60 MHz. For the next generation of tokamaks these problems become more
severe, eg. for ITER the axial magnetic field is, at 6 T twice that of AUG, and the corre-
sponding ion harmonics are at twice the frequency. The larger plasma also requires more
heating, meaning a larger antenna surface. This makes it essential to correctly model the
current distribution along the antenna central conductor.

2. The proposed use of ICR frequency range waves for current drive, requires that the ratio
between current drive and heating be as large as possible, to keep the proportion of
circulating power in a reactor as small as possible. This requires a narrow and directed
spectrum of launched power, which requires an array of closely spaced antennas. For
fast wave current drive scenarios, the poorer wave absorbsion (compared to minority or
mode conversion heating) results in close coupling of the elements in such an array. The
calculation of coupling must then be done fully self-consistently. The calculation of a
cross coupling matrix for the elements is essential for the design of the feeding circuit for
such an array, where some elements radiate and some absorb power.

3. The presence in real machines of non-ideal structures such as side walls in the antenna box,
antenna strap separating septums and antenna protection limiters gives rise to possibly
large eddy currents in these structures. These currents have the effect of changing the
electrical characteristics of the antenna structure, such as the resonant frequency, as
well as affecting the antenna coupling and launched power spectrum, typically putting
more power than expected into high axial wavenumber modes, and reducing the antenna
loading.

The calculation presented here gives the current distribution on a number of antenna loops
and sources placed in a vacuum layer between the plasma edge and the vessel wall. These loops
can be placed to simulate a realistic antenna structure.

The calculation may be convieniently broken up into several sections.

1. The calculation of the plasma surface impedance matrix: The wave equation is Fourier
decomposed in the toroidal and poloidal directions and the resulting equation is integrated
radially using a variational procedure and cubic-hermite polynomials.

2. The electromagnetic field of an arbitary current distibution on a loop: The total field of
an arbitary current distribution is calculated by first computing the field for each Fourier
mode, matching to the boundary conditions at the plasma surface, wall and Faraday
screen. The inhomogeneous wave equation resulting from the radial volume currents
within the antenna is solved analyticaly by a power series. The modes are then summed
with the appropriate phase factor, to get the field at the desired point.

3. Calculation of the matrix of partial impedances: The inner product with appropriate test
functions of the electric field generated by currents in each loop is calculated analyticaly.
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4. Calculation of the self-consistent antenna current distribution: The source conditions at
the slice generators on each loop and the boundary condition for the tangential electric
field are combined with a variational form to give a system of linear equations for the
unknown current distribution, and then solved.

The technique used for parallelization of the code will also be discussed.
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2 Definition of dimensionless units

It is better to work in a system of units in which the Maxwell’s equations reduce to a particularly

simple form. The S.I. units for several quantities to be used are;

Quantity | Units Basic Units

Z 1=V.A™! | kg.m?.A"2573
U \Y kg.m?.s73 A1
E V.m™! kg.m.A~1s73
B T kg.A-1s7?

J Am=? A.m~*

w g™t gEb

Ho H.m™! kg.A=%.s7%m
c s - s "

L H=V.s.A71 | kg.m?>.A~%.5~2
p .m kg.m>. A=%s73

We want a system of units where w, po and ¢ are unity.

167

1(kg.A™" 572.1h)

1(m.s71)

The redefined system of units is then;

w(s™h)
po(kg.A"%.s72.m)
¢(m.s™!)

1s = ws
1m' o= L kit
c
£ Ho 4+ i iofoB0.04
1A = wcA kﬂCzA
lkg = llfg
1 1 -
i \Y
1V @\ noke
108 = ansa()
Hoc
S
1R =2 (it Gt
HoC HocC
IW = klw*W
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3 Variational principle for multiple loops

Consider some distribution of currents flowing in some complicated way around the antenna
structure, where we for the moment ignore the sources and conductors that are guiding it to
flow in that way. These currents will generate an electric field in the region of the (for the
moment non existent) antenna. We would like to choose an arrangement of currents so that
the electric field at some places is zero, representing the conducting surfaces of the antenna.
The sources driving the current are represented by small demons at some places, which force
a voltage difference across a small gap. The problem then is to determine this as yet unknown
current distribution. This problem is solved by describing an arbitary current distribution in
terms of a linear combination of possible distributions and choosing these linear factors with a
variational approach. We consider the case of L loops of conducting ribbon, and try to find the
self-consistent current distribution which satisfies the following along the middle of each loop;

Ei(€) = Vi(€) + w%nm for € on C, (1)

where Cj is the contour around the middle of the I’th loop (of width w,), we have a slice
generator of voltage V; at £ = 0, p is the surface resistivity of the loop, and I;(£) is the current
in the loop. It is assumed that the ribbon is thin enough to have a uniform current and voltage
distribution across it. This condition may be thought of as saying that the external inductance
dominates the internal inductance of the loop. The delta function represents the demon driving
the current, the so-called slice-generator.

It is frequently too restrictive to specify only a voltage source at the slice generator, so a
slightly more flexible Thevenin equivalent source is used;

U=5L0)X+V (2)

where U is the source voltage and X the source internal impedance. A fixed current per loop
can then be specified by choosing a sufficiently large value for X;.

Equation 1 is converted into a computationaly useful form using a variational principle,
namely that we can express an equation y(z) = 0 in a integral form by using;

g,y € T(S5)

then
| ¥(@)g(@)dz =0V g(z) ¢ y()=0VzeS

where S is some interval and 7 is a closed subspace of H(S), the space of all functions defined
on S. That is we can ensure y = 0, by checking that the inner product of a function y with
all test functions from some closed subspace is zero. In reality we choose a finite dimensional
subspace of H(S), and increase the dimension until convergence, i.e. until our subspace is
sufficiently big to accurately represent the real y(z). Examples of such subspaces include the
piecewise continuous functions on a grid, or as is to be used here, a truncated Fourier series.
As the dimension of the subspace is increased, by adding more modes, any error in the solution
of the equation is restricted to a space disjunct to that represented.

In our case S is the set of contours around the loops,and y corresponds to the equation eq.1.
We then represent develop the space H as a sum of Fourier modes, and the subspace 7 is this
summation truncated at some Fourier mode. Any error will then have only components at the
high Fourier modes not included in the sum, and the low Fourier modes will still be correct.
For the currents in the loops we then have;

P
L) = X dyetiut (3)

p=-—P
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where ng = 27/l; and [, is the length of the contour around the I’th loop. The current supplied
by the slice generator is given by

I(0) = _ZP Iy (4)

The test functions g also come from the truncated Fourier space 7 and since any test function
in 7 can be represented as a linear combination of the basis finctions, it is sufficient to satisfy
the equation eq.1 for each of the Fouries modes. Equation eq.1 then becomes a set of L(2p+1)
equations, i.e. (2p + 1) "test inner products” on each of L contours,

7 L .
]/I = Z Z Iptp (Z;’ll ydd] 6—p,p"6—l,['RI) Vp,[ (5)

p'=-Pl'=1
where R; = pl;/wy is the total resistance of the Ith loop, and
Zy" = § ermetEr ) dg (6)
]
are the partial impedances. EP" is the electric field due to a unit current in Fourier mode p’

on loop " i.e. (I = 1). Combining equations 2, 4 and 5 a simple set of linear equations is
achieved, expressed in a matrix form as:

2
Z p ol e L B
F.'+1,1 P+1,2 P+1,1 s (7)
Zrr'  Zppt™ .- ZpE
(U )
(X1 —Rl)I O Ill g:
: : = st (8)
0 <o (XL — Ry Ipr U,
\ Uz )

By far the greatest effort is in the calculation of the partial impedances Z;’,'P . Once the
partial impedance matrix Z has been calculated for a particular configuration, is is very easy
to calculate the antenna currents resulting from an arbitary set of driving sources (U, X1)
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4 Calculation of ZI"‘,’;’

Unlike conventional engineering antenna problems, where wave propagation is usually into an
1sotropic, homogeneous, non-dispersive media, for ICRH antennas the plasma presents a surface
impedance which is a strong function of both the polarization and the imposed wave numbers
in at the surface. Is is conventionally solved in Fourier space in the poloidal (m) and toroidal
(n) directions, with the total field being a sum of the independent Fourier modes and the two
polarizations of the field. The summations are terminated at some finite m and n, where the
contribution to the antenna field is sufficiently small. Consider loops of poloidal width 2@,
extending radially from r = r; to r = r; and centered on ¢ = ®;5 , z = 2.

% = frg =S ([+[+[+])

; : ®, oo : 3 .
= Z Z em®uo emzm/R( — f e z;ﬂn(r?)e"ﬂﬁb g e*¢1e—lP“ctf2¢T2d¢
n m

_(I)‘

gl e ; —1 _
— -—E,’.’mﬂ(r)e m®y | ¥ g—ipna(r—ro) 5.
1

Q] I . 4 .
+j +E% :i,m(iv"l)e"“"s e etPranidy dg
i j FEP (r)e ™ - e gimatr=re) gy (9)
Where EP! is the (m,n) Fourier component of the electric field generated by a unit current in
mode p’ on loop I. Note that the contour integral, the current and the phase propagation of

the normal modes proceed in the clockwise direction. The 1) correspond to the phase of the
normal mode in the middle of each leg and are given by;

P = Pneodt

Yy = pngo(di+ 2@ + (r2 — 1o)

Y3 = pngo(di+ (ra + 1)@ + (r2 — 1)

Yy = pngo(d + (ro +2r1)@ + (ro + 72 — 2ry)

where d; is the distance of the slice generator along the strap anticlockwise from ¢'= @, ,r =,
Noting that sinc(z) = sin(z)/z, equation 9 becomes;
Z:,’;" = Z Z e'meio e‘"""“lR[ . 2r2(I>,Eg:iu(r2)ei“" sinc((m — pngory)®)

+2r, 9, ¢mn( 1) i"ﬁat‘,inc((m+pn‘501'1)<1))
—-1m¢> n.ba/ Ep'f' ) —fpﬂgu(f—fo)dr

r,ymn
T,mn

eim® oivs / Ep’l' (r) 'Pﬂeo(f-ro)dr] (10)

Since the E,(r) will be given in terms of a local power series about r = ry, we also need;

/I Zak:ce —Zak[ ik Z( vx)-’] (11)

1 k=0 k=0

Unfortunately, this analytically correct expression is numerically unusable for large n because
the inner sum (over j) tends to e™* so that €”* times the sum tends towards unity for both
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1 and z;. The integral is then the small difference between these numbers, giving rise to
catastrophic cancellation. Accumulating the running difference between the z; and z, terms
does not help, because the two indefinite integrals will tend to unity (with increasing k) at
different rates. The solution is to make use of the identity;

e () b o (o)
ejgo 7 =1 3'=Zk£1 = (12)

where the infinite sum on the RHS converges quickly and can be terminated when the terms
no longer contribute to the sum (in the numerical sense) and the constant 1 can be neglected
as it cancels when the upper and lower indefinite integrals are subtracted.
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5 Derivation of the wave equations in vacuum

Since the loops comprising the antenna array are near the vessel wall, well away from the
plasma, and are usually protected by limiters and a Faraday screen, it suffices to consider the
solution of the wave equation in the region between plasma and wall as being a vacuum. In
this section we derive the Fourier decomposed wave equations in this vacuum region, including
the effects of the current source terms at the current sheets (antenna back and front) and the
radial volume current.

5.1 Maxwell’s equations in cylindrical geometry with radial cur-
rent

Taking units where o, c,w = 1, Fourier decomposing with respect to time, ¢ (poloidal angle)
and z (axial position); i.e. all fields vary as f(r)e!(mé+n:2=wt) and setting n, = 2 Maxwell’s

Vx-EB.= —%—? equation becomes,

ingE, —in.Ey = iH, (13)
in,E, —E., = iH, (14)

E
E, + T“b —inyE, = iH, (15)

and Maxwell's V x B = ,ugf - %% equation becomes,
thell =inHyo = J —4E, (16)
inH, —H, = Jy—1iE, (17)
H

H, 3 —ri L TToy ! i Ll (LY o (18)

Solving for the 7 and ¢ components of the electromagnetic field in terms of only the source
current and the z (axial) components of the fields gives,

(14) + (16) = (1-n®)E, = in,E. —nzH, —iJ, (19)
(17) + (13) = (1-n2)Ey = —ngn,E, —iH. —iJ, (20)
(17) + (13) = (1-n®)H, = nyE, +in,H +in,J, (21)
(14) + (16) = (1-n)Hy = iE.—ngn.H, —in,J, (22)

Since the antenna loops to be modelled will be considered having the front and back surface
at a constant radii, they will take the form of current sheets, and will appear only as disconti-
nuities in the fields at those radii. The radial feeds however must be explicitly included in the
wave equations in the radial region that antenna loops are present.

