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Abstract

An asymptotic method of solving a scalar wave equation in inhomogeneous media is
developed. This method is an extension of the WKB method to the multidimensional
case. It reduces a general wave equation to a set of ordinary differential equations
similar to that of the eikonal approach and includes the latter as a particular case.
However, the WKB method makes use of another kind of asymptotic expansion and,
unlike the eikonal approach, describes the wave properties, i.e. diffraction and inter-
ference. At the same time, the three-dimensional WKB method is more simple for
numerical treatment because the number of equations is less than in the eikonal ap-
proach. The method developed may be used for a calculation of wave fields in problems
of RF heating, current drive and plasma diagnostics with microwave beams.
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1 Introduction

The ray method or geometric optics is the most powerful and widespread method
of solving the wave equation in the short-wavelength limit. It is used in numerous
applications of optics, seismology, physics of fluids and solids, quantum mechanics,
plasma physics and many other fields [1-3]. The ray method makes use of an asymptotic
expansion of the solution sought and reduces the wave equation to an infinite set of
coupled equations for successive terms of the expansion. The zero order term is known
as the eikonal approach. It describes the phase behaviour in space which represents
the most rapid variation of the wave field. It also gives rise to the ray or geometric-
optics description in the narrow sense of the latter term. The first order equation
describes the field amplitude evolution along the ray trajectory. This equation has the
important corollary that the flux energy is directed along the rays. Only the leading
order equation and this consequence of the first order are mainly used in practice.
This reduced approach is usually called the ray tracing or geometric-optics method. It
describes the corpuscular or ray properties of a propagating wave package.

In many cases of practical interest this method provides almost the only possibility
of obtaining a solution. Therefore, in plasma phisics geometric optics is widely used,
but, in contrast to conventional optics it is in most of cases far from being really
justified and is sometimes clearly irrelevant. For example, as discussed in [4] description
of ballooning instabilities of tokamak plasmas is impossible without modification of
the eikonal representation. In many other cases of practical interest a wave package
is localized in a small enough region and then the wave phenomena which exhibit
energy flow transverse to the ray cannot be neglected. Thus in [5] it was shown that
diffraction is significant in the lower-hybrid current drive problem. In [6] it was shown
that sometimes the ray approximation fails even in the electron cyclotron range of
frequencies. '

The energy flow transverse to the rays, which has to be included into considera-
tion, appears only on account of the higher order terms of the asymptotic expansion.
However, the higher order equations of the ray method are very seldom used in prac-
tice because of their complexity. The wave properties of the propagating oscillations
are usually studied by the quasi-optic approach. This was first introduced as the
parabolic-equation technique by Fock and Leontovich [7]. This technique retains the
wave description across the ray direction while using the eikonal approach along it.
Profound developments of the parabolic-equation technique were made by Babi¢ and
Buldyrev [8] and Maslov [9]. Some applications of the parabolic equation to plasma
physics are described in the review paper [10]. The same physical ideas are used in
the concept of the complex eikonal by Choudhary and Felsen [11]. Mathematically,
the ray method and the parabolic equation differ in that they use different kinds of
asymptotic expansion with respect to the small parameter A/L < 1, which is the ratio
of a characteristic wavelength A to a characteristic medium inhomogeneity size L.




In this paper a method is developed which can be regarded as an application of the
parabolic equation to the propagation of narrow wave beams or to eigenfunctions of the
“bouncing ball” type [8]. Whereas the ray method uses an asymptotic expansion with
respect to the integer powers of the small parameter A/L, in our case the half-integer
powers of the same parameter are used. Accordingly, the method considered here can
also be viewed as an extension of WKB technique to the multidimensional case. For
the reasons presented below we call this approach the paraxial WKB (pWKB) method.
The pWKB method includes conventional ray tracing as a particular case, but, it leads
to a final set of equations which is different from that of other methods. The approach
combines the simplicity of ray tracing with a description of the wave properties, i.e.
diffraction and interference. Moreover, in spite of its broader applicability the pWKB
method is even more suited to numerical treatment because fewer equations have to
be solved in the pWKB method than in the ray tracing technique.

In Section 2 of this paper the main wave equation to be solved is formulated.
The ray tracing technique and its relation to the pWKB method is briefly discussed.
The derivation of the main equations of the pWKB method is described in Section
3. It comprises two successive steps: asymptotic expansion with respect to the small
parameter y/A\/L < 1 and then paraxial expansion into Taylor series. The first step
gives the trajectory of the centre of gravity of a wave packet. This trajectory coincides
with the geometric-optics ray and is described by the conventional Hamiltonian set of
equations. Another small parameter A/L < 1, where A is the wave beam width, is used
in the subsequent step. As a result, the second order partial differential wave equation
is reduced to a set of first order ordinary differential equations in terms of the same
Hamiltonian function as in the geometric optics. This set of equations is discussed in
detail in Section 4. It describes the geometrical frame of the wave package characterized
by such average quantities as the central ray trajectory, the beam width and the wave
front curvature. This frame does not depend upon the amplitude distribution across
the beam and is common to a family of wave beams of different transverse structure.
The equation for the amplitude is formulated and solved in quadratures in Section 5.
It is shown in Section 6 that the pWKB method gives a general solution to the wave
equation. Finally, in the Appendix the pWKB technique is described by means of the
advanced apparatus of the tensor calculus, which allows very compact and therefore
very transparent representation of the pWKB method.
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2 Eikonal approximation of the ray method
2.1 Wave equation and short wavelength ordering

Let us consider a field of monochromatic waves e~*!®(7) and suppose that the wave
amplitude is described by a scalar time-independent wave equation of the form

2
div (8V®) + ‘;’—QNZ(F)@ = 0. (1)

Equation (1) represents a rather general form of wave equation and covers a number
of cases of practical interest. For instance, if the tensor € is unitary, then Eq. (1) is a
Helmholtz equation:
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If N*(7) = 0 and €§() are components of the dielectric tensor é, then Eq. (1) describes
electrostatic oscillations of cold plasmas and takes the form
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Here and in what follows we adopt the summation convention: repeated Greek indices
a, B,7,... are to be summed from 1 to 3. In addition, g** are the components of the

contravariant fundamental tensor g = VX%V X? in the curvilinear coordinate system
{X* = X*(7)}. g is inverse to the determinant of the matrix g®, g = 1/det|g*?|.

In general, all the coefficients of Eq. (1) are space dependent functions. We seek a
solution of Eq. (1) taking advantage of the large parameter

s=wLlfe® 1, (4)

where L = m.in{lVln 8|7, |VIn|N ||_1} is a characteristic medium inhomogeneity
length. In what follows we mainly use the dimensionless space variables z* = X*/L.

2.2 Debye asymptotic expansion, eikonal approximation

The conventional technique of solving Eq. (1) in the short-wavelength limit £ > 1 is
the ray approach based on an expansion of the solution in an asymptotic series with
respect to integer powers of k™! (Debye expansion):

8(7) = exp(inS() 3 725 (5)

n=0

Substitution of this expansion in the wave equation (1) gives to the lowest order the
eikonal equation, which determines the eikonal function S = S(7):

HE %eﬂﬂsasﬁ — N?=0. (6)




Here S, = 85/0z“ are covariant components of the vector LV S and the tensor
B a
e = g°"eb 4 gPel (7)

is real when the tensor €§ is Hermitean (the proof is given in Section 5). The Hamil-
tonian function H = H(z*,S,) as introduced by Eq. (6) will play a principal part in
our subsequent investigations.

