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ABSTRACT

The quasilinear modification of the ion distribution function during first harmonic
ion cyclotron (FHIC) heating is investigated both with a simple already well established
analytic one-dimensional approach, and with a new two dimensional steady state solver
of the quasilinear kinetic equation, SSFPQL. By accepting to disregard the effects of
ion trapping in banana orbits, but including finite Larmor radius effects, the latter code
has been made much faster than full surface-averaged codes; yet it can provide most of
the relevant information on the suprathermal ion tail produced by this heating method.
With SSFPQL we confirm that the one—dimensional model gives fair approximations for
global properties of the distribution function, such as the average energy content of the
tail and the fusion reactivity. On the other hand the tail is found to be very anisotropic,
the increase of the parallel effective temperature being a small fraction of the total
energy increase. Information on the anisotropy is essential to study the feedback of
the fast ion tail on wave propagation and absorption, which is quite sensitive to the
distribution of parallel velocities. The insight gained in the derivation and discussion
of this model can be used to build a selfconsistent description of this heating scenario,
whose implementation requires only a reasonable numerical effort.

Estimates of the effects of the suprathermal ion tail produced by first harmonic ion
cyclotron heating on the heating rate and on the fusion reactivity are presented. In
ITER, the suprathermal tritium population might lower the ignition temperature by a
few keV, thereby reducing the h.f. power requirements. It is also pointed out that the
conditions for FHIC heating in ASDEX Upgrade at intermediate density and power are
sufficiently similar to those of ITER to make such an experiment particularly interesting.



1 — Introduction.

Ion cyclotron heating at the first harmonic w = 2Q¢; (FHIC heating) is presently
regarded as the most likely option for auxiliary h.f. heating in ITER and in the tokamak
reactor. Being a finite Larmor radius effect, the efficiency of FHIC heating increases with
increasing plasma pressure; for ITER parameters it should be competitive with that of
minority heating, while dispensing with the introduction of minority ions which would
dilute the reacting species, and whose concentration could be difficult to control. In
ITER, moreover, the production of a population of suprathermal ions by FHIC heating
will enhance the reactivity, and can be exploited to relax the requirements on heating
and confinement to reach ignition. On the other hand, FHIC heating is be relatively
inefficient in low temperaturature ohmic plasmas: a sufficient power must be available to
overcome the initial unfavorable phase. Once a suprathermal ion tail begins to develop,
however, the efficiency should rapidly improve.

To model FHIC heating selfconsistently, understanding of the propagation and ab-
sorption of the Fast Wave in the plasma must be combined with the evaluation of the
ion distribution function under the effects of heating. The first topic has been reviewed
in [1]. The present report is devoted to the solution of the quasilinear kinetic equation
which governs the long-term evolution of the distribution function of the heated ions,
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where the first term describes the quasilinear diffusion due to resonant wave particle
interactions, the second term is the Fokker-Planck collision operator, and the last term
describes losses, e.g. due to radial transport. In this report we will briefly discuss reason-
able approximations for the first two operators; losses, however, will be not considered.

In principle, the evaluation of the quasilinear diffusion operator in the r.h. side of
Eq. (1) requires the knowledge of both amplitude and polarization of the h.f. electric
field in the absorption region, which in turn depend on the ion distribution function.
Selfconsistent modelling therefore appears to demand a close coupling between a wave
code and a Fokker-Planck code. The wave code must take into account the whole
spectrum radiated by the antenna and the complicated toroidal geometry, while the
Fokker—Planck code must solve the kinetic equation on a sufficient number of magnetic
surfaces. Consistency can be realized only by iterating between the two codes until
convergence is reached. This procedure is extremely heavy, and to our knowledge it has
never been fully implemented.




The situation can be substantially improved, however, by developing appropriate
approximations. In section 2 we will show that in the case of IC heating the information
required from the wave code for the construction of the quasilinear operator essentially
reduces to the knowledge of the power deposition profile. In [2], on the other hand,
taking advantage of the fact that the wavelength of the Fast Wave is always much larger
than the thermal ion Larmor radius, we have shown that the wave code in turn needs
only the first few “reduced” distributions of the parallel velocity, obtained by integrating
the ion distribution function over the perpendicular velocity after multiplication with a
low power of v, . A model distribution function which accurately reproduces the results
of numerical integration of Eq. (1) and greatly facilitates the evaluation of the reduced
distributions is one of the results of the present work. Combining these results, a much
looser and easily implemented coupling between the two codes becomes sufficient to
obtain accurate self-consistent results.