It will be seen that the Maxwells equations decouple into two second order differential
equations, corresponding to two independent wave polarizations.

5.2 Derivation of 2nd order D.E. for E, # 0 waves
Using equations 14 and 16 above, eliminating E, and solving for E! gives,
E! = n,(J, —ingH, +in,Hy) —1Hy
= n,J, —i(l =n?)Hy — ingn H,

taking the derivative w.r.t. r of this and noting that,

3 (m)' m Ng
Nia—s —_— = —_—— = ——
¢ T
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gives,
BY istongl il ) B i fal AU %n¢nsz
=ongdfnei(li=nd) (—iE_,_ A E} + in¢,H,) —ingn,(in, H, +iE,) + én¢nzﬂz
= n,J]+1i(1—-n?) (z'Ez + %) +ng(ngE, —n,Ey) + ngn. Ey + énqmsz

1
= n.J] — (1 —=n)E, + n}E, — G n?)Hy — ingn, H,)
1

= n,J] —(1=n-nd)E, — (B, —n,J,)
T

Where 18 is used in the 2nd line, 13 is used in the 3rd line and 22 is used in the 5th line. Using
ng = T and rearranging terms gives the final D.E.,

E 2
E;'+?‘+(1—n§—%)Ez=nz(J;+‘—:}) (23)

where the LHS is a normal 2nd order homogeneous Bessel equation, and the RHS contains
information only about the radial current source term.

5.3 Derivation of 2nd order D.E. for H, # 0 waves

Using equations 13 and 17 above, eliminating H, and solving for H! gives,

H; = inz(n¢Ez 57 TIZE¢,) + 2E¢,
= ‘i(l = nﬁ)E}, + in¢anz

taking the derivative w.r.t. r gives,
H! = i(1 —n?)E} +ingn,E, — %n,,,n,_Ez
= (1 —n3) iH, — — +ingE, | + ingn, (in. E, —iHy) — ;n¢,anz
r
= —(Ymnd)H, — ;(1 £ p B in (]~ ingdL. +in, Ha) aun Hi %néanz
’

i
= —(1—-n2—nd)H, +ingJ, — Tz

Using ng = 7 and rearranging terms gives the final D.E.,

! 2
H' + HT + (1 = m—) H,= i%J, (24)

r2

where the LHS is a normal 2nd order homogeneous Bessel equation, and the RHS contains
information only about the radial current source term.
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6 Fields generated by a loop antenna

In this section we derive the full electromagnetic field of a poloidal loop antenna extending
poloidaly 2® and radially from r = r; to r = r, with strap width 2w and centered at ¢ = @ ,
z = 2o . We will consider the fields generated by the J4 and J, current components separately.
It should be noted that it is extremely important to correctly calculate the fields generated by
the antenna, with particular care to the field matching at the discontinuities, because unlike
the antenna calculations using the induced EMF method [8], where one simply calculates the
linked magnetic flux by a loop, in this case the fields of the assumed current distribution give
rise to surface charge densities on the antenna surface. Although in the total, summed field
the fields from these charges are small and give rise to negligible , capacitive loading, the wave
fields generated by individual antenna modes may have large surface charge distributions. For
example at low frequency those antenna modes with several wavelengths around a loop will
generate very large accumlations of charge and high electric fields, however the condition of
zero electric field along the loop specifies that the contribution from such modes in the final
solution should be very small.

6.1 Fields due to J, current components
6.1.1 Fourier components

Current flows in the +¢ direction on the plasma facing leg of the loop.

f(z)(+ei¢aeipneor1 (¢—¢u),5(,. A 7‘1) — e e—ipngorz(é—%),g(r = r2))
J¢(¢,Z,T)= @0—¢<¢<‘I’0+® (25)
0 otherwise

Fourier decomposing with respect to z and ¢ gives.

Js(myn,r) = +F7(;-Qé(r —rp)e L‘:O_-:b e~ imei(#=To)(pneors) g
_F(n)é(r ry)eis /%M ¢ il#=Bo)(=pncoma) g
27 Do-0
o @e'im°°@ (6(1" — r1)e¥sinc((pngor; — m)®) (26)
— 8(r — r)e¥isinc((pneors + m)(I))) (27)

where the integrals are first simplified by the substitution § = ¢ — ®, we put sinc(z) = sin(z)/z
and,

1 ™R f
g —inz/R
PRE orm f_m Bl ole 182

For a current distribution that is uniform across a ribbon of width 2w centred at z = 0, and
carrying a unit total current we have;
1 g Taw] inz/R
= — —e dz
) 2T R ./zo-w 2w

Sl 1 [e—inz/R]zo+w
"~ 47Rw —in/R

= e~nnlr_t o sin(—nw/R)
dTwn

zZg—w

= Q—IEe—i“Z°/Rsinc(nw/R) (28)
s
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6.1.2 Full electromagnetic field around a current sheet

Consider a cylindrical current sheet at radius r = p.
J(T, 9, z, t) = (J¢é + Jz_é_)é(f' i p)ei(m0+nzlﬂ—wt)

The problem is to determine the full electromagnetic field associated with this sheet. Since
we have previously seen that Maxwell’s equations in vacuum in cylindrical geometry reduce to
second order Bessel equations in E, and H,, without any loss of generality we can assume the
solutions are of the form,

E - Al (hr) when r < p
7 | BKp(hr) when r > p

Hhige CLn(hr) when r < p
mal bl (Rr) when r > p

where b = /|1 —n?| and I,, - J,, and K, — H{) when n, < 1 (due to causality, only the

outwardly propagating Hankel function is reasonable). Since E, is radially continuous, we have;
ALy(hp) = BKp(hp)

Noting that H,, E, and Ej are radially continuous, and that Jg is zero immediately on either
side of the current sheet, we can see from the ¢ component of Maxwell’s curl H equation that
H; is the same on both sides of the current sheet, i.e.

CI,(hp) = DK, (hp)
and that there is a discontinuity in H, due to the Jg current sheet given by,
AH, = Hz(p+) T Hz(P—) =._J¢

l.e.
DKp(hp) — Cln(hp) = —J,

The z component of Maxwell’s curl H equation, together with the radial continuity of H, and
E. shows that Hy is discontinuous and finite due to the J.. current sheet, with the discontinuity
given by,
AH, =],
Eliminating E, between [V x E = iH]4 and [V x H = —iE], gives
(1-n2)H, =iE' — Zn,H,
R

Since we already know that H, and H, are discontinuous at r = p we deduce that E! is
also discontinuous, with the discontinuity given by,

AE! = —i(1 — n?)AH, — z‘;’:-nzAHz

1.e. : .
BK' (hp) — AL (hp) = -%(1 —n?)J, + %mh

This set of 4 equations has the solutions,

_Kn(hp) (0 2, ™M
A= S IWia ((1 n;)J: p n.Jy
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K (hp)

C = —"_Vv—.]q«,
where W = (K, I}, — I, K] )(hp) is the Wronskian. The other field components are given by,
mn 1
Ey = —FZE,— —H'
% rn? E. n? it
epn,m 1em?n?
=thist S Km(hp) Iy (hr) + ——2J,K . (hp) I (hr
rh rhn? °° (ko) In (hr)
hi
L Jo K (ko) I ()
(LT :
1 mn,
Hy = —E,——2
¢ s Y ik
= —epKn(hp)I,(hr)J, + =52y K (hp) I (hr)
1
mn.ep -1
AT e (o) k)
emn,

= —epKn(hp)I,,(hr)J, +

7 (Km(hp)f:n(hr) L fl{,’nhpfm(hr))

ni
For the case p > r we define the following matrix operators.

Ar)=¢ B Kn(hp)Im(hr) 22 K, (hp) I (Br) :
T\ SEs e T (hr) b ";’;leff:,,(hp)f:n(hr)+%§Km(hp)1m(hr)

r

0 » =pK (hp)In(hr)
B,(r) = 6( —pK (k) (hr) | —":—n:f‘fffr’n(hp)fm(hr)ﬂL i Ko (hp) I, (hr) ) S

When p < 7 I, is replaced by K,, and K,, by I,.. The total perpendicular field at radius r
due to current sheets at r = p; , J(r) = §(r — p;)(3J) + d;Jé')) is then;

E.(r) :
o= o | == (580 ) () b
- )

1
s(r

29)

6.1.3 Calculation of the Wronskian

Reference [15] gives;
1
W(Kn,I,) = %

So in our case;

W(Km(hr), In(hr))(hr) = ;1;

Where it is very important to note that the derivative in the Wronskian is simply with respect
to the argument i.e. hr, since the £(hr) = h is already counted.
When we have n, < 1 i.e. propagating waves we want,
W(H,(2), Jm(2))(2) = HyJp — JnH,
: = (TS 1Y LTI 1Y)
SeYonl kel LAV L
= 4W (Y maila)
—iW(Jm, Yon)
B2 ALS

Y4
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In the previously mentioned generalized Bessel notation we have;

W(E o, In) (hr) = L

er

where we define.
. h n, > 1
| iwh/2 n, <1

6.2 Fields due to J, current components

The second order DEs for the electromagnetic field due to the radial currents will naturally
have a homogeneous part, corresponding to the solution of the source free equations, and a
particular solution, with the radial volume sources included. Although is is possible to get
an analytical expression for the particular solution (see appendix), this expression must be
numerically computed (it contains an infinite power series). It was considered simpler to solve
for the particular solution directly as a power series, since it can then also be easily integrated
as required later for the calculation of the partial impedances.

6.2.1 Matching fields from J, volume currents

We want to have the total electromagnetic field due to a radial volume current with a particular
poloidal and toroidal fourier mode. The solution is simply to solve the two independent 2nd
order wave equations (E, and H.,) subject to the source terms. It is important to note that
the continuity and boundary conditions are given by the differential equation itself and not
”imposed” from some additional knowledge. Also note that the volume charge and the charge
sheet arising from the discontinuity in J, are automatically incorporated in this solution.

E, waves
We have;
E;I,(hr) when r < r;
E. =4 Eil,(hr) + Ey K (hr) + E(r) whenr <r<mr, - (32)
E, K. (hr) when r > 7,

Where £ is a solution to the inhomogeneous wave equation, i.e. with the radial current source
terms. Continuity of E, at r; and r, gives;

Eiln(hr1) = Ejln(hry)+ EyKp(hry) + E(ry)
B Kn(hrs) = E I (hry) + Ey Ko (hre) + E(rs)

Inspection of the differential equation for E, shows that as we approach the limit where the
radial discontinuity in J, is infinitely steep, only the E, and J] terms are significant. Considering
a discontinuity at r = p we have in the vicinity of r = P

Jr = 8(r = p)(Jr(p7) = J:(p*))

and
El=n,J atr=randr=r,

giving
(E}) =n.6(r — p)(J(p7) — Jr(P+))

so that E7 is discontinuous,

E(p*) = E,(p7) = n.(J:(p7) = J(p*))
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le. E} —n,J, is continuous. Imposing this condition at r, and r, gives;
E,hf:n(th) = Elhf:n(hrl) + Eghfi’;(hrl) + 5’(1‘1) = an,(rl)
E,hK] (hry) = EjhI, (hry) + EhK] (hry) + E'(ry) — n,J(rs)
Dividing the two equations for r = r; we get,

I.(hry) P EyIn(hry) + Ey Ko (hry) + E(r1)

RI, (hry)  EyhI! (hry) + E;hK! (hry) + E'(ry) — n,J,(r7)
E\hI,1, + E;hKL I, + E'1, — n.J.Im = EyhI, Iy + E;hK I, + hELL,
Ey(hK] I, — hILK,) = hI, € — I,E +n,J 1,

i RI} (hr1)E(r1) — Ln(hry)E' (1) + n,Jo(r1) L (Rry)

E
2 hK! (k1)L (hry) — RI. (hr1)Kpm(hry) (33)
Dividing the two equations for r = r;, we get,
I{m_(hf'g) & ElIm(hTQ) + EQI{m(hTQ) + g('f‘g)
hI{’{n(hTQ) Elhl:,;l(hf‘g) + Ezh[(.:n(h?‘z) + g’('l‘g) = an,(rz)
E\hIL K, + E;hK) K, + EK,, —n,J. K, = E\hI, K], + E;hK, K + hEK!,
Ey(hI[,Km — hK] I,) = hK. € — K & +n,J.K,,
B hK, (hry)E(re) — K (hra)E'(r2) + 1. (12) Ko (hrs) 81
¢ hI! (hry) K, (hry) — RK'! (hry),(hrs) (2]
Substituting back into the continuity equations for E, we get,
Ki(hry) . &(n)
E,=FE,+ FE
vt EaT ey TH Ty (35)
I, (hrs) E(rq)
E, & BErs T2l e}
78 e Bl ey (36)

H, waves

The continuity requirements at 7, and 7, are that H, and Ey be continuous. This gives
formula the same as for E, but with no J, term.