2.3 Ray tracing

The eikonal equation (6) is a partial differential equation of the Hamilton-Jacobi type.
It may be solved by reduction to the Hamiltonian set of ordinary differential equations
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where the 6 functions
z® = ¢%(t), Sa = palt) (10)

give the parametric representation of a ray trajectory in 6D phase space. The set of
equations (8)-(9) requires a subsidiary initial condition, which can be given by pre-
scribing the shape of the phase front S(7) = Const. Then the eikonal function S can
be determined along all trajectories (10) by integration of the equation

ds dg*

@t Py (1)
The set of equations (8), (9), (11) is widely used in numerous applications. It is known
as the eikonal approach or the ray tracing technique. The next approximation of the
ray approach gives the transport equation for the wave amplitude [1]. In accordance
with this equation the wave energy propagates strictly along the ray trajectories. No
energy flow across rays exists within the accuracy of up to O(k™!) of the ray approach.
Therefore, such wave phenomena as diffraction and interference are described in the
next approximations only. However, higher order equations of the ray method are
practically never used because of their complexity.

It follows from the ray consideration that the Hamiltonian function H determines
the ray or corpuscular properties of wave packet propagation. It is far from obvious that
the Hamiltonian also affords information about the wave properties of the solution of
Eq. (1). It will be further shown that, whereas the first derivatives of the Hamiltonian
describe propagation of the maximum of the wave packet, the second derivatives de-
scribe diffractive broadening of the wave packet. To this end, a new sort of asymptotic
expansion differing from Eq. (5) is introduced in the next section.




3 Paraxial WKB approach

3.1 Short-wavelength asymptotic expansion

The physical basis of the method discussed here is the concept of taking the functions
of the parabolic cylinder as a basis for expanding an approximate solution rather than
a Fourier series with respect to plane waves as in the eikonal approach. It will be seen
that, mathematically, this results in an asymptotic expansion with respect to half-
integer powers k™2 of the small parameter x~!, rather than integer powers ™" as
in the Debye expansion (5). The asymptotic expansion considered here is of the same
type as in the quasiclassical or WKB approach [12]. Therefore, the method obtained
can be regarded as an extension of the WKB method to the multidimensional case. We
call it the paraxial WKB (pWKB) method because the essential part of its derivation
is based on a paraxial expansion.
A particular solution to the wave equation (1) will be sought in the form

B (F) = A™ 0 (VEW) om (V&) exp(ikS), (no sum on ! and m), (12)

where S = S(F), u = u(F), v = v(7), A™ = A™(F) are unknown functions to be
determined. The first three of them are also assumed to be real. ¢;(£) are the functions
of the parabolic cylinder which satisfy the equation

@16 + (21 + 1)pu(€) — E@u(€) = 0 (13)

and can be expressed in terms of the Hermite polynomials H;(¢):

() = e~C12Hy(¢) [V 221, (14)
Substitution from Eq. (12) into the wave equation (1) results in
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and the subscripts «, 8 denote partial derivatives with respect to the correspondent

spatial coordinate, i.e.
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To satisfy Eq. (15), it is not sufficient to annul the coefficients for different powers of
k because the large parameter & is also included in the argument of the functions ¢;.
Therefore, we require

g*p (SaSﬁ — ulu ug — vzvavﬁ) = 2N?, (18)
e*PSup = €S, = e*Puvp =0, (19)
L[A™] =0. (20)

The significant feature of the derivation is the assumption that all the functions
S(7), u(7), v(), A"™(F) have the same characteristic size of spatial variation as the
medium inhomogeneity length L:

L=mjn(|6§| INL JA™] S|l lvl)
Vel V] VA [VS] V|’ [Vo]

(21)

So a faster scale of variation is included in Eq. (15) via the functions of the parabolic
cylinder ¢; only. It is also seen that in accordance with Eq. (13) ¢} (and hence ¢}) is
of the same order as ;. However, ip;/0z° is of order k/%p,. During the derivation of
Eq. (15) with allowance for Eq. (13) the quantity ¢} was split into two terms. With
this formal ordering the last term on the left-hand side of Eq. (13) is attributed to
the leading order in Eq. (15), while the second term of Eq. (13) appears in the second
order of Eq. (15). Such a partition seems to be artificial, but it has strong physical
reasons, which will be discussed in Section 5. Here we note only that Egs. (18)-(19) do
not depend on [ and m and determine the Gaussian backbone, which gives the coarse
structure of the wave packet, while Eq. (20) describes the amplitude distribution over
the beam cross-section in more detail.

It is instructive to rewrite this set of equations in terms of the Hamiltonian function
H given by Eq. (6). To this end, we introduce the notations

OH OH
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Equations (18)-(19) now take the form
H = %uzﬂyu + —;—vzﬂvv, (23)
Hy = Hp=0, (24)
Hyy =0. (25)

The system (23)-(25) constitutes not merely a redesignation of Eqgs. (18)-(19). It is valid
for more general Hamiltonians than that given by Eq. (6). In particular, a much more




complicated case of electromagnetic waves described by a set of Maxwell equations can
also be represented in the form (23)-(25). The treatment presented in the following
makes use only of the general form of Eqgs. ((23)-(25) and does not use the specific
expression for the Hamiltonian function unless a statement to the contrary is explicitly
made.

The system (20), (23)-(25) is a system of 5 equations in 4 unknown functions
S = 8(7), v =v(F), u = u(F) and A"™ = A™(7). Nevertheless, the system is consistent
and is, moreover, underdetermined; a solution exists and still allows a great deal of
arbitrariness. The wave amplitude A™ is included solely in Eq. (20). This equation
is somewhat different from that describing the transport of the wave amplitude in the
ray approach. However, Eq. (20) can also be reduced to a linear ordinary differential
equation and then solved in a similar way. This will be considered in Section 5.

The set of equations (23)-(24) is the same as obtained in [11]. The effective method
of solving this set of equations is described there. In this method the property of
Eq. (30) is used and the so-called orthogonal trajectories formed by curves S(7) = Const
are found. In what follows, however, we shall use another technique which is more
appropriate to the case under consideration.

3.2 Reference ray

Note that the set of equations (23)-(25) has the solution
2% =¢%(t),  Sa=pa(t), o(F) =u() =0, (26)

where the functions ¢%(t) and p,(t) are determined by the Hamiltonian set of equations
(8)-(9). On substitution from Egs. (26) Egs. (24)-(25) are fulfilled identically and
Eq. (20) coincides with the amplitude transport equation of the eikonal approach.
This means that the eikonal approach is included in the solution (12) as a particular
case when the initial conditions given on some spatial surface ¥ are consistent with
Egs. (26). In the general case, u(7) # 0 and »(7) # 0 and Egs. (26) do not give
a solution of system (23)-(25) any longer. However, the first two of Eqgs. (26) still
represent an approximate solution of Egs. (23)-(25) in the vicinity of the spatial curve
u(7) = v(F) = 0. It is clear that this curve is a characteristic (ray) of Eq. (1). So each
ray generates a family of solutions such that v = u = 0 on the ray, but u # 0 and v # 0
outside this ray. To illuminate the difference between such solutions and the eikonal
approach, let us consider the behaviour of the wave amplitude |®| of Eq. (9). To this
end, we calculate

V|®im| = V [|A™ |01 VEW)@m(VEV)] = VEIA™| [0]Vu + @[, Vo] + 0(x1/?).  (27)

Equation (27) shows that Vu and Vv are the directions of the fastest decay of the
wave amplitude |®;,|. Let us now introduce a quantity

_ OH

vV 35"

(28)




Equation (28) gives contravariant components of the vector V, which is collinear to a
vector of the group velocity. In accordance with Eq. (8) V is tangential to the ray

z% = ¢*(1),
{ Sa = por(t)' (29)

Equation (29) coincides in form with Eq. (10). However, the difference is that Eq. (10)
describes a manifold of all geometric-optics rays and Eq. (29) gives a single ray which
coincides with a skew curve u(7) = v(7) = 0. Moreover, in contrast to Eq. (26) we
assume that outside this curve u(7) # 0 and v(7) # 0. Equation (24) can now be
written as

Hy =VVu=0, Hy = VVov = 0. (30)

Consequently, both vectors Vu and Vv are orthogonal to the vector of the group
velocity V. Equation (27) shows that Eq. (12) describes a wave beam with exponential
decay outside the skew curve (29). This curve is, therefore, the spatial axis of the wave
beam. To be more precise, this curve describes the trajectory of the centre of gravity of
the wave packet amplitude [13] and plays a basic part in the following consideration. It
is called the reference ray and denoted as ®. By virtue of Eq. (27) the wave solution
(12) is located in the vicinity of the reference ray (29). It also follows that the wave
energy propagates along this ray and the vector V retains the same meaning as in the
eikonal approach.