Since our considerations are for the most part analytic, we will not discuss here
surface averaging of the collisional operator in tokamak geometry [3]. On the other
hand, to justify our approximations, in the next section we will rederive in some length
the quasilinear operator. In particular, using properties of the dispersion relation of
the Compressional Wave in the ion cyclotron frequency range, we will justify explicitly
a few approximations which considerably simplify the form of the quasilinear diffusion
coefficient, and which are usually taken for granted in the literature. We will also show
that a full agreement of the energy balance obtained from a wave code and from the
Fokker-Planck code is unachievable in practice, particularly because different approxi-
mations with respect to finite Larmor radius effects are unavoidable (and justified) in
the two codes. Instead, the energy balance equation should be used to renormalize the
absolute value of the quasilinear diffusion coefficient in the Fokker-Planck code: These
considerations show that the “brute force” coupling of the two codes not only is very
difficult to implement, but the kind of consistency it offers is largely illusory. They
suggest instead a much looser coupling between the wave propagation and the kinetic
aspects of the problem, based on semi-analytic considerations such as those developed
in this report.

In section 3 we present analytic solutions of a reduced, one-dimensional kinetic
equation obtained neglecting the anisotropy of IC heating, along the lines of the well-
known Stix solution for the minority distribution functions [4]. Similar analytic solutions
have been widely used in the literature [5]-[7]. In the case of first harmonic heating the
analytic approach is justified by the fact that deviations from a thermal distribution are
not very large, because essentially all ions (or at least half of them in a D-T plasma)
are affected by the heating, so that the power available per ion is relatively small.
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Nevertheless with appropriate modifications most of our conclusions can be extended
also to the case of minority heating, where the power per ion can be substantially larger.

The elementary one—-dimensional theory makes accurate predictions for global prop-
erties of the distribution function, such as the effective temperature of the suprathermal
ion population, the quasilinear increase of IC absorption, and the reactivity enhance-
ment in thermonuclear plasmas. Nevertheless it is not fully adequate to investigate
the effects of distortion of the distribution function on wave propagation and absorp-
tion, which are specially sensitive to the distribution of parallel velocities. For this
purpose, therefore, some information on the anisotropy of the distribution function is
also required [2]. To obtain this information, we have written a new two—dimensional
steady-state quasilinear Fokker-Planck solver SSFPQL. This code, which will be de-
scribed in details elsewhere, has been developed building on the insight gained from the
analytic work of section 3. It does not take into account trapping of ions in banana
orbits, hence it cannot be used to follow ions to very large energies. On the other hand
it includes fully finite Larmor radius effects in the quasilinear operator, and, with a
modest numerical effort, can provide the information required to investigate wave prop-
agation and absorption, enhanced fusion reactivity, the effects of suprathermal ions on
MHD equilibrium and stability, and so on. Moreover, it is extremely fast. It could for
example be coupled with a ray-tracing wave code in order to determine the ion distribu-
tion function on a large number of magnetic surfaces, without substantially increasing
the computation time.

After a brief presentation of SSFPQL, results of its application to first harmonic
heating in ASDEX Upgrade and ITER are presented in section 4. They confirm that
the estimates of the total energy and of the effective temperature of the suprathermal .
tail obtained from the one-dimensional approximation are quite good, in spite of the
fact that the suprathermal ion distribution is very anisotropic. This is because, as an-
ticipated, the tail begins at relatively large energies, hence contains relatively few ions,
which however are only weakly collisional. The anisotropy is so strong that the distri-
bution of parallel velocities F;(v, = 0) is barely distinguishable from an unperturbed
Maxwellian. This suggests a simple yet accurate analytic representation of the total
distribution function which can be used to evaluate analytically the dielectric tensor
clements and the coefficients of the wave equation. In this way quasilinear effects on
wave propagation and absorption can be taken into account reliably with a minimum
numerical effort.