6.2.2 Fourier components and power series representation

Current flows radially inwards at ¢ = ®; — ® and radially outward at ¢ = &, + @ .

f(z)( + 6(r(¢ — By — @))eVetirneolr=ro) _ §(r(p — o + ‘D))e“"?‘*P“eo(f—ro))
1 adike m<r<nr
0 otherwise

Fourier decomposing in the z and ¢ directions gives;

Jr(m: n,,r) = %e—im@o ( T e-—im(bei!h eipnfo(r—ro) ot eimtbeii,bz e—iPngo(r—ro)) (37)

To get power series for the terms in r we proceed;

1

_eu(r—rg) =
T

ool/k'i“—?"ok o0 i
lz—(k!—)zz.ak(r—rg)

5 k=0
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where
v = ipngo
Multiplying the last two equalities through by r = r, + (r —ro).
©0 k(r —r k o0 o0
Z —-———0) = Z roax(r —ro)F + Z ag_1(r —ro)F
k=0 k=1

The constant term is;

] = Tolp
ag = 1/7'0 (38)
The term in (r —rg)¥ |, for k > 1 is;
ok
T =Tolk + Qg
iy vk
ap = 7‘_0 ﬁ — Qk-1 (39)
giving
{-‘E(Ele_;m% [e-im¢e|’d;4 s [ ro)k — £im® it SReat(r = To)k]
Jo(m,nr) = when ry <r<r, (40)
0 otherwise
Useful also is;
J: + i‘r_ - zanOF(n) —:m% (e—im¢ei¢4eipn€o(r—rg) T es’m(beiwge-—ipneo(r—rg))
r 2rr :
e alin) )e""‘d’“ e MM Y ar(r —ro)* + €™Pe¥2 3 ax(r — 1)
21‘- k=0 k=0

6.2.3 Particular solution for H, waves

Consider the 2nd order D.E. with an inhomogeneous term e®” Jre,

7 m2 D(T—T‘o)
y”—}—y?+(1—n2-——) =C'e 2 (41)

Expanding y and the inhomogeneous term in power series;

Y= f: ar(r — ro)* (42)

k=0

oo k k
R v¥(r —ro)
SR emL

k=0

we get;

Zakk —1)(r —ro)* 2+Zakkr (r —ro)k?

k=1

m? 2 C V(i = r5)F
+Zak( -n -—r—z)(r—ro)k— g—(——)—

2 |
k=0 r k
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multiplying throught by r? and changing variable to z = r — ry gives;

0 = > ark(k—1)(z +ro)2z* 2 + > ark(z + 7o)z !
k=2 k=1
oo ; 5 . : oo kak
+kz=;((1-—n)(:t:+r0) —m*)arz _éc i

expanding the above;

0 =" Gk(k—1) [xk + 2rozF1 4 rgz:k"z] +> akk[:t:k + rgmk'l]
k=2 k=1

00 [o%] k
3 (1 =1 4 201 =)ok + (11 = %) —m)at] - 3 0L ok
k=0 k=0 :

which contains only terms in z*¥ where & > 0 . For the initial conditions at r = To We have;

ap = y(ro) (43)
a = y'(ro) (44)

From the z° term we get an equation for a; ;
2aym5 + ayro + ao(re(1 = n?) —m?) = C =0 (45)
From the z! term we get an equation for aj ;
4ayre + 6asri + a; + 2asro + 2a0r0(1 — n®) + a1 (r3(1 — n?) — m?) —Cr=0 (46)
The other a; follow from the ) terms. For k£ > 2 we have ;

0 = ark(k —1) + 2roars1(k + 1)k + rgarsa(k +2)(k + 1) + kag + roarpr(k + 1)
k
v
+(1 — n?)ar—z + 2ro(1 — n®)ar_; + (r3(1 — n?) — m?)a; — C?cT

Collecting terms;
othe sagje ; {1 o nz] MR, [2r0(1 L nZ)] 4 a [k(k 14k (21 =n?) = mz)]
+ak4 [2rok(k + 1)+ ro(k + 1)] + apy2 [rg(k +2)(k + 1)] - C;—’;
Sinalifving: '
0 = aps [1 - nz] + ar_1 [21‘0(1 - nz)] + ax [k2 -m?4+ri(1 - n2)]

k
Vet [ru(k +1)(2k + 1)] + Qkyr [ré(k +2)(k+ 1)] & C:—!

Shifting k down by 2 gives ax for k > 4 ;

Vk—2

ap [T"gk(k a_ 1)] = C_(-I,"—_Q)' T (1 = nz) [ak—-l + 2r0ak_3 + rgak_z]

Za)l5 [(k _9)p - m?] e s [(k _1)(2k — 3)] (47)
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6.2.4 Particular solution of £, waves

Consider the 2nd order D.E. with the inhomogeneous term e /7.

! 2 v(r—ro)
y"+y?+( —nQ-ﬂ) =C- (48)

r

Expanding y and the inhomogeneous term in power series;

o

Y= gak(r - Tg)k (49)
v(r—rg)k - Vk(r = ro)k
e’lr=mo)* _ Z e

k=0
we get;

iakk(k—l) r—rg)kT 2+Zakk (r —ro )k )

o 2 = k
IS0 (1 _nz_m_2) (,._,,D)k_zﬁz_'"_@
k=1 k=0 .4 k!

T

multiplying throught by r? and changing variable to z = r — To gives;

z ark(k —1)(z + ro)2zF2 + Z ark(z + rg):z:k 1
k=2 k=1
o 2 2 2 ko ke
+k§l((1—n)($+ro) —m*)ax —E%C(a:—i-ro) o
expanding the above;

> ark(k—1) [:ck + 2roz*1 4 rg:rk_z] + E akk[:z:" + ro:rk_l]

k=2

+Zak[1—n 2572 4 2ro(1 — n?)z**! + + (r3(1 — n?) 2)3:] Eck,[ k+1+7‘0$k]

k=0 k=0

which contains only terms in 2* where k > 0 . For the initial conditions at r = ro we have;

ap = y(ro) (50)
a; = y'(ro) (51)

From the z° term we get an equation for a; ;
2a,73 + a1mo + ao(ra(1 — n?) —m?) — Cro = 0 (52)
From the z! term we get an equation for a; :
dayro + 6asrg + a1 + 2azro + 2a0ro(1 — %) + ay (r3(1 — n?) —m?) — C(1 + vre) = 0 (53)
The other a; follow from the z; terms. For k£ > 2 we have ;

0 = apk(k —1)+ 2roarpa(k+ 1)k + rdaryo(k +2)(k+ 1) + kay + Toars1(k + 1)
k-1 o

= CT‘OH

v

+(1 = n?)ag—3 + 2ro(1 — n*)ay_y + (r§(1 — n?) — m?)a; — C(k =1}
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Collecting terms;

0 = @[t =]+ o 2ro(1 = 8]+ i K(k = 1) 4 £ 4+ (1301 —?) - m?)]

+ak4 [2rok(k +1) +ro(k + 1)] + @ky2 [r;‘;(k +2)(k + 1)] 2 C(kyf__;)g (1 + %To)

Simplifying;
0 = ca;_s [1 - nz] +ap_ [2r0(1 - nz)] + ax [k2 Lmi4 ra(l — nz)]
: pi=l v
. [ro(k +1)(2k + 1)] T [rg(k +2)(k + 1)} e (1 + Ero)
Shifting k down by 2 gives a; for k > 4 ;

ai [r?,k(k - 1)] = C(—]:}f:—;)—! (1 + (k—z—z—)rg) —(1- nZ)[ak_4 + 2rpap_s3 + rﬁak_g]

—ak_z[(k —9) - mﬂ] Siagiyre [(k —1)(2k - 3)] (54)

6.2.5 Divide local power series by r

Since it will be necessary to know H,/r later, and the solution is in the form of a power series,
we need to know how to divide the power series by r. Putting

1 (o e] oo
= D ob(r —ro)* =" ap(r —ro)f
k=0

k=0

Multiply through by r = rg + (r — o)

o0 (o] o0
Z b(r — Tg)k = E roax(r — ro)k + Z ag_1(r —ro)*
k=0 k=0 k=1

The k£ = 0 term gives;

bu = Tolg
That is;

ap = bo/ro (55)
And the k > 1 terms give;

by = roax + ax—,

That is; i
ap = — (bk ] ak_1) (56)

To

L—sm.uﬂ:m-.m‘. s sluih
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7 Matrix formulation of the boundary equations

The image currents that flow in the three current sheets representing (a) the vessel wall (b) the
antenna’s Faraday screen and (c) the plasma surface are calculated from the imposed antenna
current distribution by imposing the apropriate boundary conditions relating the electric field
in the surface with the induced current. The 6 equations that determine the 6 unknown currents
J flowing in the 3 current sheets may be formulated;

M@ +9*) —nJ=0 (57)
with the solution,
d=(n—-MN)"'Mo* (58)
Where we define;
M 0
0-—ns
ke ) (59)
=N
00

And where 7'/ is the surface impedance of the Faraday screen, noting that (i) shield angle and
(ii) a perpendicular admittance (capacitance between rods) and (iii) a parallel admittance (rod
inductance) are possible in this formulation. The boundary equations themselves appear in M
as;

1

M= (60)

14 o
The vector @ contains the perpendicular field components at the current sheets, and the su-

perscript 7 or 4 refers to whether those fields are from the current sheets or the antenna field,
respectively. The former defines N ;

Aw 2 ) P z H
£ s Au(p) A;(p) . Ay(p) Jo | = NJ (61)
Bw(p) ) Bf (P) y Bp(p) J?!P)
\edi%s!

And ®* is determined by solving the Maxwell’s equations for the antenna structure currents
in the absence of the current sheets.

® = (EA(w), B3 (w), EA(f), EA(S), EA(p), EA(p), HA(p), HA(P))" (62)
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8 Faraday screen

The Faraday screen is modelled as a sheet of anisotropic conductivity located at a fixed radius.
Assuming a coordinate system in which the anisotropy in the conductivity is resolved into
paralle] and perpendicular components, where € is an angle ¢ rotated from the axial direction

z in the ¢ direction, i.e.

B ) o R Ej\ _[cos¢g —sing E
Eqs - E_]_ = sin ¢ COos QS E_L

in this rotated frame we have,
Ey ) — ( m 0 Jj
E, U Ji

converting back to ¢ — z coordinates we get,

where

=

o cos¢ —sing m 0 cos¢ sing¢
R sing cos¢ 0 71 —sing cos¢
( cos¢ —sing ) ( ncos¢ 7 sin ¢ )

sing cos¢ —nysing 1, cos¢

- nycos® ¢+ ny sin? ¢ (m —n.)sin pcos ¢
(my —nL)singcos¢ ysin® ¢ + . cos? ¢

This formulation should be general enough to incorporate the following:
1. The anisotropic conductivity of the Faraday screen.

2. The Rod to Rod Capacitive current (negligible at low freq).

g oosh"lia )/square (63)

where d is the rod separation and a is the rod radius

3. Simulate decrease in the axial magnetic field due to the Faraday screen by specifying an
effective inductive component to the perpendicular conductivity, thus allowing surface
currents in the Faraday screen to screen out some of the magnetic field.




9 SURFACE IMPEDANCE WITHOUT PLASMA

9 Surface impedance without plasma

Since the fields decay rapidly from the antenna surface for very high poloidal and toroidal mode
numbers, the antenna does not "see” the plasma, and so it is reasonable to ignore the presence
of the plasma and just consider the surface impedance in its absence. This "vaccum” surface
impedance matrix is also quickly computed and is useful for testing the code.

9.1 H,#0, Hy=0 waves

H,; = du(hr)
E, = AL,(hr)

E, = AAI (hr)
Using
iB, = 2o 1,
T
We can get a value for the constant A in the E, field.

ihAL (hr) = %n,Im(hr)

tmn, I, (hr)

r h I! (hr)

For the E, field we have;

EqS = : (_Eanz ey EH;)
T

This gives the surface impedance coefficients;

E, imn, I, (hr)

B T T e &
E, ¢ IL(hr) ~m?na? L (hr)

= P E o 3o, z 5

e = ni( IGr) T 2 T (hr) (65)




9 SURFACE IMPEDANCE WITHOUT PLASMA 25
9.2 Hy#0,H,=H,=0 waves

H="0
Hl
E,
E! = RI' (hr)

z m

o
~ O
3
—_
b~
=3
S’

For the other fields we have.