3.3 Wave packet description

Let us introduce the characteristic length of the amplitude decay A = min(|®/V®|). It
is physically evident that the case A &~ L as well as the case A & A have to be treated
numerically when exact solution cannot be found. Therefore, the inequality A < A, L
can be regarded as a natural restriction on any asymptotic approach.

We now discuss the relation between the other two quantities, A and L. The ray
method is implicitly based on the idea that the plane wave as exact solution to the
wave equation in a homogeneous medium also remains a reasonable approximation for
inhomogeneous media. At first sight, this can indeed be expected to be the case for
weakly inhomogeneous media at least. It is in fact never the case, because a plane
wave has an infinite localization size A = oo which is always more than any finite
length of the medium inhomogeneity L. To overcome this contradiction, the amplitude
factor (@, in Eq. (5)) is used in the ray method to describe a wave packet of finite size.
This allows one to improve the situation, but the ray expansion is still restricted to
consideration of nearly plane waves and, consequently, requires that the wave amplitude
®o(7) in Eq. (5) vary only slowly in space over a length of order L [1] or, in our notation,
A =~ L. In other words, the ray method makes no distinction between characteristic
lengths of medium L and wave amplitude A variations, viewing both lengths as the
same quantity.




As already mentioned in the Introduction, this requirement is rather restrictive.
In the solution (12) the same restriction as in the eikonal approach is imposed on
the function A™ rather than on the wave amplitude. The latter varies, as described,
mainly by the exponential factor in the functions of the parabolic cylinder. It is seen
from Eq. (27) that A is intermediate between a medium inhomogeneity length L and
wavelength A = ¢/w so that A = v/LA. As known from classical optic, this is just the
threshold where diffraction becomes significant and prevents further localization of a
wave package. It follows that the situation A < /L can hardly be realized because
of diffractive broadening. On the other hand, the case A &~ L > +/L) is not excluded
from Eq. (27) and hence from the solution (12) because |Vu| as well as |[Vv| can be
small and even zero. This means that the pWKB method is valid in the vast majority
of practical problems; in particular, the eikonal approach is included in the pWKB
solution as a specific case.

We remark in conclusion that in the ray method the effect of diffraction is described
with terms of order k=2, whereas the pWKB method uses terms of order x~1. It is
likely that the latter ordering is inherent to wave phenomena, which results, on the one
hand, in better convergence of asymptotic series and, on the other hand, in a wider
applicability of the pWKB technique.

3.4 Paraxial expansion

We now take advantage of the exponential factor present in the functions of the
parabolic cylinder (14) and hence in all terms of Eq. (15). This causes fast decay
of a wave amplitude outside ® and suggests that it is superfluous to know the solution
(12) in the whole space with equal accuracy. Therefore, we seek an approximate solu-
tion of this equation in the vicinity of the reference ray u(7) = v(¥) = 0 in the form of
power series involving powers of u and v (paraxial expansion). The estimate

(, /u? + vz)!exp (_M) < (i) v
2 ek

shows that increasing the powers of u or v by unity is equivalent to transition to the

next order in the expansion with respect to /2. This means that in the leading order

of Eq. (15), i.e. in Eq. (23), we need to retain terms including u?, v, u?, v, u? v?%, and

uv. The subsequent terms of the paraxial expansion are of order O(x~3/2), which is

already suppressed in Eq. (15). The procedure results in the following equations:

Hly =0, D Hly = D,Hl, =0, (31)

D2, H|_ = Hyy| D2, H|, = Hyv| D H| =0. (32)

®’ R’
The operators D, and D, used above denote partial derivatives with respect to u and
v, which are calculated with allowance for both explicit and implicit dependences of
Hlu,v,t, 2%(u,v,t), Sa(u,v,1t), ua(u,v,t), va(u,v,t)] and other functions of u, v and
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¢, respectively. In the next order O(k~'/2) equation (24) it is necessary to keep terms
including u°, v°, u! and v':

HU'R == HV'S?. =0, (33)

Du(Ho)lg = Do(Ho)lg = Du(Hv)lg = Du(Hy)lg = 0. (34)

Finally, in the second order of the expansion, O(k™!), it is sufficient to retain zero order
terms of the expansion with respect to powers of u and v only:

HUVIS% — 0, (35)

clam|, =o. (36)

In accordance with the procedure discussed all unknown functions, namely, S(7),
u(7), v(7), A™(F), also have to be expanded in power series and only a restricted
number of terms have to be retained in the expansions. Inspection of Egs. (31)-(32)
shows that the unknown eikonal S = S() has to be determined up to second order
terms of the paraxial expansion, viz.

1
S(7) = 5y + Pala® = ¢°) + 5 S0p) (o = *)(a" ~ ¢°) 4+ (37)

It is understood here that the reference ray R is described by Eq. (29) and Sup is
defined as
i

O0z2dzh’
In practice, however, it is more convenient to use the same expansion for the covariant
components of the vector VS:

Sap = (38)

Sa(7) = Pa + Saplp(z’ —¢°) + - (39)
7 9s a5s
Sa(f-"J=Pa+-(-9—u—;+ 5y a:’"l“"‘ (40)

The functions u and v are involved in the higher order equations (33)-(35) and it
is sufficient to retain two terms in the paraxial expansions. However, in view of the
vanishing of the functions u(7) and v(¥) on R only one term remains in the Taylor
series

u(r) = ualm(:r:“—q")+---, v(F) =va|R(x°‘—q°‘)+..., (41)
which is equivalent to
dz* oz
* = g"*(i 42
#°(w0,t) = °0) + gy | ut Gy | v+ (42)

Finally, as can be seen from Eq. (36), only the zero order term has to be retained for
the function A™ = A™™(2).
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The functions ¢*(t) and p,(t) have already been determined as a solution to the
Hamiltonian set of equations (8)-(9). Similarly, the first term of the expansion (37),
which determines the eikonal S along R, is given by Eq. (11). The functions Sap,
Uq, Vo, A™ are evaluated on the reference ray solely and they will be viewed further
as functions of the only argument t. After these functions are found they can be
substituted into Eqgs. (37), (41) and then into Eq. (12) thus solving the problem under
consideration. The functions obey the set of ordinary differential equations which is a
corollary to Egs. (31)-(36) and will be discussed in the next Section.

4 Beam tracing
4.1 Ray coordinates

Let the set of three functions

{v=wa (43)
t t

be a new coordinate system in space. In accordance with Kravtsov and Orlov [1] we
call the coordinate system (43) the ray coordinates. The physical meaning of the ray
coordinate system is that in its frame the solution (12) represents a straight plane
beam of constant width. The generic notations w! = u, w? = v, w® = ¢ will also be
used equivalently to those of Eq. (43).