A few conclusions are presented in section 5. It is interesting in particular that
as far as the ion distribution function is concerned, a situation comparable to the one
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prevailing in ITER can be obtained in ASDEX Upgrade already at moderate total IC
power. We will also show that in spite of its moderate energy content the suprathermal
tail is sufficient to enhance appreciably power absorption from the waves, and also,
in the ITER case, the fusion reactivity. Although the latter effect will only modestly
improve the Q of the ignited plasma, it can be useful in that it can significantly reduce
the power requirements to reach ignition.

2 — The quasilinear kinetic equation for first harmonic heating.

2.1 — The linearized Fokker—Planck operator. For our purposes it is sufficient to
regard the heated ions as test particles colliding with a thermal background plasma. Due
to the weak non-linearity of the Fokker—Planck operator this is mostly an acceptable
approximation. In the case of FHIC heating, a further justification is that due to the low
power per particle one does not expect really large deviations from thermal equilibrium.

The linearised collision operator for the heated species can be written
ot )mu B ;u 2 ou" ¥(%igv) %0 T T,gf
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where the sum extends over electrons and background ions. The second term describes
pitch—-angle scattering. Velocities are normalised to an appropriate thermal velocity
veng = (2Tg/mg)/? (for the heated species, T; can be chosen to be the temperature T},
before heating), and 7ig = vshi/veng. Moreover, with ug = 7;gv,
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The linearized FP operator conserves particles, but energy is lost to the thermal bath
constituted by the background plasma. This corresponds well to the real situation, and
greatly simplifies coupling of a linearized FP solver to a tokamak transport code, if
required.




We recall that the coefficients of the linearized collisional operator can be further
simplified following the well-known procedure due to Stix [4]. In the electron contribu-
tion it is sufficient to retain the leading term of the small argument expansion of W(u.),

Uthi
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while ©(u.) can be neglected altogether. For the ion—ion collision terms Stix suggests
the approximations
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where k, = 4/3+/7. The exact and approximate coefficients are compared in fig. 1: the
error does not exceed a few percent.

2.2 — The quasilinear diffusion operator for first harmonic heating. We sketch here
the derivation of the quasilinear diffusion operator, taking into account for simplicity
only the contribution from the main resonance of E; at w = 2{}¢;. In this limit the
quasilinear (QL) operator has the form
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Several approaches are available to obtain Da(ki,vy) in tokamak geometry. The
simplest is to start from the diffusion coefficient derived by Kennel and Engelmann [8]
for the homogeneous infinite plasma,
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and to average this expression over a magnetic surface. If for this purpose we assume
Q ~ Q(0) (1 — (r/R) cos¥), we find
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where 1, denotes the position where the resonance 2Q), = w cuts the magnetic surface
(a factor 2 takes into account that each magnétic surface crosses the resonance twice).
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This procedure is' not fully satisfactory, however, since it assumes implicitly that
the h.f. field is a superposition of plane waves. This assumption is actually nearly
correct, but is difficult to justify. It is therefore preferable to regard each transit through
resonance as causing a small “random” change Av,, and to evaluate D, through its
definition as a diffusion coefficient. Accordingly, D, is related to the average heating
rate of the single particle:

Av? 2 dK dK,
Dy = L
2 < At > m dt )
This expression can be estimated directly in toroidal geometry. For this purpose, we

can assume the validity of an Eikonal representation of the h.f. electric field,
EFt)= Y E(r; ms,n,)Srimone)tmodinyo—ut) (11)
mMg,Ne

with slowly varying amplitudes and rapidly varying phase. For each partial wave the
local wavevector is defined by

kr(mg,ne,r,9) = 8S/0r

n,
kn(mg,n,,,9) = —T—cose - Esme

(12)
ki = kf + k??

ky(mg,ny,r,9) = in;g sin © + %’ cos©

and must satisfy the dispersion relation of the fast wave. Admittedly, the Eikonal
representation of the field fails in the vicinity of the mode conversion layer which ac-
companies the first harmonic cyclotron resonance. However, as discussed in [1], either
this layer is outside the cyclotron absorption region (mode conversion regime), or it is
washed away by Doppler-broadening (cyclotron damping regime). In both cases the
Eikonal representation is adequate to investigate wave-particle cyclotron interactions
(to the lowest significant order in the Larmor radius, moreover, the results obtained
using the form (11) for the electric field could be easily generalised to the case in which
this representation fails in the resonance region: it would be sufficient for this purpose
to replace k2 |E4|? by |V E,[?).