This gives the surface impedance coefficients;

E, . in? L,(hr)

Nes = =T +Tm (66)
ool o comnyln(hr)
T S THY - Ik (67)
9.3 Tensor form for 7,
E. )\ H,
(5)-(%) <68)

Following the convention of Puri (Phys. Fluids 27(8) Aug 1984) for the plasma surface
impedance tensor terms we have.

= (3 69
L (nff —w) £
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10 Calculation of the plasma surface impedance matrix

In this section the wave equations will be integrated in the radial direction by framing them in
a variational form and then numerically solving this variational form using cubic-hermite finite
elements. The cold plasma wave equations have solutions with perpendicular wavelengths that
vary by several orders of magnitude, the fast wave and the slow wave. The fast wave typically
has perpendicular wavelengths of the same order as the plasma radius and gradients, and must
therefore be numerically integrated usually with some higher order shooting method. The slow
wave has a very short perpendicular wavelength and so can be solved in a simple WKB approach,
however when one requires both, a numerical problem occurs in that shooting methods fail due
to the growth of the slow mode, which although in principle is suppressed by the boundary
conditions, eventually dominates the fast wave solution and gives rise to a numerically unstable
system. Global solution methods such as finite differences and finite element methods implicitly
apply the boundary conditions at both sides of the interval and so the unwanted contribution
from the fast growing solution is no longer a numerical problem.

10.1 The dielectric tensor

As we have chosen cylindrical geometry, the only heating scenario that can be modelled is the
Alfvén wave case. It suffices for this case to use the cold plasma dielectric tensor with first
order thermal corrections [14]. This allows modelling of the mode conversion of the fast wave
to the slow wave, and Landau damping at the Alfvén resonance layer.

65 —-iﬁn 0

e=|t, e 0
0 0 Ec
where
2
w -
ce 1= 1-2 ng
3 l—wc_,-
chngj
& = R i
J- ]'_wCJ
2
« = 1-3 @72,
Lol £ — 53 LR ETIIRNC]
£ Y
and
2
2 .57 L%
wi = —L
pj m,e
.- g0
We; = ‘—
m;
c
(G o=
T Ko

Z is the plasma dispersion function, Z'({) = —2(1 + (Z(()), v ; is the thermal speed, m; the
mass, g; the charge and n; the number density of the j’th species.
Since we will frame the wave equations in terms of the magnetic field components, it is more

useful to have the plasma magnetization tensor.
Ke iﬁn 0

k=€ =| —tk, Kk 0
0 0 K¢
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¢

K = -

13 63_
€y

K = -
n ei
1

K = —
¢ &

10.2 Local coordinate system

The flux surfaces in the plasma are assumed to be circular and concentric with a rotational
transform ¢(r) giving a the local equilibrium magnetic field an angle x to the axial direction.

(r0,2) — (:m.0)
C.= S50+4C:
7 Ch— S
¢ = -Si+C¢
6 = Ci+S¢
where
S sin(x)
C cos(x)
s B
ri el €
X = CS(- 7
CS
Xo SIS .
> , . @S
Xp = axXok A

10.3 Useful vector identities in (£,7,() coordinates

V x(Aupt) =AV xp—jpxVA,

X
> T »
I
(=R I I N T

Vé = igi:ié + ingdh + ingdC

10 : .
V-A = ——(rA¢) +in,A, +incA¢
r Or

Vxé=0
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A ~ 21\
Vxﬁ:CVxB—BxVC’+:‘:xVS=C—(+xf,,ﬁ

2
VxC-——szC’+SVx9 6 x VS = chn_S
VXA=-'“><[3A' ] [ C+xan
§ 0A, . 0A, 92 - dA 0A
-7 X A = haiols PR £ )
U] [3 r+8CC]+ c[xpC 7?] fr Cox [6rr+an}

2

= —in, A.( +inc A7 + TA”C + XmAnfi + AL
; R B e .
—incA, T + XPA(C = —T—A(T) = Acﬂ + m,,A¢r

(V X A)f = —z'n¢A,, + z'n,,Ac
. , s? ,
(VxA), = incAc+ x,, Ay — —Ac— 4
: 8k

(V X A)c = —m,,AE - TA,, + A:; + X;A(
(VXA%) = incA] —iny Al
* s * 7 * 32 = =/
(V X A ),7 = —m¢A£ + XmAn = —T_AC —_ A(

- . * Cz - =/ !
(VX A%) = in,A7 + TA” + A+ xp A7

2
(k- VxH) = —n¢knHe +i(—nere + Xm#q)Hy + i(nnke — T"‘:n)Hﬁ - innHE
2

(k- V xH), = inckeHe + (Xsuke — nekin)Hy + (oK, — STNE)Hc — keH,
(k- VxH) = k¢(—in,He + —(;H,, + H; + x,He)
VxEH; = —incHi + in, H{
V xqH; = inHE+ XL Hii + (C;E,; + H')¢
Vx(H; = —in Hé - (:i-zﬁ; + HY )iy + X, H;¢
H-H" = H.H; + H,H; + H.H;

10.4 Maxwells equations

The Maxwell’s equations in the previously defined dimensionless units may be written as;

VxE = iH
VxH = —ie-E+J

28
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where J represents all the externally imposed current sources such as the antenna and € contains
all the information about the plasma. Since the plasma wave solutions are known to have
singular behaviour in the electric field at the Alfvén resonance, the wave equations will be
formulated in terms of the wave magnetic field, which has a much smoother behaviour. A
variational representation of the wave equation is formed by taking the dot product of Maxwell’s
curl H equation with a “test” vector field V x H*, and integrating over the solution domain.
This particular choice of test function allows, after some vector manipulation, an expression
involving a volume integral of only first derivatives of the fields, which will mean that in principle
the functions used to represent the fields need only be continuous.

E = i(k-VxH-k-J)
E-(VxH) = i|[(x-VxH) - (VxH)=(x-3)-(VxH)
V- (ExH') = (VXE)-H -E-(VxH)=iH-H -E.-(VxH")
VA(ExH) = i[H-H - (x-VxH) - (VxH)+ (x-3) - (Vx H)
—z’/S(Exﬁ")-dS = ];[H-ﬁ*—(n-vxH)-(Vxﬂ*)+(n-J)-(Vxﬁ’)]dV(70)

This equation (70) is the variational form of the wave equation that will be used in the numerical
calculations. The surface integral term contains information about the boundary conditions.
Since the equation must hold for all test functions H* it must also be true for each component
of H* individually. We will therefore break it down into separate vector compontents.
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10.4.1 H; test field

RHS:H-éﬁg-(n-vxH)-(ng‘E{g)

e o 52 | 52
= HH +in, [zn¢xEH£ + (Xmke —nekn)Hy + (ngk, — ‘T_"‘E)Hc - nfﬂé]

; ; C2
—iny, [ﬁc(—_mnﬂc tH,+ H + X;,Hc)J
: -
= [(1 —ngke —nlxe)He + UXmncke — Nk, — —r—n,,:c()H,,
2
—innﬁ:CH;; + i(—-r—ncﬂg + MpN¢ky — X;nnﬁ?()Hc — incmfﬂé} Hg

= (agH; + aHY') He + (ag, Hy + ag, H')H,
+(be H; + b H;')H, + (bepH{ + b,’prg’)H,';
+(C£HE + CEHE’)HC + (CEPHE- + CEPHEI)Hé

a =1-— nfnf — nf,nc
aé =0, ag =0, aép =0
2
b = i(Xmnehe — gy, — —Makc)
b =0, bep = —ing ke, be, =0
¥ 16%
Ce = i(——n¢Ke + nyncky — Xyngk)

ce =0, Cep = —ingKe, =0
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10.4.2 H, test field
RHS =H -4H; — (k- V x H) - (V x A H7)
3 : : 52 -
= H,H;+ —ing [‘—n("‘nHE +i(—n¢ke + Xmkn) Hy + i(ngke — ?”n)HC i, iIC,,Hé] H,
3 S A
=Ne [meKEHE + (Xmbe — n¢kn)Hy + (ngky — T“’E)H( - ”EHEJ He
% 02 7 1] 02 T [T/
— [Ke(—ing He + —Hy + H, + x, He) (-H, + HY)

81 > ¢ e
= [z(—xmngng + ngfc,, + Tn,,@)H,“; + m,,lc,;Hn'] H,

+-(1—n2 ! ke +2X B Cpe g e O HY| H,
¢Re = Xm K¢+ 2XmNehn — 7 K)Hy — — k& HY| H,
e~

' s? s? o AR e
! ! ! * ! =,
+ | (naneke + ——Xmke = —=ncky = XmTnkn — —Xpre)Hy = XpﬂcHn] H,

— [nghn — Xiuke] 2L

= (ay Fn+d,H)He + (an, H; + o, H;') H;

npTn
+(b, H + b HVH, + (bopH; + b, HX')H!

+(eoHy + &, B VHe + (ol + o H')H;

2
@y = U= Xmnche + ngkin + —nyKe)

o i e
a, = ingKe, ayp =0, a,, =

T
¢t C?
L —Tﬁc, b,,p = *TKC, b:’p K¢
S? S2 2
cn = (Ran¢ + Xm—)Ke = (—-n¢ + Xmn)En = —Xprc)
Cp = —XpF( Cow = X:rnnf T e Oy = 0
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10.4.3 H; test field
RHS =H-(H; - (x-V x H) - (V x ()

2

s . ) ’ . S ) =
= HH; +1n, [—nwnHe + i(—n¢k, + Xmbn)Hy + i(npke — T"n)HC il “‘nHé] H;

: , s? S2ibe orig
+ [mcﬂeHe + (Xmke = ngkn) Hy + (nyk, — —re)He - "Eﬂé] (—-H¢ + HY')

' . (2 2
. [ﬁ:((—m,,Hc + —T—'Hﬂ + H,'; + X;:HC)} HE
1 52 ! r7* . TT%/
= z(-—n,,n(n,, + Tn(;nf + Xp‘n,,fc()H( + zn(nfﬂ'c HE
s , s ¢? : ;
+ | (rancre + Txinﬂe = XmTky — MKy~ Tx;»q)H; + (Xon ke — ncn,,)Hc"] H,
e 2 . St S? — g
- X,pK‘CH(] H:,‘ + [(1 ~ n?,!ce T ﬁ'ﬁ:e —+ 27‘!},,],}{,” — X;an)Hc + (n,,n,, — Tnf)H(’] HC

[ 82 7= [/
+ |(nyk, — THE)HC — KkeH; ] H;

(71)

= (acH; + o[ H)H, + (acpH; + af, H;')H|
+(b HE + b HY') Hy + (be, H; + b, He)H,
+(ecHE + ¢, H'YHe + (cep HE + o, 1) H,
., 52

a¢ = i(—neke — nyneky + Xpnghc)

ac = ingke, i =0, e, =0

52 52 02
b¢ = (non¢ + 'T_X:n)nf 5 (X:nnﬁ . Tn()"n g TX;,":C

b'c = XmKe — Nk, bep = —Xphics by =10
5 5

2
c=1- (nf, + T—Q)fcg + 2-;11,,&,, - X; K¢

5" 5%

’ e =5 o
C( =NpKy — —T'.—!GE, Cep = NpKy — - Keg, CC = K¢
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10.5 Cubic hermite representation

The H fields are represented by cubic-hermite finite elements, these have the advantage that the
field and its derivative are continuous. Two unknowns per grid point (for each field component)
must be specified, the contribution from the two basis functions. For a uniform grid of nodes
z) these are;

Yr(z) = 1-3(z—=z:)* +2(z — z;)° (72)
de(z) = (z—z4) = 2(z —z)2 + (2 — 22)° (73)

10.6 Integration

The variational form of the wave equations are integrated for each basis function of the test
field (H) numerically using Gaussion integration over 4 points within each interval (zj,zj;;.
This gives rise to a banded matrix linking all fields of adjacent nodes. Since V-H = 0 is an
additional condition, which has not yet been used, it can be applied to eliminate H; and reduce
the number of unknowns per node from 6 to 5.