The ray coordinates so far obey the conditions: (i) the Jacobian of the coordinate
transformation {2} — {u,v,t} does not vanish; (ii) the coordinate line u(7) = v(7) =
0 coincides with the reference ray R, which is a solution to the Hamiltonian set of
equations (8), (9). The sense of the first condition is obvious. In view of Egs. (8),
(28) the second one means that the vector V of the group velocity tangential to the
reference ray is one of the basis vectors of the ray coordinate system. The vectors Vu
and Vu are reciprocal vectors orthogonal to V. Therefore, Eqgs. (33) are valid for any
choice of u(7) and v(7) satisfying the condition (ii). Equations (31) are fulfilled due to
Egs. (8)-(9). In turn, the fulfilment of Egs. (31), (33) means that Eq. (15) is satisfied
up to first order inclusively with an accuracy of o(x~1/2). The remaining second order
equations (32), (34), (35) are discussed in the rest of this section.

4.2 First form of the beam tracing equations

We now show that the higher order equations (32), (34), (35) determine the higher order
terms uq, Vo, Sap in the expansions (37), (39)-(42). First of all, note that Egs. (33) are
valid for any t. It follows that D;(Hy)|s = D:(Hy)|p = 0. Together with Egs. (34)
this means that D.e(Hy)ly = Dze(Hy)|p = 0 for any @ = 1,2,3. Calculating these
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derivatives by means of Eqgs. (8), (22), (24), (28), we have
dua _ 0°H 3 0*H s
dt  \0z°0S; ' 08508,°") P
dve 0’H + O*H g
dt  \9z°08; ' 85508,°°7) """

(44)

In accordance with the remark made at the end of the previous section the full deriva-
tives appear on the left-hand sides of these equations, showing that these quantities
are calculated along ®. Moreover, Eqgs. (44) as well as all the equations in the following
are considered along the reference ray solely, and so the subscript ® is omitted here
and in what follows. Note also that here and throughout the paper the commonly used
notations for the derivatives of the Hamiltonian are retained. That is, dH/35, denotes
a partial derivative with respect to S, with z* fixed, while 9 H/9z* is computed with
Sa kept constant. We use the notation D, a[H(z%, Sp)] for the “full” partial derivative,
which is computed with allowance for the dependence Sz(z*) along a ray.
By making use of

our
ozP

ow” ow* ow” _,
= gop D= (D H) = 5 s D

and DyeH =0, Dy(DyeH) = 0, all three equations (32) may be replaced with

Dinusltf) = Due | (Dwuﬂ)] ()

2
D3 pH = uqugHyy + vovgHyy,

from which, by direct differentiation, we obtain

dSep  O°H __ &H ,  O°H .  OH
dt ' 9z°9zf ' 0z°8S, """ 8P5S8, "

et ﬂaUgHUU + 'Uo,'U,gHVV.

L
88,085 "% (45)

The set of ordinary differential equations (44), (45) for the quantities u,, V4, Sop can be
readily integrated along the reference ray, thus solving the problem of determining the
functions S = S(7), v = v(F), u = u(7) within the accuracy required. Initial conditions
for the set of equations (44), (45) are discussed later in this section. In particular, it
will be shown that the fulfilment of Eq. (35) still unused is ensured by a special choice
of initial conditions for u, and v,.

Apart from the independent task of solving Eq. (36), which is discussed in Section
5, the original problem for wave equation (1) is already solved. The procedure of
solution is as follows. The set of ordinary differential equations (8), (9), (44), (45) is
integrated, yielding the functions g%, S4, SoB, Ua, Vo Of the single argument ¢. These
functions are substituted in Egs. (37), (39), (41) and then in Eq. (12).

It is worth noting that only the right-hand side of Eq. (45) contains terms which are
new in comparison with the ray approach. It is clear that these terms are significant in
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the neighbourhood of a point where Vu and/or Vv, or u, and/or v,, become large. In
accordance with Eq. (27) this means that the wave amplitude rapidly decreases outside
the reference ray. Such a situation occurs, for instance, near caustics or focal points,
where diffraction is expected to be significant. Consequently, the two terms on the
right-hand side of Eq. (45) are responsible for describing the wave properties in our
approach. Their smallness may be a quantitative measure of the applicability of the
eikonal approach.

Physically, it is clear that the behaviour of the wave beam width, or, in other
words, the beam convergence or divergence, is coupled with the curvature of the wave
front. In agreement with this, the second derivatives S,s representing the curvature
and the beam width terms appear in the same Eq. (45).

4.3 Second form of the beam tracing equations

A different mode of attacking this problem gives an additional insight into and an
alternative representation of the beam-tracing equations. Let us regard the unknown
ray coordinates (43) in the form z* = z%(u,v,t) and use the expansions (40), (42)
instead of (39), (41). To derive equations for evolution of the quantities dz*/dw?
along R, let us use the identities

dz® ow”

B 6af ~ O (46)
On differentiation of Eq. (46) with allowance for Eq. (44) (for details see Appendix)
we have

d 0z 0*H 8zP 0°H 8Sp
3 0u _ 05,028 Ou | 65,95, Ou’
d 0z* _ 0*H 0z° 2 0*H 0Sg
dt Ov  8S,0zF dv = 85,085 Ov
Here we can repeat word for word the comment on Egs. (44) and consider all the

terms in Egs. (47) as functions of the single variable t. The counterpart equations for
05, /8w” follow directly from Eq. (32) and (47):

(47)

i8S, O'H 08 O°H 85
& 9u | 92902 Gu | 9295, Ou
d8S. OH 8z° O*H 85
@t Bv | 029028 Bv | 92°8S; v

— UGHUU)

(48)

= v Hyv.

The set of equations (47), (48) can be used instead of (44), (45). In this case, the
expansions (40), (42) have to be used instead of (37), (39), (41). The set of the
algebraic equations (46) may then be used to express the quantities u,, v, on the
right-hand side of Egs. (48) in terms of dz*/0u, z*/dv and V<.
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Equations (47), (48) are linear unless the right-hand-side terms in Egs. (48) re-
sponsible for diffraction become insignificant. Equations (47) are nothing but the
derivatives of Eq. (8) with respect to u and v, and the left-hand sides of Eqs. (48)
coincide with the results of differentiating Eq. (9). The meaning of this coincidence
is that, when diffraction is negligible, the beam tracing equations describe a pencil of
ray trajectories adjacent to the reference ray. However, when the ray pencil becomes
narrow enough and the transverse energy flow becomes significant, then the right-hand
sides of Egs. (45) and (48) come into play and the pWKB solution departs from the
ray solution.

4.4 Initial conditions for the beam tracing equations

We still need to prove that Eq. (35) is consistent with Eqs. (44), (45) and (47), (48).
We shall now show that this equation can be viewed as one of the initial conditions for
the beam tracing equations. To this end, we introduce the symmetric matrix

0H 0H 0H
af _ covp ﬁ'er — | - =D, af
B 7D, (85’3) +€ 7(35'0) 35, ~+(e%7), (49)
where the matrix e*# is determined by Eq. (7) and in general as
0*H
af _
05,055 (50)

We also introduce the notations
u* =Py  and v =P, (51)

As shown in Appendix the ray direction V¢ coincides with one of the principal
directions determined by B*?. Hence it is always possible to take the vectors u, and
v, at the initial point of the reference ray ¢ = 0 as the two other eigenvectors of the
matrix B, i.e.