For a single transit through resonance we can evaluate Av, by integrating the equa-
tion of motions iteratively, with the electric field taken along the unperturbed trajectory.
This gives

to+Ty
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Here h(t') is the phase between the gyration velocity of the ion and the left-hand circular
component of the electric field,

’

t' .
B —igy = ft (w = Qe — Kyoy) dr + % sin (dau Y- f chf) (14)

to

where tan; = ky/kr, and heg is the value of h value at the time 2, when the particle
crosses the outer equatorial plane. Developing the exponential in a series of Bessel
functions, and averaging over all possible values of this phase, it is not difficult to
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where T, is the transit time between resonances, and
tl
ha(t)= f (uJ — kv — nﬂc) dr (16)
to
We can assume that only the harmonic n = 2 satisfies the resonance condition
% =W - nﬂc == kH‘U" = (17)

within the tokamak cross—section. Excluding for simplicity the case of trapped particles
with turning point close to the resonance, we then have
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From the average equations of motion we get
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where tan © = Byoi/Bior. For well passing particles on the other hand
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Inserting these results into Eq. (10) and multiplying by 2 to take into account that there
are two resonances on each magnetic surface, to lowest order in the inverse aspect ratio
we finally find
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This result is essentially equivalent to Eq. (9); it specifies however more explicitly how
the wave electric field at resonance enters the definition of D,. Before proceeding, it is
useful to make the following comments.

1) Averaging over he, is justified if the particle gyrophases at two successive tran-
sits through resonance are uncorrelated. Both collisions [9] and deterministic stochas-
ticity [10]-[11] due to the resonant wave—particle interactions efficiently contribute to
phase decorrelation. Hence a random-phase assumption for the field is not required for
the validity of the quasilinear approximation.

2) Contributions from partial waves with different toroidal wave numbers N, are
additive in an axisymmetric plasma. Contributions from partial waves with different
poloidal wave numbers my, on the other hand, are subject to interference. Nevertheless
a detailed knowledge of the phase relations is usually not required, since one of the
following approximations can be made:

a) If mgv) sin®/r << n,v) cosO/R or myv) sinO/r << (w — ) over most of the
unperturbed trajectory, (‘long’ poloidal wavelengths) hg., does not depend appreciably
on my; then the sum over my gives just the total field |EL|? of the partial wave n, at
resonance.

b) In the opposite limit (‘short’ poloidal wavelengths) averaging over the phases hp.,
reduces the last sum to a sum of separate contributions from each m.

Generally the first situation prevails in first harmonic heating.

3) The divergence of the expression (21) for D, when the magnetic surface is tangent
to the resonance is due to the inadequacy of our simplified approach to deal with the
confluence of two separate resonances. The correct surface averaging [12]-[13] must take
into account trapped ions having turning points near resonance, and gives a large but
finite result as rsin®¥, — 0. For trapped particles (excluding those nwhich are ‘barely’
trapped) one has

2
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Hence the heating rate for such particles is a factor 2)\,1342 larger than for passing par-
ticles. On the other hand, trapped particles ‘see’ the resonance only as long as their
turning point ¥;p ~ )_\;qll ? is larger than ¥y, (i.e. occurs on the high—field side of the
resonance). For our present purposes, however, we will neglect the resulting pitch angle
dependence of Ds.




In the absence of losses, the two effects just mentioned result in the accumulation
of high energy ions on large banana orbits with reflection point just to the outside
of resonance. For ions reaching such orbits the surface averaging procedure used to
derive Eqgs. (21) is hardly justified, however, since they make large excursions from the
average magnetic surface [14]. On the other hand, the number of such ions is likely to be
relatively small, so that their production and radial diffusion can best be investigated
with Montecarlo methods based on a test-particle approximation [15]. For the purposes
of coupling the solution of the kinetic equation with wave codes it is plausible to assume
that their presence can be neglected.