= .
Hi=— (;HE it m(H()

The surface integral term at the origin is included by imposing the analytic approximation near
r = 0 on the fields at the first node. The surface integral term at the plasma surface is included
by using the boundary conditions (a) (E,, E;) = (1,0) and (b) (E,, E¢) = (0,1). The problem
is solved for each of these conditions to get H solutions for each polarization, and hence the
full surface impedance matrix.
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10.7 Regularity conditions at the origin

The variational form of the wave equation eq.70 requires knowledge of the boundary conditions
at the origin and at the plasma surface. The condition at the origin is obtained by examining
the form of the wave equations and expressing the field components as a power series in r. The
highest order terms in equation are kept and the determinant of the matrix of equations gives
the value of the unknown power of 7. One solution must be discarded on the grounds that
it is ill behaved. The eigenvectors of the matrix represent the two allowed waves, and can be
combined to give a resultant surface impedance matrix at a radius near the origin. This radius
must be sufficiently small in order to maintain the ordering of terms in the wave equations is
maintained. From Puri (Nuc. Fus. Vol.27. No.7 (1987) pp1094) we have;

2
E, = —(g+n"E”)E,,-X;,E¢+z'nZn<H,,+i(1—?E)H¢
3

T 65

/ ! N¢éy S . T1 TyTi¢
- . P M L5 T H
Ec (Xm 55) P 4§ 265 n—1 ce ¢
&

H = —inneE, +i (n?, = E() o~ ?Hn 7 XpiH
_ e2 : n n S
He"= i ('h ——ﬂ) E, +in,ncE; + (X:’n —ﬁ) H, + ( 20 —_) H,
€ € € =
where . m
N5 CeTiBe s
¢ & T
any = >
. r
S =siny = —m
¢ Ll
=ECOSY = —m—e—s
X = i oR
cs _ _aR
r = r?2 4+ q2R2
- _1—- - rql q2R2
X Q'R qu r2 + qZRZ
jo & ot C8talle 4 TR
Xm =X S r? + ¢*R?
.2 eS 2qR rRq¢
Xp=X'+— =

r? + ¢?R? _,.2+qu2

near to r=0 we have;

5 it
reo qR
C = a1
i
e e
X Lo qu
2
X B
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So we have the ordering of the terms in the wave equations as;

/

E, 1 15 E,
E gyl b oo E
¢ x sdhasiioit ¢
H, F earl H,
H, iR Bk H
which suggests using;
2 A
E( = Br ra_l
H, C
H, Dr
The wave equations then become;
i me Beiniiia smng (20 m2
(B-1)A (,1+_=_e'1¢) AT +i z(r cc) g
Al oF wlkaddwis 2% aon ) R 5 e B
B-1C |~ —imn; i(m? — e,r?) -1 2 C
D . 2 . rq' n r D
g t T | T (s (Ra o)

The determinant of this set of four equations is (m? — %)%, so we only have solutions for
B = |m|, as the —|m| solution diverges at the origin (corresponding to the Y;, or K,, solution
to the 2nd order DE. The corresponding eigenvectors are

2

mng —im
—i(exm + 11 |m|) -3 —imng
€nm + €¢|m| 0
0 € + €¢|m|

which gives the surface impedance matrix for the origin as;

() =2(%)

= 1 mmng —-172 H,
" e;m + € |m]| —ir‘—"%lﬂu wmn, H,
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10.8 Power dissipation

The current carried by the particles is given by
Jp=—iK-E+E
Swanson gives the volume power dissipation density as;
D = Re(J,-E*)
= Re[-i(K-E) -E"+E-E]
= Re[-i(K-E)-E7]

[ S —iD 0
= Re|-i|tD S 0 |E-E*

N T
By i FEE 073 ) 0 E;
= Re|—i| iDE;+SE, |-| E,
PE, E,

= Re|—i(SEE; — iDE,E; + iDEE, + SE,E: + PE(E})|
= Re[-DE,E; + DE(E, —iPE.E;]

= DRe[-E,E + E¢E]] + Im[P] |E,["

= DRe|-E,E; + (E E;)"| + Im[P] |E,*

= DRe [2Im(E, E;)| + Im[P] |E,[*

= Im[P]|E[*

Where the S and D terms in the dielectric tensor are assumed to be real, and loss terms are
included only in the P term (supplying a small Imaginary component).

The parallel electric field E, can be expressed in terms of the magnetic field components
using;

EF=ikVxH

which, in terms of the local coordinates used here reduces to;

C? o
B¢ =k (—ﬂetaﬂc +—H, +H, + XpH¢) (74)
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10.9 Rotate coordinates for the surface impedance matrix

The preceeding section gives the surface impedance matrix in (n,¢) coordinates, whereas the
calculations in the vacuum layer between plasma and wall are in (8, z) coordinates. rotation
between them is simply calculated as follows.

() - 2(&)
(2 =ir
(5) - (&
=

Z, _

SN 7 75 c ! sS\NH/
-5 C Zan. Zx -5 70 H;
C?Zx + SC(Zy + Zn)+ 8%Zy C*Zy+ SC(Zy2 — Zy1) — 5%2Z,, H,
C?Zy + SC(Z4 — Zn) —S8%Zy; C%Zyy — SC(Zy, + Zn)+ 87y, i,
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11 Guide to the code

A program "nloops” has been written to perform the calculations outlined in this report. This
section provides a short guide to the use of the code, and an introduction to its inner workings.

11.1 Compilation

The program code is written in standard fortran F77 and consists of some 25 files of subroutines.
The same program source code is used on all machines, however since the CRAY, on which the
program was developed, has as default 64 bit (8 byte) real numbers, on other machines such as
ALPHA or SUN workstations the compiler option for default 8 byte reals must be used (e.g.
-18). The program makes extensive use of NAG library routines. Also, for use on different
parallel platforms one or two special routines must be linked. Several simple UNIX shell scripts
have been written to compile the program for use on some typical machines, but they may
require some tailoring for each user. The supplied shell-scripts are:

1. nloops.cray : compiles the program for use on CRAY

2. nloops.pvm : compiles and distributes the program to a cluster of workstations running
PVM 7"Parallel virtual machine” software.

3. nloops.ksr : compiles the program for use on the Kendal square shared memory parallel
computer.

4. nloops.ncube : compiles the program for use on the hypercube parallel computer
NCUBE.

11.2 Making a data file

The program reads all the data it needs to run from standard input. Normally one makes a file
of input data and feeds this to the program. The data in the input file is in a series of Fortran
NAMELIST statements. These appear in the following order;

1. PVM or KSR or nothing - control data : required only when the program is run on a
PVM array or Kendal Square.

2. MAIND - control data for the program.
3. VACUUMD or PLASMAD or BBDAT - data for the surface impedance matrix.
4. BZLOOPD - data on the placement of the loops making up the antenna array.
5. FEEDD - data on how the loops are to be connected to sources.
where further BZLOOPD and FEEDD namelist entries can also be added. The variable

names and their function is described in the following sections.

11.2.1 PVM

HOSTS : list of character strings of the addresses of the machines that make up the cluster;
eg. ’alphal’;spcs.aug’. The list must be ended by a null string >’ .

SPEED : list of numbers representing the average time needed for a particular job on each
machine specifed above (used to allocate an appropriate workload to each machine).
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11.2.2 KSR

NPROC : number of processors that will be used for the computation (if larger that the
number available, then the number available is used).

11.2.3 MAIND

JSCAN : determines in what mode the program will run:

1 scan over frequencies.

2 scan over Alfvén resonance layer position (Faituan ) e sno It

3 read in dielectric tensor from a file.

4 scan over frequencies but use only the vacuum dielectric tensor.
NSCAN : number of values in a parameter scan.
SMIN, SMAX : minimum and maximum values in the parameter scan.

11.2.4 VACUUMD

Used when the surface impedance matrix is to be than without plasma (JSCAN=4).
RPOL : plasma radius

RTOR : major radius of the torus

MMX, NMX : maximum poloidal and toroidal mode number to be used.

11.2.5 PLASMAD

RROL, RTOR : minor and major radius of the plasma.

WN, SN, DNS, DNMAX : electron density profile of the plasma

n(r) = DNMAX(1 - (r'/;lc)V\JN)os‘("/(”sr\m2 where z is chosen to give n(r)/n(r,) = DNS.
WT, ST, DTS, DTMAX : electron temperature profile of the plasma

T.(r) = DTMAX(1 — (r/x) WT)e~/&ST)? where  is chosen to give T,(r)/T.(r,) = DTS.
WQ,SQ,QMIN,QMAX : g profile of the plasma,

g(r) = QMAX — (QMAX — QMIN)(1 — (r/r,) WQ)e~ /(S Qr

NMX, MMX : maximum toroidal and poloidal mode to be computed.

NMXA,MMXA : maximum toroidal and poroidal mode to be computed using the plasma.
PRPMX2 : if nirf, > PRPMX2 then the vacuum calculation is done instead of the plasma.
ISMX : number of nodes in the radial direction used in calculating the wavefields in the plasma.
DEL : r/r, value for the first node.

NTORUS : amount of symmetry in the toroidal direction, eg. for 32 antennas symmetrically
around the tortus, NTORUS=32.

NRES : toroidal mode number of the Alfvén resonance layer used in the resonance layer scan.
HALL : logical variable turning the enhanced hall effect on.

DBO : toroidal magnetic field.

DM : m;/m,

PSTOR : logical variable which controls the storing of the plasma calculations for later recon-
struction of a power deposition profile (faster when .false.).

11.2.6 BBDAT

Used when the surface impedance matrix is to be read from a file (JSCAN=3).
ETAFILE : character string giving the filename of the file containing the plasma surface
impedance matrix.
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11.2.7 FEEDD

RSOURCE : array of Thevenin equivalent series source impedance of the sources on each
antenna loop. Note e~*“! convention!

USOURCE : array of Thevenin equivalent source voltage of the sources in each antenna loop.
RLINE : The impedance of the feed line. Used for calculations of the maximum expected line
voltage in the feed line.

11.2.8 BZLOOPD

PMX : number of modes around each antenna loop.

KMX : number of terms in the power series for the inhomogeneous solution in the antenna
region

LMX : number of loops in the antenna simulation.

PAIR :Logical flag. Place a loop 7 out of phase, toroidally opposite.

ESTOR : (Logical variable) store the electric fields at the plasma surface for each antenna
and mode, for later reconstruction of the Poynting flux distribution in (n,m) space. Faster if
false..

R1, R2, RF, RW : radius of the front and back of the antenna loops and of the Faraday
screen and vessel wall respectively.

SHEETS : logical varible truning on the current sheets at the plasma surface Faraday screen
and wall.

ETABIG, TF : Surface resisitivity (ohms/square) of the Faraday screen in a direction per-
pendicular to the rods.

RHOF, RHOW, RHOA : Surface resistivity ohms/m of the Faraday screen, wall and an-
tenna.

PHIO, ZO0 : Arrays specifying the position of the centre of each of the loops making up the
antenna. :

PHI, Z : Arrays specifying the poloidal and toroidal half width of each loop making up the
antenna.

D : Distance anticlockwise from the middle of the back of each antenna to the position of the
slice generator.

11.2.9 Choice of typical values

Make sure that

1. sufficient terms are included in the power series for the electric field in the region of the
antenna. Typically k.. > c(r; — r',)\/n2 /R? + m2,../r2 with ¢~ 10 .

maxr

2. sufficient modes on the antenna are used to model the current distribution expected. The
A/4 resonance of a stripline antenna is modelled well with Dinow-> | 0T 25

3. sufficient poloidal modes are used to resolve (a) the smallest poloidal feature of the an-
tenna and (b) the highes mode computed on the smallest antenna loop: m > 27 /®; and

mmar/r2 > Pmaz/li

4. sufficient toroidal modes are used to resolve the smallest toroidal feature on the antenna,
eg between loops at least 1/2 wavelength. npma./R > 1/(2w;)

5. the plasma radius where the power series is used to compute the form of the fields near
the origin should be small enough, but not smaller than 1 grid cell in the variational

method. A > r,/tmer
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6. enough radial grid points should be used to model the smallest feature in the wavefields
(usually the Alfvén resonance layer) rp/ime, < A Alfvén

11.3 Running the code

inputs:
(a) data file
(b) surface impedance matrix (when not to be calculated)
(c) special data for parallel machines.
outputs:
(a) power per loop - to standard output
(b) current distribution on each loop - to standard output
(c) radial power deposition profile - to file PR.RUNxx
(d) power deposited in each (m,n) mode - file SNM.RUNxx

11.4 Bugs and known problems

1. Memory limitations on NCUBE - The NCUBE allows only 4 Mbytes per node of which
about 0.5 MByte is the operating system and 0.5 MBytes are required by the communica-
tions buffers, this limits operation to cases where relatively few radial grid-points or few
antenna loops are to be calculated. When it is to be used only for antenna calculations,
with the plasma surface impedance matrix coming from a file, this is not so much of a
problem.

2. No power deposition profiles on KSR - Because of problems with the file handling on the
KSR, storage of intermediate files is not possible.