Baﬁuﬁ't:o = A(u)ua|t=0 and BaﬂvﬁL:O = A(")Ualtzo . (52)
In view of Eqgs. (51), (52) and symmetry of the matrix B** we have
()\(u) — )«(u)) uae""ﬁvﬁ‘tzo = (,\(u)uﬁvﬁ — )\(v)uav") L=o = UgUq (B“ﬁ — Bﬁ"‘) L=0 = [,
(53)

If Aw) # A, then it follows that (uo,_e"ﬁvg)L:O = 0, i.e. Eq. (35) is fulfilled at the
original point of the ray R, viz. at t = 0. In the case of the multiple eigenvalue
Aw) = A it is also possible to choose two different vectors Vu and Vv so that
Eq. (35) is valid at the point ¢t = 0. With a straightforward, though somewhat lengthy,
calculation (see Appendix) we arrive at the relation

%uasaﬁvﬁ = —u,vs B, (54)
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We can then write

d o
(Euae ﬁ’t)ﬁ)

One can consecutively show that all the higher order derivatives d"(uqe*Pvg)/dt™ vanish
at t = 0, which finally proves that with the initial conditions (52) Eq. (35) is fulfilled
identically along R.

We can now formulate the initial conditions for the set of beam tracing equations.
Initial conditions for the eikonal S and its derivatives Say Sap are determined if the
shape of the phase front is given at the beginning of ®. Like the initial conditions for
the quantities 0S./0u = S,302”|du and 8S,/0v = S,p02P /v, they depend on the
choice of u, and v,. However, a great deal of uncertainty is still present in the initial
conditions for. u, and v,. The only constraint imposed on these quantities so far is
Eq. (52), which prescribes the directions of the vectors Vu and Vv. The lengths of these
vectors are still arbitrary. We shall return to the choice of |Vu| and |Vv| in Section 6
and show that this freedom can be used to improve the asymptotic convergence to the
exact solution.

= 0. (55)

=0 -

= (s

t=0

o = (FMtavse™)|

4.5 Discussion of the beam tracing equations

The first remark to be made here is that each of the systems (44), (45) or (46)-(48),
although giving a solution to the problem considered involves twice as many equations
as are really necessary. Actually, with allowance for the symmetry of the second deriva-
tive Sap Egs. (44), (45) give a set of 12 equations. Only half of them are independent.
The point is that in accordance with Eq. (30) the vectors Vu and Vv are normal to the
reference ray direction V at any point of the ray. This together with Eq. (35) imposes
three conditions on the components of the vectors Vu and Vv. A similar statement is
valid for the quantities S,3. Namely, the three combinations S,sV*? = S, are already
determined by Eq. (9), which shows that only 3 of 6 equations (45) or (48) are inde-
pendent. Therefore, six algebraic conditions (19) and S,zV? = S, can be used either
to check the accuracy of a numerical solution or to reduce the number of differential
equations to be solved.

The next remark is that in conventional ray tracing, as also in classical mechanics,
the two Hamiltonian equations (8) and (9) are fully symmetric. This is not the case
in our consideration. To highlight the difference, let us recall the procedure deriving
Eqgs. (8)-(9). Equation (8) merely introduces a new quantity * = V* = 9H/dS..
Then Eq. (9) follows from this designation and vanishing of the first spatial derivatives
of the Hamiltonian H. In the ray approach, we have H(z%,S,) = 0 everywhere in
space and, therefore, the higher order spatial derivatives of H vanish and, accordingly,
all the equations obtained by differentiation of Egs. (8) and (9) are also valid. In the
pWKB approach, the Hamiltonian H together with its first derivatives vanishes along
® only (Eq. (31)), while second derivatives do not vanish at all (Eq. (32)). In both
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approaches Eq. (8) is viewed as a new designation and has to be fulfilled with all its
spatial derivatives. In particular, the sets of equations (44) and (47) could be formally
derived by such differentiation. Vanishing of the first derivatives of H yields in Eq. (9)
in the same manner for both approaches. However, higher derivatives of H do not
vanish in the pWKB approximation and it can be conluded that the differentiations
which could be done on Eq. (8) are not allowed for Eq. (9), because the derivatives of
the two sides of Eq. (9) are no longer equal.

As shown in [5], the reference ray describes the trajectory of the centre of gravity
of the solution (12). This trajectory coincides with the geometric-optics trajectory
and does not depend on the transverse structure of the solution (12). In turn, this
structure is described by the functions u(7) and v(7). The larger |Vu| and |Vv| are the
narrower is the wave beam. Therefore, the quantity (|Vu|?* 4+ |Vv|?)~1/? characterizes
the width of the wave package and can be regarded as the second moment of the
amplitude distribution across the beam axis. This quantity is determined by the beam
tracing equations and it still describes the gross structure of the solution, i.e. the
common backbone for a whole variety of particular solutions of type (12) differing in
fine structure as described by the different transverse mode numbers [ and m. We now
proceed to the equation defining this fine structure of the amplitude distribution over
the wave packet.

5 Transport of amplitude

Let us consider Eq. (20) describing the amplitude evolution along the reference ray. As
follows from the discussion in Section 3.3, all functions included in this equation can
be viewed as functions of a single variable ¢. First of all, we transform the quantities
appearing in the second term on the right-hand side of Eq. (16):

a ]' or o 1 o ]- - ~ox
9] = 5(9°7eh + 97e5) + (9™ — ¢77e3) = (e + &), (56)

If the dielectric tensor € is Hermitian, then the tensors £*# and &*# are real. The
statement is obvious for a coordinate system in which ¢** coincides with the Kronecker
symbol. This is the case for a Cartesian coordinate system with one of the axes oriented
along the magnetic field. It follows that the the tensors ¢*# and % are real in any

coordinate system.
In view of Egs. (8), (16), (28) and (56) Eq. (20) may be written as

dln(Am)? 1 0 ay , 53 0
dt +E8m°('g )+\_/_56:c°

(\/Eéaﬂ) +4(20+ 1)Hyy +1(2m + 1)Hyy = 0.
(57)

The skew-symmetry of the tensor £*° has been taken into account here. By virtue of
the Liouville theorem [1] the second term in Eq. (57) can be represented as d(In J)/dt,
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where J is the Jacobian of the transformation from the original Cartesian coordinates
to the ray coordinates {u,v,t}:

Dzt 2 2”)

I=5 D(u,v,t) (58)

The amplitude A™ can now be obtained by integration along the reference ray

Am(1) = ¢ %exp{—i [Bo(t) + 21+ 1)gu(t) + @m + a0}, (59)

where C'™ are arbitrary constants, Jy = J|,=o and

i " 5
/ fazﬂ VeE) dt, ¢, = % / Hypdt, ¢, = :‘12. f Hyvdt.  (60)
0 0 2

The third term in Eq. (57) and, correspondingly, the term ¢, in the exponent of
Eq. (59) describes the medium gyrotropy. It is present in the ray approach also. The
last two terms on the left-hand side of Eq. (57) are new in comparison with the ray
tracing description. The similar terms on the right-hand sides of Eqs. (45) and (48)
have already been discussed in the previous section. However, while the terms in the
beam tracing equations are responsible for the amplitude behaviour of the wave beam,
the terms in Eq. (57) contribute to the phase of the wave. As distinct from the beam
tracing equations, where the terms are real and their magnitude can be compared with
other terms in the equations, here the terms are purely imaginary and their significance
cannot be estimated on the basis of Eq. (57). So we shall resume discussion of them
in the next section.