4) D, is proportional to the amplitude of the E, component of the electric field at
¥ = Uyes, Tather than to the total field E = |E| (at very large energies, FLR corrections
proportional to |E_|? J2(kyv, /) also play a role [5]; the two components E., in any
case, enter in D, with very different weights). As well known, in the cyclotron frequency
domain the ratio E; /E is sé’;:sitively dependent on the plasma composition and on the
frequency ratio w/(2, although less so in the case of first harmonic heating than in
minority heating scenarii.

5) First harmonic heating is a finite Larmor radius effect, so that for small to mod-
erate energies D, is proportional to the perpendicular energy of the heated ions. As
a consequence, particles which begin acquiring energy will to be heated further more
efficiently, and the process has a tendency to run away. Saturation through FLR ef-
fects begins only at perpendicular energies such that k3 v3 /Q2 R 10. Since typically
k%v2,,/Q, =~ 0.1 to 0.2, this corresponds to energies about 100 times thermal. Thus
under normal conditions the heating rate is proportional to f;: as mentioned in the
introduction, the single transit absorption is often relatively low in an ohmic plasma,
but boosts itself up if sufficient power is available to overcome the initial phase.

2.3 — Quasilinear power balance and the evaluation of the quasilinear diffusion coef-
ficient. In dimensionless notations we can rewrite Eq. (21) as

1 (0F; 19 [ » 0F,
B! i s M 9
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where p = ki vini/ 2,. These equations allow in principle the construction of the quasi-
linear diffusion coefficient Dy on each magnetic surface from the solution of the wave
equations; they should therefore be regarded as the interface between wave codes and
Fokker—Planck codes. As mentioned in the introduction, however, this evaluation is
rather cumbersome, and seldom implemented. In addition to the heavy numerical bur-
den that such a computation would represent, a serious consistency problem is likely to
arises between the power balance of the wave code and that of the Fokker—Planck code.

The quasilinear heating rate can be evaluated using Eq. (23):

- my [ 5 3P¥) S
W——-—/‘u ( dv
2 ) *t\at /g
d

0 +oo 0 g2 Fs
= —2MVi; MV, du w*Dy(w) =—dw

(25)

(note that W does not depend on the collision frequency: the factor v;; cancels with the
one in the denominator of the dimensionless definition of the diffusion coefficient ﬁz).
It can be shown [16] that

W = (Pabs)s (26)

where P, is the power absorbed from the waves, and the average is over the mag-
netic surface; this equality is required for power conservation within the quasilinear
approximation.

In practice, however, it is very difficult to obtain agreement between the power Py,
evaluated with the wave code, and the heating rate W evaluated by the Fokker—Planck
solver, because of internal cancellations in the inner sum in Eq. (23), and of the already
mentioned sensitivity of Dj to the details of the field polarization near resonance. More
importantly, if, as it is practically always the case, the wave code solves the wave
equations in the FLR approximation, agreement with a FP code based on Eq. (23),
which is valid to all orders in the Larmor radius, cannot be expected even in principle.
Thus, while strictly speaking Eq. (26) should be regarded as an independent consistency
check, in practice it is always used to renormalize the diffusion coefficient Dy so that
power conservation is, satisfied.

In most cases, the quasilinear diffusion coefficient can be further simplified by rewrit-
ing it as if only a single plane wave were present:

A kiv i v
Do(w) = DauJf(Ew) — £=~g™ w=2t (21)
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The constant Dgr can be conveniently chosen by specifying the initial heating rate,
i.e. the heating rate W for the Maxwellian plasma at the temperature T; before heating
begins. From (24)

R [= =]
Wnm = 4vu Do niT; / w3 JE (Ew) e~ dw (28)
0

This way of normalizing Dy has also the advantage that W is a quantity directly
accessible experimentally, from the slope of the energy content at the beginning of the
heating pulse. If FLR effects can be neglected, one can further simplify