3. Do not use too many antenna modes - if the poloidal wavelength implied by the maximum
antenna mode number is larger than that representable by the highest poloidal mode
computed, then some form of spectral pollution occurs.

4. Use enough terms in the power series - when insufficient terms of the power series in the
antenna region are used to represent the most evanescent waves (high m,n), the partial
impedance matrix is wrong.

5. When the first radial node is not close enough to the center, the assumptions used in
the local power series are no longer true and a K, like solution component appears and
pollutes the first few nodes.

6. The enhanced Hall effect part of the code still doesnt work properly at low electron
densities (results diverge). Run the code with HALL set to .false..

11.5 Use of the code together with M. Brambilla’s code

Brambilla uses Gauss-CGS and only computes for a few poloidal and toroidal modes in ”un-
folded” plane geometry. A modified output routine ”’OUTDS2” generates a file with information
on the poloidal and toroidal radii and the frequency, and lists the poloidal and toroidal modes
computed. It then gives the surface impedance matrix for those modes (multiply by 1207
to get MKSA units (ohms). The subroutine "BBILLA” reads in this file, interpolates to get
the surface impedance for those modes not computed and converts to ”dimensionless MKSA”
(multiply by —).




ﬁ

11  GUIDE TO THE CODE 42

11.6 Function of each subroutine

A brief outline of the purpose of each subroutine is given below.

nloops : This is the main program

size : an include file containing the maximum sizes to be used for the various arrays. The
user should change these values as required.

nterms : Checks that sufficient terms have been included in the power series for the fields
within the antenna.

bessels : Computes arrays of the Bessel functions required.

plasma : Calculates the plasma surface impedance matrix as outlined in this report and
stores field profiles for later reconstruction of a power deposition profile.

hem : Generates the matrix representing the variational form of the wave equations in the
plasma.

hef : Calculates the plasma parameter profiles and the dielectric tensor and calculates the
terms a¢, a;, a¢,, atpy be, B, bep, b s ¢ Ces Ceps 5

frel : calculates the frequency at which the Alfvén resonance layer is at a particular radius.

bzloops : reads in the data defining the antenna array, and sets up some data to be used
later in calculating the antenna fields.

bzloope : calculates the (m,n) Fourier component of the electric field of the p’th normal
mode on the I’th loop, in presence of the plasma, Faraday screen and vessel wall.

bzloopz : calculates the matrix of partial impedances Z;’;’I . Work on the different toroidal
(n) modes is done in parallel.

Jsheets : calculates the M and N matrices for use in calculating the image currents flowing
in plasma, Faraday screen and vessel wall.

tayint : computes the [ Y k(z—x0)*e™ dz used in the calculation of the Z from the antenna
fields.

series : computes the local power series solution for the vacuum wave equations in the
region of the antenna. ,

poly : evalulates a polynomial using Horners method.

diss : calculates the plasma dissipation profile for the next Fourier mode in the plasma
fields file, given the surface electric field for that mode.

bwrite : writes the radial profile of E, and €¢ for the (m,n) Fourier mode to a file.

cml : performs the volume integration on the cubic hermites.

cm2:”

cipl:?®

bbilla : reads in the surface impedance matrix as calculated by M. Brambilla’s program
and interpolates between the values of m and n given.

nwork : decides whether a particular processor in the parallel machine should work on this
task or wait for another one.

pvm.f: contains emulations of NCUBE parallel routines implemented using PVM subrou-
tine calls.

ksr.f : contains emulations of NCUBE parallel routines implemented using Kendal Square
subroutine calls.

serial : contains dummy emulations NCUBE subroutine calls to allow running on a simple
serial machine.

11.7 Parallelization of the code

Further details can be obtained from [13]. The code was first written on the CRAY as a serial
program and later moved to the NCUBE. The NCUBE offered the possibility to parallelize the
program very simply by using a "THOSTLESS” parallel model. In this scheme the program is
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loaded onto all (up to 64) processors identically and run. Each computer (node) reads a copy
of the input data. At the parts in the program where a sum over toroidal mode n occurs,
each node only works on a part of the summation, and results are collected at the end of the
loop. This allowed parallelization with only 10 or 20 lines of changes in the entire program,
and retained the understandability of the resulting program. Since the program is usually run
with nme, = 100 resulting in 201 toroidal modes, this allows good distribution of computing
load even on an NCUBE with 64 nodes.

Later, an array of very fast DEC-ALPHA workstations and several IBM RISC workstations
became available, and it was decided to move parallelize the program to run on this cluster
of workstations, which, at IPP, are all connected through the ETHERNET. Since the ratio
between computation and data communication is very high for this program (as all n modes
are totally independent), a virtual parallel machine using public domain software "PVM” and
the network was practicable. The simplicity of the NCUBE parallel subroutines allowed the
writing of routines named identically to those used by NCUBE, but using PVM subroutine
calls internally.

Lastly a shared memory parallel computer "Kendal Square” became available and using the
same philosophy as for PVM, a set of NCUBE look-alike routines was written using the KSR’s
parallel system calls.
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12 Tests

12.1 Impedance of a loop in vacuum

Ideally we would like to use a configuration for which an exact analytic result was available for
comparison, however the obvious choice of a circular loop would only involve the m = 0 mode,
which was considered to be a little too restrictive. The compromise chosen was to model a
small loop, roughly square in shape, extending poloidally and radially only a small distance.

12.1.1 Expected results

The theoretical results expected are:

1. A resonancei.e. Z — oo when the loop circumference is about half the vacuum wavelength

[10, p.250]

2. Well below the resonance frequency, the loop should act as an inductor of size

l l
L= % (lzcosh_l-‘% + 11C03h—1§)

(10, eqn.2-64] for a rectangular loop with sides I; and I, made with wire of diameter d,
and where d < I}, 1,. For a square loop os side length [, this reduces to,

2 o2l
L= ‘ug'; IHE

3. When the loop perimeter is less than about 3 /10, the radiation resistance should be
R =20w'S?/c?
where S is the area of the loop [10, eqn.2-57].

4. When Im(Z) = 0 there should be just over one wavelength around the loop. (10, p.250]
gives, for d = 0.001) this point for 1.09\ and a radiation resistance of about 100 €.

5. When the loop is within a conducting wall the radiation resistance should be zero.

12.1.2 Numerical results

The parameters chosen for the computation were as follows, except where otherwise indicated
on plots. For the following computations, the Faraday screen and the vessel wall are neglected,
and the plasma surface impedance is replaced by the surface impedance in vacuum. Figure.1
gives the numercal results of this calculation.

Raiior = 10m %width = 0.05m
T = 0.80m Mar - = 20
) = 1.20m Niic = 40

PoLrs =4 kmar 30
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Figure 1: Calculated antenna resistance for a small loop as a function of frequency, showing
convergence as the number of antenna modes increases

12.1.3 Discrepancies

The numerical results obtained highlighted several discrepancies between the model and the
known results.

1. At low frequencies the radiation resistance scaled as f2 instead of f*. This unexpected
result is really in agreement with the theory since what is being modelled is an infinite
array of antennas, recalling that the toroidal geometry is simulated by having periodic
boundary conditions in cylindrical geometry. It is found that increasing the separation
between the loops, by increasing the major radius, decreases the frequency at which the
antennas start to communicate too much.

2. When too many normal modes on the antenna are considered, the computed impedance
is incorrect, showing spurious resonances. This unfortunate result is explained by noting
that the electric field in the vicinity of the antenna, as a finite superposition of poloidal
and toroidal normal modes, is an incomplete basis. When one specifies a source an-
tenna current with much of its electric field in regions of (m,n) space not included in the
computation, the partial impedances calculated for these modes will be in error.

3. Similarly, when insufficient terms in the series for the radial electric field are included,
the corresponding partial impedance will be incorrect. Roughly, one should have more
than ¢(r, — rl)\/nfnw/Rz + m?/r? terms (with ¢ = 10).

12.2 Impedance of a stripline in vacuum

A further simple test with known results is that of a stripline, where a thin conducting plate
runs parallel to a groundplane. The appropriate geometry in this case is a loop with the radially
outermost leg at the same radius as the conducting wall, and the innermost leg separated from
the wall by a distance small compared to the wall radius. This ensures (i) the end effects due
to the ends of the stripline are negligible and (ii) curvature effects can be neglected.

12.2.1 Expected results

1. The impedance should be that for a short circuited transmission line Z = Z, tan Al with
a specific impedance (e.g. [11, 9-1]) and phase velocity that of light = w/c

2. The current distribution should be flat in the central part of the conductor and peaked
towards the edges, over a length of order the strip to wall separation.
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12.2.2 Discrepancies

1. If the number of toroidal modes so small that the finite toroidal width of the individual
strips modelling the full width of the stripline is not properly resolved. In this case
we found that although the total current and hence impedance is correct, the current
distribution is in error, with some strips even carrying negative current.

2. The effective length of the strap calculated is correct only to order ®/m, i.e. as accurately
as the poloidal modes allow resolution of the poloidal extent of the strap.

3. When the strap is poloidally short compared to its radial extent, the assumption that it is
a transmission line fails, and it behaves more as a loop, showing an equivalent length equal
to half the circumference. In this case the code also gives the correct answer compared
to known results.
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13 Results

13.1 Alfvén wave heating on Asdex Upgrade

An analysis of Alfvén wave heating possibilities on ASDEX upgrade was undertaken. The effect
of the number of antennas, the antenna plasma separation, antenna limiters, and the effects
of the current distribution on the antenna strap was considered. It is found that the image
currents flowing in the antenna limiters severely degrade the antenna performance and that it
is essential to have an antenna close to the plasma surface, exciting a toroidal mode n = 12 to
14.

On important detail is that since the most important aspect of the coupling is the radial
evanescence of the fast wave between the antenna and the Alfvén wave resonance layer, and
this depends upon the mode number launched. The major radius of the plasma should not
be taken as the physical major radius of the torus, (1.65m) but as 2.15m, the major radius at
the antenna. This explains the apparent discrepancy between the optimal n calculated by Puri
[1, 2, 4] and that calculated here. Because of the elongation of the ASDEX upgrade plasma,
b/a = 0.64/0.5 the plasma radius was taken as the vertical radius b and the resonance layer
placed at 7/b=0.609 to give a distance to the plasma-edge the same as that of a resonance layer
at r/a = 0.5 in the horizontal plane.

13.1.1 Effect of antenna current distribution and limiters

The following figures show the @, resistance and reactance of each antenna strap as a function
of the number of pairs of antenna, assumed to be alternately out of phase and uniformly around
the vessel. The launch freqency adjusted to keep the (n, —1) Alfvén resonance layer at fixed
position.

The calculations are made for 4 antenna structures.

1. A simple strap antenna with a uniform current distribution across it.

2. Modeling the strap by 3 sub-straps in parallel, to allow for peaking of the antenna current
across the strap.

3. Additionally having two short circuited straps at +/-15cm around each strap to represent
the image currents flowing in antenna limiters.

4. Moving these limiters to +/-20cm.

The most obvious feature in the graph (fig.2) of antenna @ as a function of n is the well
defined minumum around n = 10. As has been well documented earlier by Puri this results
from a tradeoff between the strongly decreased loading at higher n due to the increased radial
evanesence of the wave, and the decreased confluence between the fast and slow wave at low n.

The effect of the correct antenna current distribution across the strap is to peak the current
towards the edge, increase the proportion of the antenna flux at higher n harmonics and decrease
the amount in n. Thus we see a small decrease in the resistive part of the loading (fig.4).
However the reactive part of the loading (fig.3) decreases much more, and the antenna Q is
overall reduced by 10%. At n = 10 about 1/3 of the current flows in each edge of the antenna
strap.

When antenna limiters are included into the calculation, the antenna reactance is strongly
. decreased, however the antenna resistive loading is even more strongly reduced, and the antenna
@ rises by about 1.5 at the optimal n for the +/-20cm limiter case, and over a factor 2.5 for the
+/-15cm limiter case. At n = 10 with limiters at 4+/- 20cm the image currents are reduced to
about 1/6 of the strap current flows in each limiter. These results suggest that it is important
to minimize the eddy currents flowing in the antenna limiters.
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The power deposition profiles are seen to have more power deposited in the edge regions
when arrays launching prodominantly low n modes (figs. 5 to 7) are used. This results from
other poloidal modes, which for low n have resonance layers further separated from the m = —1
mode,and hence closer to the plasma edge.