6 Solution of the wave equation
6.1 Partial solution

Making use of Eq. (12) and Eq. (59) we can write a particular solution of Eq. (1):

Bim = @w(ﬁuwm(ﬁv) exp {ikS — igy — i(21+ 1)gu — i@m + 1)d} . (61)

As discussed in Section 4, the unknown functions u(7), v(7) and S(7) contained in
Eq. (61) are to be found by integration of either set of ordinary differential equations
(8), (9), (11) and (44), (45) or (47), (48) with subsequent use of the expansions (37),
(41) or (40), (42), respectively. Equation (61) can be also viewed as a parametric
representation of the solution. Then u, v and ¢ have the sense of parameters and the
functions z® = z°%(u,v,t) and S = S(u,v,t) are determined by Eqgs. (37) and (42).
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Consider now the phase of the solution (61). Along the reference ray it can be
written as

¢
Arg (@;m)‘ﬁ = ] [K.S&Sg — (l - %) UaUpg — (m + %) vavﬁ] hePdt — ¢q- (62)
0

As mentioned above, the term ¢, describes the medium gyrotropy. It does not contain
the large factor x and might seem insignificant. However, this is not correct. Actually,
this term appears in a description of electrostatic oscillations of plasma. But in this
case N? in Eq. (1) vanishes and as a consequence Eq. (11) reads dS/dt = h*S,S5 = 0.
Physically, this means that the geometric-optics phase (eikonal) of the electrostatic
wave does not vary along a ray. The latter is not valid any longer if the higher order
terms of the wave phase are taken into account. Moreover, on the zero background any
contribution to the phase variation may be significant.

It is seen from Eq. (61) that [ and m are the numbers of zeros of the functions of
the parabolic cylinder ¢; and ¢,,. So the numbers describe a transverse field variation
supplementary to that given by the second term in the expansion (37). In other words,
[ and m represent the fraction of waves having wave vectors different from the carrier
wave vector of the wave envelope £ = (w/c)VS|g = {£pa(t)}. The two last terms in
Eq. (61) describe the corresponding corrections to the phase behaviour.

6.2 General solution

We can now construct a general solution to the wave equation (1):

[_Jo Jo - Loded g o3
() = T )exp {mS (u,v,t) — igy(t) — sk(u* +v )}

% Z om X \/_\/l! um)! 2157\7{_?)) exp {—i(2] + 1)gu(t) — :(2m + 1)¢u ()} -

Actually, let us suppose that an arbitrary field distribution is prescribed on some
surface ¥ in space. Without any loss of generality, it can be assumed that this surface
is described by the parametric equations z* = z%(u,v,t)|;=0. Then

T-.')l ¢irSe(u ”)ZC'mW:(\/EU)@m(\/Ev)- (64)

(63)

From Eq. (64) we immediately find

Su(u,0) % S(u,0,1)|_, = ~Arg [8(7) : (65)
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and the coefficients of the expansion (37) are determined as

_ 652 Bwﬁ
0’ e,y = b 9z° ) |,

_ [ 0°Sg Ow’ow* 8Sy St
ﬂfﬁl\t:[)_-

64

(66)

5w ws 52° 928 | Hwr D20

o
All the quantities on both sides of these formulae are evaluated at the point O = Z N R,
which is the initial point of the reference ray z* = ¢|;=o and the origin of the ray frame
of references u = v = t = 0. Of couse, it is implied that this point is already chosen. In
principle, the position of this point is arbitrary on X, but convergence of the asymptotic
series depends on this choice. It was discussed in [5] and it is physically evident that
this point should coincide with the centre of gravity of the field distribution over ¥.

An intermediate step is also to prescribe the directions of the vectors Vu and Vv
according to the procedure described in Section 4.4. There still remains one uncertainty, ‘
namely the choice of |Vu| and |Vv|. The situation is similar to this with the original
point O. To illustrate what is meant, let us find the coefficients C'™. From Eq. (64)
we know the field amplitude distribution over ¥, whence

¢ = [o(vrwdu [10)]on(vrv) do. (67)

-—00

As far as the functions of the parabolic cylinder form a complete set of basis functions
it is possible to match any field distribution on the boundary surface £ and we can
conclude that Eq. (63) gives a general solution of the wave equation (1). This conclusion
is not affected if one of the variables w!' = u and w? = v, or both, is changed by
W' = aw' + B with arbitrary o and f. However, the rate of decrease of C'™ with
growth of the numbers [, m essentially depends upon the choice of o and 3. It will be
shown below that the numbers ! and m have to be small enough compared with «, i.e.
l[,m < &, which is relevant when the coefficients C'™ decrease fast enough. Hence the
arbitrariness in the choice of the coordinate system can be used to reduce the number
of terms in Eq. (63) and thus reduce the discrepancy between the exact and asymptotic
solutions.
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Appendix A. Geometric properties of ray trajectories

A.1 The Fermat principle for Eq. (1)

It is well known [12] that an alternative approach to geometric optics is possible on
the basis of the Fermat principle. This gives variational formulation equivalent to the
eikonal equation. On the basis of this formalism, some properties of ray trajectories
which are used in this report can be derived in the most general way. For convenient
reference, we present here a derivation according to [8]. It is shown that the ray
trajectories are geodesics in some Riemannian space. To this end, we start with the
first order partial differential eikonal equation

6 H(z®,59) = H(z*, 50) = 0 (A1)
Here and below the formula number given in square brackets on the left-hand side
refers to the correspondent formula in the main part of the paper. Following Cauchy’s
method of characteristics, we consider the parametric representation of the coordinates
z® = 2%(t) and wave vector components S, = S,(t). Suppose that these six functions
are given in 6D phase space {z% Sg} at some 5D hypersurface ¥ such that ¢t = g at
Y. The initial values must satisfy the dispersion relation H|y = 0. The requirement
dH 0H ., OH

E = Bmﬂw + 8_5'0,50' =0 (Az)

then ensures that the eikonal equation H = 0 is fulfilled along any trajectory in the
6D phase space passing through some point of ¥. We can require that

0H

[8] =550 (A3)
then Eq. (A.2) is clearly valid if

. 0H
) 5=-28, (A4)

The eikonal equation is thus satisfied along any trajectory of the Hamiltonian set of
equations Egs. (A.3)-(A.4).

Let us now introduce the notations

H
[28] ye & gs (A.5)
and

F(z®,VP) ¥ 5. V7 - H(z®, 5p). (A.6)

On differentiation of Eq. (A.6) with allowance for Eq. (A.3) and the dependences
explicitly shown in Eq. (A.6) we obtain

oF _ Vﬁasg _0H 0H9Ss _ _0H
dze dze  dz=  0Sp 0z dze’

(A7)
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OF 0 05s _ OH 85

gve =~ %=tV gya T a5 ve O (48)
Equation (A.4) may now be written as
d O0F OF
-CEW - % = 0. (Ag)

These are clearly Euler’s equations for the Fermat functional:
I=]th=]5'ada:"—Hdt (A.10)

The general variational problem may now be enunciated in the form of the Principle
of Least Action:

A ray trajectory is an eztremal of the action integral
A= [S,da° (A.11)
satisfying the subsidiary condition H = 0.

The action A can also be written in any of the following forms:

A= fs 55t = fSV"dt /S il /d.S' (A.12)
The latter representation results in the Fermat principle:

The optical length between two points is minimal along the ray trajectory.

It can be shown, conversely, that the eikonal equation is a corollary to the Fermat
principle, thus proving the equivalency of the two approaches. However, this is not
done, because no use is made of it here.