A 1
Dy(w) ~ —2-§2w2 (29)
and the equation for Dgy, reduces to

W

8nT; &2 &)

vii Dor =

The use of Eq. (27) is well justified even for quite broad launched spectra, since for
the fast wave both k, and the polarization depend only weakly on the parallel wavevec-
tor component ky [1]. This is illustrated for the ASDEX Upgrade case in figs. 2 and 3.
In fig. 5 we compare Dy evaluated for a single plane wave with D, evaluated for the
nominal spectra (shown in fig. 4) of the ASDEX Upgrade antenna in the symmetric and
antisymmetric configurations [17]. The effect of spectral broadening on D, is completely
negligible for kv, /2, S 5 to 10, and not very significant even above: for ions reach-
ing such high energies, as mentioned above, inaccuracies due to the surface averaging
procedure are probably larger than the difference between the three curves in fig. 5. At
larger B; the influence of the launched spectre on D, tend to be even smaller.

We conclude that Eq. (27), with k2 evaluated for kj = 0, is fully adequate for most
purposes. This simplifies drastically coupling a Fokker-Planck codes to a full wave
‘code: essentially no other information but the power deposition profile needs to flow
from latter to the former.
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3 - Approximai;e solution of the quasilinear equation in the moderate
power approximation.

It is clearly out of question to solve the quasilinear equation analytically in two di-
mensions. If the applied power is not too large (according to a criterion which will be
specified later), however, we can as a first approximation simplify the kinetic equation
by neglecting the anisotropy which develops in the ion distribution function because IC
heating fuels mainly the perpendicular degree of freedom. This approach was success-
fully applied by Stix to the case of minority heating [4]. Of course, the distribution of
fast ions will be rather anisotropic also in the case of first harmonic heating (possibly
more than in the minority case); the number of such ions, however, will be relatively
small, so that the anisotropy will not influence appreciably the overall power balance
and the propagation and absorption of the waves.

As a preliminary justification of the moderate power approximation, let us estimate
the average heating rate W = P/V,; assuming that the effective volume V, 7f is within
the inner quart of the plasma radius. With the parameters of table 1 (including the
appropriate elongation factor) we obtain

Wave ~1.3P for ASDEX Upgrade
. ' (30)
WITER ~ 0.013 P for ITER

(P in MW, W in W/cm® = MW/m3). Thus the local heating rate can reach a
few W/cm?® in ASDEX Upgrade (with an installed h.f. power of 4 MW), and per-
haps 0.5 W/cm? in ITER. As will be seen below, the dimensionless quasilinear diffusion
coefficient is at most of order unity at these power density levels in the relevant range of
energies. In this respect the situation is different than in the case of minority heating,
since the absorbed power is available to all ions or a large fraction thereof, rather than
to a small minority.

The dimensionless steady state kinetic equation for the isotropic part of the ion
distribution function (without losses) is of the form:
1 dF, B(v)

—_—C = oy~ 7 31
Fy dv UA(v) 81}

with i/p
Av) =Y~ U(gv) + Da(v)
’ (32)

B(v)=)_ ;;/TT—;‘I’(’Yiﬁ”)
]
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where
Da(v) = Dar fo (1— 1) 72 (601 — )?) dp (33)

is the isotropic part of the quasilinear diffusion operator. Before solving Eq. (31), let us
exhamine D,(v) in some more detail.

The result of averaging JZ(éw) over pitch angle is shown in fig. 6. Taking the
isotropic part reduces somewhat the value of D5 for small kv, /2, since

1 2
% /0 1 -u?) (Ev(l - uY 2) dp = -1?552'02 (34)

and smooths out the oscillations at very large Larmor radii. The last feature is easily
explained by the finite range of perpendicular velocities which contribute to the integral
at constant v. For analytic work the rather inconvenient exact expression (33) for Da(v)
might be conveniently approximated with a rational function of the form

Dz (“U) _ 2 £2u2

1579 T g (@i )

Imposing that the r.h. side should reproduce the asymptotic behaviour of the integral in
Eq. (33), averaged over the oscillations of the Bessel function, gives k = 3 and g = 47/15.
This choice however excessively cuts the first peak of Dy(£v). A better choice could be
k=4 and g =1/10, which is quite accurate up to the maximum, and interpolates
reasonably well up to £2v? ~ 10. The two approximations suggested here are shown as
function of the normalized velocity in fig. 7. '