13.1.2 [Effect of antenna-plasma separation

The figure.8 shows the antenna @ as a function of n for several antenna-plasma separations.
The antenna @ increases strongly with increasing spearation, however the low n configuration
have a weaker dependence on n because of the lesser radial evanescence of the fast wave (kiF=
—(n/R)?* — (m/r)? in vacuum). The number of antenna pairs (n) giving the lowest Q is also
found to be a function of the antenna-plasma gap, shifting from n = 10 for a 15cm gap to
n =13 for a lcm gap. This results from a shift in the tradeoff between the evanescence in the
edge and the wave damping, since for very large gaps, the evanescents assumes a greater role,
and for small gaps the mode damping is more important.

13.1.3 Parameters used for calculation

JSCAN=2 NSCAN=1 SMIN=0.609375 SMAX=1.0 RTOR=2.15 NMX=100 NMXA=32
RPOL=0.64 MMX=20 MMXA=10 ISMX=1000 DEL=0.002 PRPMX2=-1.0E20
NTORUS=1 NRES=1 HALL=.FALSE. PSTOR=.TRUE. DBO=2.5 DM=1822.88

WN=4.0 SN=20.0 DNS=0.01 DNMAX=2.0E20

WT=2.0 ST=20.0 DTS=0.01 TEMAX=4000.0

WQ=2.0 SQ=20.0 QMIN=1.0 QMAX=3.0

PMX=2 KMX=80 PAIR=.TRUE. ESTOR=.TRUE. R1=0.74 R2=0.94 RF=0.68 RW=0.94
SHEETS=.TRUE. ETABIG=1.0E20 TF=0.0 RHOF=1.0E80 RHOW=0.0 RHOA=0.0

For a an antenna with uniform current density in z.

RSOURCE=(0.,0.) USOURCE=(1.,0.) PHI0=0.00 PHI=27.2837 D=0.47143 LMX=1 Z=0.1
Z0=0.

For a an antenna with varying current density in z.

RSOURCE=3%*(0.,0.) USOURCE=3*(1.,0.) PHI0=3*0.00 PHI=3*27.2837, D=3*0.47143 LMX=3
7=0.02 0.06 0.02 Z0=-0.08 0.0 0.08

For a an antenna with varying current density in z and side limiters.

RSOURCE=5%*(0.,0.) USOURCE=(0.,0.) 3*(1.,0.) (0.,0.) PHI0O=5%0.00 PHI=5*27.2837,
D=0.0, 3*0.47143 0.0 LMX=5 Z=0.01 0.02 0.06 0.02, 0.01 Z0=-0.15 -0.08 0.0, 0.08, 0.15
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13.2 Alfvén wave current drive on Asdex Upgrade

Alfvén waves are thought to be an efficient method for driving the toroidal current in tokamaks,
due to their low phase velocity, where they can couple to the sub thermal electrons. Here
we present some calculations for the ASDEX upgrade tokamak. An array of 32 antennas is
assumed, phased to drive the n = +8 mode. Antennas of width 20cm, length 80cm and depth
20cm are assumed and the Alfvén resonance layer is put at 7/a = 0.7396 to give a resonance
layer at the same distance from the plasma edge as at /a = 0.66 in the horizontal plane.

The radial profile of the power dissipation 9 shows a very well localized deposition of power,
the antenna @ is calculated to be 29.2 and the reactance 4.96 ohms (at 2.56 MHz). Because
the antenna straps are only 422mm apart and are 200mm wide, most of the current is found
to flow in the edge regions of each strap and the assumption of a uniform current density is
found to give quite a larger inductance and a worse antenna performance, X =6.8 ohms and
@ =31.5. An interesting observation is that because the antenna array is launching a travelling
wave, the down-stream side of each antenna strap appears to absorb a large proportion of the
power launched by the up-stream side of the antenna (recall that the current distribution on
the strap is modelled by have several thin straps in parallel). For a total launched power of 1
MW the voltage on each antenna is 8.6kV.

13.2.1 Parameters used for the calculation

JSCAN=2 NSCAN=1 SMIN=0.73958 SMAX=1.0 RTOR=2.15 NMX=64 NMXA=32 RPOL=0.64
MMX=20, MMXA=10 ISMX=1000 DEL=0.02 PRPMX2=-1.0E20 NTORUS=8, NRES=8
HALL=.FALSE. PSTOR=.TRUE. DBO=2.5 DM=1822.88

WN=4.0 SN=20.0 DNS=0.01 DNMAX=2.0E20 WT=2.0 ST=20.0 DTS=0.01 TEMA X=4000.0
WQ=2.0 SQ=20.0 QMIN=1.0 QMAX=3.0 ETAFILE="",

RSOURCE=6*(0.,0.) USOURCE=3*(1.,0.) 3%(0.,1.) PMX=3 KMX=65 LMX=6 PAIR=.TRUE.
ESTOR=.TRUE. R1=0.74 R2=0.94 RF=0.69 RW=0.94, SHEETS=.TRUE. ETABIG=1.0E20
TF=0.0 RHOF=1.0E80 RHOW=0.0 RHOA=0.0 '

PHI0=6%0.00 PHI=6*27.2837 D=6*0.44762 Z=0.02 0.06 0.02 0.02 0.06 0.02 Z0=-0.080 0.000
0.080 0.34215 0.42215 0.50215
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13.3 The 1993 ICRH antenna on Asdex Upgrade

The ICRH antennas currently used on ASDEX upgrade were also modelled by the code pre-
sented here. Typical ASDEX upgrade parameters for the H minority heating scenario, and the
effects of the current distribution across the antenna strap and the effects of the antenna side
limiters was modelled. An antenna consisting of four equal loops of size equal to the average
loop size on AUG are used.

The effect of accounting for the correct current distribution across the strap is to reduce
the effective inductance of the antenna by 15%, and the effect of the limiters and the septum
is to reduce the inductance by 30% in the case of in phase straps. This changes the resonant
frequency calculated for the antenna, so direct comparisons between the models are not entirely
clear.

2P/I.3hort
m phasing , J uniform 3.62
7 phasing , J correct 1.60

7 phasing , with limiters | 2.57
0 phasing , J uniform 2.61
0 phasing , J correct 2.03
0 phasing , with limiters | 2.33

The resisitive loading results (representend by an equivalent series resistance at the short
circuited end of the strap), shows that the effect of considering the current distribution across
the strap reduces the loading, and that including the limiters and septum gives a value in
between, for both 0 and 7 strap phasings. This is in contrast to the AWH case where limiters
decreased the loading. In this case the image currents flowing in the limiters presumably add
to that part of the spectrum with good absorbsion.

13.3.1 Parameters used for the calculation

ETAFILE="/uts/ceh/felice/f30n80m40’ PMX=4 KMX=85

PAIR=.FALSE. ESTOR=.TRUE. LMX=4 R1=0.88 R2=1.03 RF=0.86 RW=1.03
SHEETS=.TRUE. ETABIG=1.0E20 TF=0.0 RHOF=0.0 RHOW=0.0 RHOA=0.0
For uniform currents on across each strap,

RSOURCE=4*(0.,0.) USOURCE=(-1.,0.) (1.,0.) (-1.,0.) (1.,0.) PHI0=2*14.0 2*-14.0
PHI=4*13.0 Z=4*0.09 Z0=-0.18 0.18 -0.18 0.18 D=4*-0.24

For varying currents on across each strap,

RSOURCE=12*(0.,0.) USOURCE=3*(1.,0.) SEETS0L)P 35(1500 o gEa 0N
PHI0=6*14.0 6*-14.0 PHI=12*13.0 D=12*-0.24

Z=0.02 0.05 0.02 0.02 0.05 0.02 0.02 0.05 0.02 0.02 0.05 0.02

Z0=-0.25 -0.18 -0.11 0.11 0.18 0.25 -0.25 -0.18 -0.11 0.11 0.18 0.25

For varying currents on across each strap with side limiters and septum,
RSOURCE=18*(0.,0.) USOURCE=3*(1.,0.) 3*(-1.,0.) 3*(1.,0.) 3*(-1.,0.) 6*(0.,0.)
PHI0=6*14.0 6*-14.0 3*14.0 3*-14.0 PHI=18*13.0 D=12*-0.24 6*0.

Z=0.02 0.05 0.02 0.02 0.05 0.02 0.02 0.05 0.02 0.02 0.05 0.02 6*0.02

Z0=-0.25 -0.18 -0.11 0.11 0.18 0.25 -0.25 -0.18 -0.11 0.11 0.18 0.25 -0.35 0.0 0.35 -0.35 0.0 0.35
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13.4 Proposed ”Violin” antenna for ITER

In the JET report [17] a new type of antenna is suggested for use on ITER. It consists of a
single poloidal strap 3m in length, earthed at each end to the vessel wall and fed from a 30
ohm coaxial line 0.4m from the upper end. It is thus a poloidally asymmetric antenna. One
proposed advantage of the antenna is that the antenna loop is self supporting and can support
the central conductor of the coaxial line, thus relieving the need for ceramic supports in the
vicinity of the plasma. A second proposed advantage is that the short 0.4m loop will act as
a parallel addmitance and help to match the reactive load of the antenna since the relatively
long 2.6m strap will have several resonances in the frequency range of interest (20-100MHz),
and this provides several positions where antenna should be almost matched by the short loop.

The program detailed in this report was used to model some features of this antenna.
Because the Faraday screen is modelled as sheet of anisotropic conductivity, and is not restricted
to the antenna region, it can and does support coaxial modes which propagate between the
Faraday screen and the wall as though the Faraday screen was the central conductor and the
wall the outer conductor. This effectively means that the extra capacitive loading given by the
Faraday screen disappears in the model when there is one wavelength around the torus. Since a
freqency scan was to be performed for the antenna, a pair of = phased antennas 70.5 cm apart
was modeled in order to circumvent this probelm.

1. It is wrong to consider the two straps as sections of transmission line with a phase de-
termined by their length in the toroidal direction. Figure.10 shows the current flowing
in the two arms of the antenna as a function of frequency. It is found that the quarter
wavelength resonances of each loop are consistent with assuming length of the equivalent
stripline is about 35cm longer than the poloidal length. This can be considered as due to
the extra inductance of the radial feed sections which is not included inthe JET report.
This does not have a large effect on the longer arm, but represents nearly a factor of 2 for
the smaller loop. This is an advantage in that the short loop can be made much shorter
in the poloidal direction to achieve the same effect as reported in the JET report. Since,
as will be seen later the effect of the counter flowing current in the short arm is to reduce
the loading by coupling power out of the wave, it is better when this loop is smaller.

2. The small 40cm ”"matching” loop, does not, as reported by the JET report, contribute to
the antenna loading, rather, power is absorbed by this loop and decreases the effective

antenna loading. Using a plasma surface impedance for typical ITER plasmas supplied
by Brambilla it is found that at 30 MHz about 25

3. The calculated voltages in the 30 ohm transmission line feeding the loops was 24.4 kV
for 2MW on the 2 antennas. Although a direct comparison was difficult because of the
incorrect electrical lengths used in [17], if one adjusts the frequency a little to give the
same reactances in the longer strap, then the line voltages calculated here are 40% larger
than in [17]. This may be partly due to the rather coarse "correction” but will also be
due to the effect of having a reversal in the current on the longer strap, which should lead
to a decrease in the loading in the same way as the counter flowing current in the short,
40cm strap.

13.4.1 Parameters used for the calculation

JSCAN=4 (vacuum) or 3(brambilla’s plasma) NSCAN=30 SMIN=2.0E6 SMAX=60.0E6
RTOR=7.75 NMX=90 RPOL=4.48 MMX=60 ETAFILE="/uts/ceh/felice/f30n90m60’
RLINE=30.0 RSOURCE=4%(0.,0.) USOURCE=(1.,0.) (-1.,0.) (-1.,0.) (1.,0.)

PMX=3 KMX=85 LMX=4 PAIR=.FALSE. ESTOR=.TRUE.