A.2 Rays as geodesics in a Riemannian space

Another formulation of the Fermat principle states that a ray trajectory is a geodesic in
a (in general, non-Euclidean) space with the arc element dS. We now consider metric
properties of this Riemannian space. Starting at this point, we use a specific expression
(6) for the Hamiltonian corresponding to the wave equation in the form of Eq. (1):

6] H = 3c*5,5— N* =0, (A.13)

First it is assumed that the quantity N%(7) is not equal to zero in some space region
(this is not the case for Eq. (3) in the main part of the paper). Then we can transit to
a new Hamiltonian H by dividing Eq. (A.) by 2N*:

def H 1 1

def e S ol e =l
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Introducing a new matrix

af
aﬁ _ €
h T 2N?
and its inverse hqg such that kg, hP = 55, we can write
= 5
g df a;ﬁ — KBS, Sa = hosSP,
1 1 1 1 1 1
=__C¢.3 e Py Otﬁ__=_ a__=.
H 2h SaSp 5 2hag5' 5 5 25'0,.5' 5 0

Accordingly, the Lagrangian function F takes the form

F 5,55~ H = hapS°S" + :

The significant property of the new Hamiltonian H is

S o O0H _ - e
E—SQES,:—SQS —hagSS =

(A.15)

(A.16)

(A.17)

(A.18)

(A.19)

which shows that the parameter of trajectory ¢ coincides with the eikonal function S
and that the two vectors of the group velocity V and phase velocity V.S coincide, being
unity vectors with the contravariant and covariant components V* = $* and V,, = S,

respectively.

We now derive an equation for a ray trajectory described by the Hamiltonian set
of equations (A.3)-(A.4) with the Hamiltonian M and show that it is a geodesic in a
Riemannian space with the metric h,g. To this end, we can start with the Fermat
principle and consequently with Eq. (A.9) for the Lagrangian (A.18). However, it is
more instructive to depart directly from the second of the Hamiltonian equations (A.4).

Using also Egs. (A.16) and (A.17), we have

; ho hve
Sa+ gﬂ = hapSP +5ﬁ5*f‘93 g+ h,auS h.mS'faa

Using the following notations for Christoffel symbols:

) _ a6 as (Ohsp | Ohsy  Ohp
{ﬂ’r} =h"Br 0] = h (B:c‘T i 0zf  9z% )’
and by virtue of the obvious relations

hay D0 _ el g O —hﬁ"{ ; } - h”“’{ : }
av

Y Qv dzv Oz« av

= 0.

we can rewrite Eq. (A.20) as

oz 0zf Oz
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(A.22)

(A.23)




Finally, by multiplying Eq. (A.23) by h® and changing indices we get the desired
equation for the ray

$e 4 SﬁS“f{ "} =, A.24
Br (A.24)

which coincides with the equation for a geodesic in a Riemannian space metrized by
dS? = hopdz®dz® = hopS>SPdt?. (A.25)

The concept of covariant differentiation [14] of the tensor calculus is now utilized.
The covariant derivatives of a vector B are determined as

det 0B4 _ { v & def OB” ,7{
B B,{’ ﬁ}, By 4B ﬁ'r} (A.26)

for covariant B, and contravariant B® components, respectively. Furthermore, the
intrinsic (or absolute) derivatives are

0B, def
o5t

6B° def

ﬁ
5" Bajp, 5t

SPBf. (A.27)
Noting that the covariant derivatives of the fundamental tensors vanish (Ricci theorem),
we can write the result of differentiation of Eqs. (A.16) as

Sels = Spla = haySh or =550, (A.28)

Equation (A.24) then reads

5(;5; =0 or % = Q. \ (A.29)
These equations show that the vectors of the group and phase velocities V and V.S
form parallel vector fields along the ray trajectory.

The condition N? # 0 used above is not necessary. Actually, it was used solely in
transition from Eq. (A.13) to Eq. (A.14). The goal of this transformation was to obtain
a Hamiltonian which satisfies the condition (A.19). The latter has the geometrical
meaning that in the Riemannian space with the metric h,g the arc length is described
by the eikonal S. Therefore, to represent the ray equation in the form (A.24), the
eikonal function S must be the parameter of the ray, otherwise the right-hand side
of Eq. (A.24) would be non-zero and the ray trajectories would not be geodesics.
Consequently, dt = dS and dots in Egs. (A.23), (A.24) denote derivatives with respect
to S.

Let us assume that in some point of the ray trajectory we have N? = 0, as with
electrostatic waves. Then Eq. (A.19) takes the form dS/dt = 0, but all operations
performed in Egs. (A.20)-(A.24) remain valid with one substantial exception. Now we
have S = Const along the ray and it is impossible to use the eikonal S as a parameter
of the ray trajectory. Nevertheless, any permitted parametrization of the ray may be

[8,9]
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chosen and vanishing of the quantity N? does not change either the Fermat principle
or the conclusion that the ray trajectory is a geodesic in some Riemannian space.
Transition to electrostatic oscillations of a cold plasma H = h,35°S? = 0 as a case of
practical interest can be done simply by renumbering the ray coordinates [15].

Geometrically, N* = 0 means that the metric of this Riemannian space is not
positive-definite. Actually, in this case dS/dt = €,5V*V? = 0 and the ray is a null-
curve. It is known [16] that, if any portion of a geodesic is a null-curve, then the whole
geodesic is a null-geodesic. This remark implies that the mixed trajectories such that
on one part of them N? = 0 and on another N? # 0 do not exist or if a ray passes
through a point 7 such that N?(7) = 0, then N? = 0 in all points of the ray. In other
words, if a ray is tangential to the phase front at one point of a trajectory, then the
property holds at all points of the trajectory.

For the sake of simplicity it is assumed in this Appendix that the Hamiltonian has
the form of Eq. (A.18). Note, however, that in Section 4 an account of the general
case is given without any specification of the value N? or even of the form of the
Hamiltonian.

A.3 Ray coordinates

Let us consider a single ray as a general member of the variety of rays satisfying
Eq. (A.24). In Section 4 this ray was called the reference ray and denoted as ®. Let
us also assume that the ray R is described by parametric equations z* = ¢%(¢) and
introduce the ray-related coordinate system {u,v, S} such that u(¥) = v(¥) = 0 on the
ray . We also use the notations

[43] w' = u, w® = v, w=8 (A.30)

and mark with bars the components of all tensors in the ray coordinate system. It is
assumed in what follows that the Latin indices take values 1 and 2 so that w* can stand
for either u or v but not for S. The matrices of the direct and inverse transformations
between the coordinate systems {z*} and {w®} are denoted as

i o« Ow

$ﬁ - W, u)ﬁ = W. (A.3].)

The components of the fundamental tensors in the ray coordinate system are
heP = h"“wf,'wﬁ, hop = hyuzozp. (A.32)

The beam tracing equations now read

[31,33,35] H=hr¥-1=0, A3 = B2 = 1% =, (A.33)
[34] Di(h*%) = 0, (A.34)
[32] D%; i (h%®) = hY. (A.35)
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The reader is reminded here that in accordance with the sense of Eqgs. (31)-(35) all the
quantities in Eqgs. (A.33)-(A.35) are evaluated on R, i.e. for u = v = 0. In the rest
of this Appendix, if the opposite is not explicitly stated all terms in all equations are
evaluated on the reference ray and the index ® will be suppressed.

Equations (A.33)-(A.35) represent the metric properties of the considered Rieman-
nian space in the vicinity of the reference ray. However, the tensor A% is unknown and
the equations cannot serve for determining the ray coordinates. For this purpose the
set of equations introduced in the next paragraph has to be used.