In figs. 8 and 9 we have plotted the dimensionless diffusion coefficient D, for ASDEX
Upgrade and ITER at a power density of 1 W/cm™3, versus the normalized velocity and
versus energy, respectively. From the second representation we easily recognize that for
our purposes, in any case, we do not need an accurate analysis of what happens at very
large Larmor radii: Eq. (35) with g = 0 is already sufficient up to the largest energies
which need to be considered. Noting that the peak of JZ(z) occurs at z ~ 10, the
condition for the validity of the small Larmor radius approximation is that the energy
of most ions should not exceed

m;c? A;
— =038—— M 36
E<10 = ST eV (36)

(we recall that 10~3 n? is of order unity for the Fast Wave in the ion cyclotron frequency
range [1]). Note that this condition is independent from the temperature. Although of
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course a few ions can reach higher energies, we can safely assume that their number will
not be very large, particularly in ASDEX Upgrade, where they are not well confined.

From fig. 9 we also learn that D, is at most of order unity in this energy range,
as already anticipated. A sufficient condition for the validity of the moderate power
approximation is that Dy should exceed unity, if at all, only at energies much greater
than thermal. This condition can be written

Doré® <1 (37)

When it is satisfied the distribution function is already decreased by several orders of
magnitude before a true suprathermal tail develops. The tail is then relatively thin, so
that the isotropic approximation, which is certainly not valid, does not greatly influence
global properties which depend on moments of the distribution function. Condition (37)
is well satisfied in both ASDEX Upgrade and ITER. We conclude that the moderate
power approximation is practically always justified if FHIC heating is applied alone.
FHIC heating on the other hand could be rather sensitive to synergetic effects with
other heating methods, particularly neutral beam injection [18] and minority heat-
ing [19], which by themselves produce suprathermal ions; the investigation of these
effects however exceeds the scope of the present analytic approach.

Although in the case of FHIC heating Eq. (31) cannot be solved in closed form
even using Stix approximations for the coefficients of the collision operator, it is triv-
ially integrated numerically. A few results are shown in fig. 10 for W =1 W/cm™3 at
various temperatures for both ASDEX Upgrade and ITER, and in fig. 11 for different
heating rates in ASDEX Upgrade starting from an ohmic temperature of 2 keV. While
deviations from Maxwellian are clearly visible, a look to the vertical scale confirms that
the suprathermal tail is relatively thinly populated even at the highest temperatures
and heating rates. The same conclusion follows from fig. 12, which shows the average
energy Tess in the quasilinear distribution function versus the initial heating rate for an
initial background temperature of 2 keV in ASDEX Upgrade. T, increases faster than
linear with W; AT however remains modest, reaching 0.5 keV at W ~ 1.5 W/cm™3.
In fig. 12 we also show the ion energy at which D(u) reaches unity: when W exceeds
about 1.5 W/cm™2 this energy becomes comparable to the initial thermal energy, and
the number suprathermal particles can be expected to increase rapidly. This power
level can be rega.rded as the upper limit for the application of the moderate power
approximation.

In ITER, because of the higher density and larger volume, about the same power is
available per particle than in ASDEX Upgrade in spite of the much larger total installed

15




power; hence at low temperature first harmonic heating is relatively inefficient. Once a
temperature of the order of 10 keV is reached, however, the suprathermal population
appears sufficient to increase appreciably the efficiency over the ohmic level and to start
the self-boosting effect of FHIC heating. We will discuss this effect and the influence
of FHIC heating on the reactivity near ignition in the next section.