R1=4.68 R2=4.93 RF=4.67 RW=4.93 SHEETS=.TRUE. ETABIG=1.0E10 TF=0.0 RHOF=0.0

-
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RHOW=0.0 RHOA=0.0
PHI0=2%2.3848 2*-15.5014 PHI=2*2.3848 2*15.5014 Z=4*0.10
Z0=0.0 0.705 0.0 0.705 D=2*-0.2052 2*1.334
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Figure 2: Antenna @ as a function of the number of antenna pairs, for 4 types of antenna model
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n= 4 m=-1 | 0.461 mW
n=-4 m=-1 | 0.378 mW
n=4 m=-2 | 0.199 mW
n=-4m= 2 | 0.169 mW
n= 4 m=-3 | 0.068 mW
n=-4 m= 3 | 0.059 mW
n=4 m=-4 | 0.019 mW
n=-4 m=4|0.011 mW

Figure 5: Radial power deposition profile for n = 4 for the simple strap antenna and 1 V on
the antenna. Table of modes with dominant power absorbsion.
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Figure 6: Radial power deposition profile for n = 8 for the simple strap antenna and 1 V on

the antenna. Table of modes with dominant power absorbsion.
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Figure 7: Radial power deposition profile for n = 14 for the simple strap antenna and 1 V on

the antenna. Table of modes with dominant power absorbsion.
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14 APPENDIX: Computation of integrals

Although in the present version of this calculation the solution to the inhomogeneous wave
equation (due to the radial volume currents) is achieved using a power series, it is useful to note
that the inhomogeneous equation can be solved analyticaly in terms of some more generalized
Bessel functions. The inhomogeneous differential equation for the E,fields is of the form;

m2 evr

1
" ¥t 2 . TTRs s T
Pyl )y

T

giving the particular solution (from [16](eq.55))

__j e Ko (1) I (pr) — L (ur) Ko (12€)
W(Kn(¢), Im(€))

dg
The complete solution is thus;
y = AL,(pr) + BKn(pr) + K (p,v,7)In(pr) — (g, v,7) K (1, 7)
where we define;
= / e In(ur)dr  and | - K= / e K, (ur) dr

The inhomogeneous differential equation for the H_ fields is of the form;

m‘Z eur

, 1
V' Y+ (W -y =—

The complete solution is thus;

y = Aln(pr) + BKm(ur) + K (v, ) In(pr) — I, v,7) K2, 7)

where we define;
f:fle“'fm(ur) dr and K =/le‘"'Km(w) dr
r T

In practice these "generalized” Bessel functions must also be numerically evaluated in terms
of known analytic functions and infinite power series, and so therefore are no more useful than
the simple direct power series solution. However in some case they converge much faster,
because some exponential like factors are removed from the power series, and so they may be
useful for future optimization of the calculation of the antenna field.

14.1 Integrals of the form [e%z"dz

az

ot [ o=

A

az

= -a—z(az—l)

az
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[

= [ Resangs

(—az)*

1 i j ¢* 2"dz
= -—e
£ _eazzn Y _In—l
a a
We conjecture that;
enz r
Iﬂ = ﬂ+1 ( 1) Z

k=0

k!

The cases n = 0 and n = 1 are immediately seen to be true. Considering the case n + 1 we

have,
az n+1 k
RHS.41 = ai+2(” + 1) (1) Z az)
| (—az)*  (—az)**!
= = —(n + n!l(-1)" ( :
aa®t! [ g, k! (n+1)!
n+1 1= (=az)*t!
= Li¥====(n+Lnl(= " EET T
VYR Sor a1
a a
az 1
10} €43 Jarai 3t it Ta since it is true for n
a a
= & 1 sl /e"zz"dz
a a
= iz"‘n B +1 eoz St - faeaz n+l il
a a n+1 n+1
az 1
i3 %zn'l'l 5 Eeazzn+1 it In-i-l
— In-}-l

It is thus true for all n by induction.
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14.2 Integrals of the form T),(r) = f e®2"In 2d>

1,4
fe“z lnzldz = lnz/ eazdz —jl]izdzdz
z z 2. 7
= Ei(az)lnz —fEl(az)dz
Y
¢ 1 - =
= Ei(az)lnz —f; (’y +lnaz+ Y (fo)z ) dz  [15](eq.5.1.10)
n=1 i
e ¥ Inaz = a° o oy
= El(az)lnz—/—z—dz—f ~ dz—-nz::l;!—n/z dz
= Ei(ez)lnz —ylnz — llnzaz - i (62)"
2 s aln?
To
o g [e"lnzdz
]
= —e¥Inz —/le“ldz
a a =z
o i‘l _ Ei(az)
" %d a
- ffne-ti)
= —(e”Ilnz—Ei(ez
1. n 1

/e” Inzz"dz = Inz/e“z"dz —/%je“z"dzdz

az n (—az k PLE t (—az k
= lnz— n!(—l)“z( ) _f_l.—nl(—l)“z( ) dz

antl! k! zartl k!

k=0 k=0
i ny (ze2)f  al(-D)" & (=) 1 ., oy
= lnzan_l_ln!(—-l) ,2, Tl sl kz_; o U i |-
az n k
_ e i psad=az)
= lnzan+1n.( 1) kz=¢:3 o
'ﬂf,'(ml)’1 e** = (_a)k az k-1
o (de”kz_:l £ /e i
€92 5 n (_az)k
= lnzan+1n!(—1) kgo o
allaa]m : Byl s keaz i k-1 (_az)j
o (Eﬂ-'l'l) (El(az)+ (k') a—k(k—l)!(—l)k 12 i
=1 R 3=0 :
g2 % (—az)F
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n azk 1 —az’
n( 1) (El(az) Z ; E ))

3=0

T2n—1
e8? 2n-1 —az k
Ton1 = ~uy St
k=0 3

© o 2-1 ez k=1 oo
+—(2na; ) (El az) — E > — ( )

7=0
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14.3 Integrals of the form I(u,v,r) = S Ip(pr)e’"dr .

Ln(p,v,r) , m #0

Huyvyr) = erm(pr)e""dr

= / I' e dr

= " (I‘m+1 -t Im-l)

This can be re-arranged in the form of a recursion relation as,

Io(u,v,7) , v #0

jo(,u, O:T)

IvO(F$ V,T)

" 2 2 . .
for SSE S e resgs fecuipion

= / Io(pr)e’ dr

lje”Io(z)dz: putting z = pr and a = v/pu
U

-——/e“z Z sz from A & S 9.6.12

Ko
1 i 1 e*(-1)*(2n)! 22": (—az
B o 22n(n!)2 a® k=0

evr ® (271)' m )gn 2n K k 1
PR =ACIE (21/ ; u’) "

jO(.usOar) = '/-IO(#r)dr

I | :
= —on(z)dz putting z = ur
@

1 3] z?n
= ;] ,222"(11!)2 -
]. o0 22ﬂ+1

g

Bt (2n 4 1)220(nl)?
2n+1

(ur)
= ‘Z (2n + 1)227(n!)?2

o "2 g
E Z:(211'_+ 1)(n!)?

n=0

66
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Ii(p,v,v) Taking the m = 1 case of the recursion relation we get;

g 2 e
Il = _eurIO = —VIQ = I._
7 Il

which, noting that I, = I_,, and hence I,, = I_,,, reduces to;

A evr V.
Il - —Io . '-'Io
7 Iz

14.4 Integrals of the form K(u,v,r) = [ Knp(ur)e” dr .

f{m(”u V,T') y M ?5 2

K(p,v,r) = jr K, (pr)e” dr

eUT

==k ] "K' e dr
v v

eUT

= = Kn+ & (K1 + Kns)

This can be re-arranged in the form of a recursion relation as,

K, = —Ze"'Km_l JE 2—”Am_1 S G
i "

Ko(p,v,m) , v # 0 Proceeding for the K, Bessel function, we have (from [15](eq.9.6.12)),

Ko(p,v,7) = j e’" Ko(pr)dr

= je”Kg(z)dz putting z = pur and a = v/p

pK(p,v,r) = /e“z (— (In% + 'y) Iy(2)

o0 l zZn
% 5_31 (l tats i ) 221*(11!)2)“'[Z
=] 2n

¥4
e { ln2—lnz—7)§m

oo 2n
+Y (bln+1) = )Q;f—(;;)-;)dz

n=1

"‘-.

2n

EaZ((ln2—1n2—7)+Z z e (ln2—lnz+1,b(n+1)))dz

“"--.

fi’g(,u, 0, T)

Ko(m,0,r) = [ Kolur)d
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1
= ;]Ko(z)dz putting z = ur

el z = (z/2)%
E u( (7“ ) Z%(k')z(2k+1)
oo (2/2)2"‘
) R I

k=0

o azilz/2)2k ( 1 1
+z Z kT 1+§+"'+ED A &S.11.1.9

o (/2%
= ’"g(k!)z(zkﬂ)

("”(“1) A z+2k1+1)

Ky(g,v,r) Taking the m = 1 case of the previous recursion relation we get;
. 2 2v . -
K Sk it fondies
p p

which, noting that K,, = K_,, and hence K,, = K_,., reduces to;

I'{l =

26
7
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14.5 Integrals of the form K(p,v,r)=J 1 Km(ur)errdr

f{O(ﬂaOar)

Ko(p,0,7) = le\’g(ﬂ,T‘)dT

since we are free to
— j —I\o (pr)d choose the integration
constant

= —/ —I{U(z)dz putting z = pr
z r

I

Using the expansion from [15](eq.11.1.22) this becomes;

. | g e, i i (20" 1
et o B e e s e (o 1+ 1)
o(u,0,7) 2ln 5 71112 24 +z?k(k‘) Y(k +1)+2k ln2
where the digamma function ¢ is given in [15](eq.6.3.2) as
— whenn =1
¥l { -+ i1t when n > 2

and Euler’s constant « is;
v =~ 0.5772156649

I;'m(p,v,r) sm#l

En(porr) = [ ~K(ur)edr
r
]' vr
= p/;[fm(p,’.")e dr
= 'u/;—l (Km-1(pr) — Kmy1(ur)) e7dr using [15)(eq.9.6.26)
m
= “—_2% (I{’m—l(ﬂayvr) ¥ ‘R'm"'l(‘u‘u’r))
3 2 - y
= (K 2 = 22 4 o)
2m Iz I
]_ » s
= o (WKl vyr) + € En(r) = vEom (021

Where the recursion relation for the K’s was used in the 5°th line.

Ko(p,v,r) , v #0

Ko(p,v,7) = ]—I{o(pr)e"'dr

| =3 | =

Ko(z)e**dz ,putting z = pr and a = v/p

( (ln 5 + ) Io(z) + z 22“ (1 = ; + :13)) dz [15](eq.9.6.13)

o W

az

az

€

Il
= O SISl
NI

(—(lnz —In2+7)(z) + Z_j 272(—;-,)—2 (Pp(n+1)— 7)) dz

z
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substituting the power series for Iy from [15)(eq.9.6.12) we get;

2n. 2

Ko(p,v,7) = /e:z ( —(Inz —1n2+7)z 22“(n7)2 + Z 2 (]2 g (Y(n+1) — ))

2n

— je:z (ln2 ln2—7+z225( ‘)2(¢(n+1)+ln2——lnz))dz

= (In2 — 4)Ei(az) — ] 1e‘”‘ In zdz

z
£ 1
i Z 22n (nl)2 ((1,!1(n +1)+In 2)/6“22"-1(12 —/6”22"_1 In zdz)
= (ln2 ’y VEi( az) :
ez 2n-1 (—az)k
+ z 22" ( —Ton41 — (¥(n+1) +1n2)(2n — l)!aTn lg) X )
= (ln2 - El(az) 0
e 2n-1 (_az)k
2 Z P (T n')2 (T2n+1 Y(n+1)+1n2)(2n —1)! — ;;, e

where we define the terms T, by;

1. = f“’ 2" In zdz

70
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14.6 Integrals of the form I(p,v,r) = [ 1L, (ur)ermdr .

IAG(#': 01 T)

3 1

Io(u,0,r) = [ ~Jo(ur)dr
1

= /-Ig(Z)dZ putting z = pur !

/ Z 22n 1)2 using [15)(eq.9.6.12)

3 / an;;)z !‘

= f—+2/2“z?:r‘5dz '

1 z z/2)2n

a1 P(n!)?

L. (gw,n), = f%fm(pr)e"'dr '
= p/ifm(,ur)e""dr
ur
I ; ‘
- p/ 5= (Im—1(pr) — Ipya(ur)) €7dr using [15](eq.9.6.26) |

= -—E—— (Im_l(,u, v, T) = jm+l(ﬂausr))

2m
= L (Ivm-l T gew.Im + QKI'm 3 j —1) ! i
2m 1] 7 .

1 2 o
= — (kI vyr) = " In(pr) + vIn(p, 7))

Where the recursion relation for the I’s was used in the 5°th line.

jo(#,l/,r) ’ V# 0

I(p,v,r) = Iy(pr)e* dr

jl
T
1. & (ur)'n :
Zgks 9.6.12
_[re 2(12,‘,“(”')2 z  using [15](eq.9.6.12)

z"_

)
Z 2," -[ az 2n-—1dz
n= 02

je (2n —1)!e™ 2"21 (—az)k

2 = 22“(11) a?n R

I

O——
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_ Eifas) — s3> (2n—1)! B (—az)
= Ei(az) — e ;WH Kl

(=]

= Ei(vr) — e Z (i)h (2n —1)! 2nz—1 (—vr)k

2v (Rl ==

n=1
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