A.4 Derivation of the beam tracing equations

Here we briefly reproduce derivations of the main part of this paper, taking advantage
of the tensor formalism. First of all, we have

Dze[Hy] = (S"up)ia = SPupja + Sfug = 561; +5p

Whence, by virtue of 5'3|a = _a|3 = 5"1 = _“13 = 0 we get

uﬁzﬂ.

bw B i Gi . g
[44] ESTG = —Sj,Wp = —S};wh. (A.36)
It is also assumed that here and below only Greek indices are taken into account in the
intrinsic derivatives with respect to S, so that in such a differentiation the quantity

:, is viewed as a covariant vector and z{ as a contravariant vector rather than a

mixed tensor of rank 2. To derive an equation for S, we use Eq. (35). By virtue of
Egs. (A.20), (A.24) and (A.29) we have

w

M e ] )
Dza[Dzp(H)] = Dya [53':3 +& SvﬁJ = Dye [S Sﬂl"]
" v)6S, Y Y (A.37)
= (5" Sp1) ot {aﬁ}?.sT = S1aSpp + 5 Sppja

= h"“SamSmp + S"Sgh,]c, = ua'u.gf?,u -+ va'vpilzz.
The known formula of the tensor calculus [14] reads
Spivle = Splaly = =5*Rypau

where

oo = b = ({3 - b+ ) - Gl 2))

is the covariant Riemann-Christoffel tensor. For the considered problem with the
Hamiltonian of the form (A.14) the tensor R,g,, represents the properties of the Rie-
mannian space but does not depend on the specific ray trajectory. We introduce the
tensors

Kop = S*S*Ryuap,  and  K§ ¥ h*Ky = hVSYSHR,,, (A.38)
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with properties which follow directly from the general properties of the Riemann-
Christoffel tensor:

Kog = Kgay  SPK.g=SPKG =S5pKE =0, [Ksa=Ku=KZ=0. (A39)

We can now continue the transformations in Eq. (A.37):
8 - _

[45] ZS;SQLQ + hu“Sam.gmy - Kﬁa = UQUghll + 'Uc,'vghzz. (A40)

On differentiation of the obvious relation
[46] 28wl = 6 (A.41)
we have by virtue of Eq. (A.36)

8z¢ Swi 6z - 8z
j o | — 228P il = =
w055,+$, 55 w“éS T SjaWp wJ(&S wa) 0.
Hence, using again Eq. (A.41), we can write Eq. (47) in any of the following forms:
bz 9 65

[47] 5S Slﬁfﬂ = l' - m. (A.42)

Equation (A.42) as well as Eq. (A.36) are valid for any ¢, including : = 3, but z§ = 5
obeys more simple equation (A.29) and it makes sense to use Eqgs. (A.36), (A.42) for
i =1,2 only. In order to obtain Eq. (48), we multiply Eq. (A.40) by z¥:

L (Supa?) - Sa ‘5"“" 5047 = 2 Ko + uab R+ v, 6702,
65 |.3 |.6 .B 1 1
and by virtue of Eq. (A.42) this yields
6 - _
48] 7 (Sappa?) = 2 Kpa + wabl R + v 6722, (A.43)

A.5 Initial conditions

In line with the derivation made in Section 4.4 we calculate the derivative

afS’ (w hoP ﬂ) = ;5, (w h*Pw ) = ——h“'ﬂwéSﬁ,wi -h“‘BwLSﬁ,wﬂ

= —wiwj (K Sg + h*vSf) = —wiw) (A7 A4S,y + hovho4S,, )
= —2wiwihhPES,), = —2wiwiheTS) = —2wlwihf1Se.
(A.44)

The matrix Sﬁ, on the right-hand side of Eq. (A.44) has the eigenvector S, with zero

eigenvalue
54.Ss = 0. (A.45)
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The two other eigenvectors of the matrix S fx satisfy the equation
[53] Siieg) = Al (sum on S only, : fixed). (A.46)

With the proper choice of the two different eigenvectors u, = e() and v, = e we can
always fulfil the orthogonality condition at the initial point S = 0:

B“|S:D = (w},h“ﬁwg) |S=0 =, (A.47)

However, we need to prove that 2'2(S) = 0 for arbitrary S. To this end, we expand
the quantity 2'?(S) in the Taylor series

" - dh1? 1 . d?Rp1?
12 — j12 ~g2? s
R*(S)=h"*(0)+ S as |, + 23 757 s=0+ (A.48)
By virtue of Egs. (A.32), (A.44) and (A.46) we get
dh’? 712
[55] —d-? S5=0 - (A(l)h )|S=D = 0 (A49)

and see that the second term on the right-hand side of Eq. (A.48) is zero. Repeating
the procedure, it is possible to show that all terms on the right-hand side of Eq. (A.48)
vanish. This proves that 2'*(S) = 0 as required by Eq. (A.33).

A.6 Metric properties of the Riemannian space

We can now state that the fundamental tensor A%f in the ray coordinates is of diagonal
form. It follows that the another fundamental tensor kqp possesses the same property.

Similarly to the derivation of Eq. (A.44), we can obtain
dh;; d N N _
T (hapz?af) = 22828505 = 25y (A.50)

and conclude that the tensor S;; and associated tensor STJ = h* 5, are also diagonal.
In view of Eq. (A.46) the matrix .5—’|‘j‘G has the form

Sp=1 0 Az 0]. (A.51)
0 0 0

Substituting Eq. (A.51) into Eqs. (A.36) and (A.42) we obtain

[44] %%ﬁ = —A(,-)wf, (no sum on z) (A.52)
and

s . .
[47] 6_‘§' . A(;):L"- (DO sum on 3—), (A'53)
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respectively. Let us assume that in all subsequent formulae no summation is done on
Latin indices. In view of Egs. (A.36) and (A.44) we have

d b =
-E'l's,— = —2/\(,‘)h“. (A.54)

Equations for the metric coefficients E.’.’, which are inverse to fz"", read
d hi;
ds
As follows from Eq. (A.32), the quantities ¥ give the lengths of the vectors u, and

Vq. Inspection of Eq. (12) shows that characteristic widths d(; of a wave beam in two
orthogonal directions can be introduced as

= 2X(iyhii- (A.55)

d(;) = : (FL‘-'-) =2 = (71,-,')1/2 : (A.56)

[V

These quantities satisfy the equation
d

ds

which immediately follows from Eq. (A.54) or Eq. (A.55).
Let us now introduce the unit base vectors of the ray coordinate system

d(,‘) = ,\(,‘)d(;), (A.57)

‘&a S d(l)ua, f)a = d(g)vo,. (A58)

In view of Egs. (A.36), (A.52) and (A.54) we obtain
§ie _ 60a
§S &8

In a parallel fashion we introduce the reciprocal vectors

=0. (A.59)

a
ia_ Il

1 P d(l),

~ o

T3
:32 =

e A.60
do (4.60)

which obey the set of equations

63y 6§

55 = 5 ={), (A.61)
Equations (A.59) and (A.61) are similar to Eq. (A.29) and mean that each of the
vectors Uy, Uq, Sa, £, £5 and S* forms a parallel vector field along R, so that

wLhPd =69 and  #7RYPED =6 (A.62)

It can also be stated that the particular choice of the new coordinate system {4, 9, S}
results in recovery of the Cartesian metric on the reference ray .

29




Multiplying Eq. (A.43) by 2§ and making use of Eq. (A.54), we obtain the equation

for )\(,) = S]‘
dAe)
ds
The set of beam tracing equations comprises Eqgs. (A.54), (A.60) and (A.63). Four
equations (A.54) and (A.63) can be also written in the form of two complex equations

+ 22 = K+ (B9’ (A.63)

=\ 2 _ .
s (f\(:) +ib) + (A + k)" = K] (A.64)
or as two second order equations 7
d? —; 1
452 —a346) — Kidg) = a% (A.65)
The quantities K} are given by
Ki = 58" R,ap 230, (A.66)

The quantities S,p are expressed via the solution of Egs. (A.59) and (A.63) as

Sup = Sa|ﬁ + S'Y{C;Yﬂ}’ Sam = A(l)ﬂaﬁg + A(g)fraﬂﬁ. (A.ﬁ?)
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