It should be clear that the distribution functions shown in figs. 10 and 11 are only
illustrative. They are evaluated keeping both W and the background temperature in
the collision operator constant, while on the one hand the heating rate evaluated for the
“final” distribution is much higher than in the initial maxwellian situation, and on the
other hand the temperature of the background plasma has also changed. It would not be
difficult to iterate the procedure, reevaluating the quasilinear distribution function using
the new values of W and of the effective temperature Tess, and so on, until consistency
is reached. This would make the run-away tendency of first harmonic heating even
more evident: for example, the “final” average energy T.ss would increase faster than
quadratically as a function of the initial value of W. The consistency reached with such
a procedure, however, would be purely illusory. In practice, heating is performed at
constant total power. This does not mean constant W either, since the increase of ion
cyclotron damping due to the larger power available per ion, for example, will shift the
balance between between direct ion and electron heating in favor of the former. It is
clear however that W cannot increase beyond a certain limit if the total power is kept
constant.

4 — Two dimensional solution of the quasilinear kinetic equation.

4.1 — Legendre polynomials representation of the quasilinear operator. Although
it is commonly accepted that the one-dimensional quasilinear Fokker—Planck model
gives a fair first approximation at low to moderate power levels, it is clearly desirable
to test its validity by comparison with solutions of the full two—dimensional equation.
Moreover, to evaluate the effects of quasilinear distorsions of the distribution function
on wave propagation and on the stability of the plasma, it is necessary to have at
least an estimate of the anisotropy of the suprathermal ion tail. It is surprisingly
difficult to make such an estimate analytically, and to our knowledge none is available
in the literature. The required information is therefore usually obtained using a fully
two—dimensional bounce averaged Fokker-Planck solver [20]. In particular, only such
a code can properly take into account the pitch-angle dependence of the quasilinear
diffusion coefficient due to particle trapping in tokamaks, which becomes important
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at large energies. Unfortunately, this approach is very time consuming, and can only
occasionally be used to test simpler models.

If one accepts to neglect ion trapping effects, however, an intermediate approach
is possible, based on the expansion of the distribution function of the heated ions in
Legendre polynomials in the pitch-angle variable. This expansion is the natural gen-
eralization of the isotropic assumption made in the elementary analytic theory; if only
the steady-state solution is required, it transforms the two—dimentional partial differ-
ential (1) into a system of ordinary differential equations whose numerical solution is
only slightly more demanding that the integration of Eq. (31). Although valid only up
to moderate ion energies, this approach is able to provide all the information relevant
for a self—consistent description of IC heating, at a cost which is a small fraction of the
full bounce-averaged treatment including trapping.

We therefore develop f* in Legendre polynomials
Fio,pt) = Fa(v,t) Pa(u) (38)
n

Inserting this expansion into the collisional operator gives

18F,\ 10 ,[U.(v)0F, ~ c(v)
;i at )co"—-—'igu-‘v [ o0 a +‘I’-,-( )F] ﬂ(ﬂ+1) ﬂ (39)

where
/B

Te(v) = 3 L W(ngn)
B

yi/ﬁ T:
¥, (v) = ; B ?;‘I’(’Yiﬁﬂ) (40)
y‘/ﬂ
ec('”) = zﬂ: v
The quasilinear diffusion operator is easily written in v, u coordinates by using the
identities
a 9 0 d
w— = (1-p%) (v o
ov 0
o ¢ (1)
19 _i(i.,,_i. )
wow v? \dv oup a
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Thus

19f _f1-p?2 0 afi oy
5o\ 2 (o)
10 i i
w02 (3 -+ }

The key for the success of the Legendre polynomial expansion is a suitable repre-
sentation of the quasilinear diffusion coefficient (27), obtained using the multiplication
theorem for Bessel functions

- (EJ_‘U M) = 2yn/2 Z (E—ﬂ") : Intk(§Lv) (43)

(42)

Using this in Eq. (26) gives
_ (o o]
D(v,p) = Dy (1 - p?)? > IF (v) u* (44)
k=0
where we have introduced the functions

k
= () > B s (€1 (45)

Here p =0 for fundamental cyclotron heating (minority heating) and p=1 in the
present case of first harmonic heating. For each v Eq. (44) is a Taylor expansion around
the exact value of D for u = 0 (perpendicular velocity). Indeed, for u = 0 it reduces to

D(v,0) = Dz J2(61v) (46)

which is ‘exact’ to all orders in the Larmor radius. On the other hand, the series for
i # 0 also looks like an expansion in the Larmor radius, since the k-th term begins as
(€Lv)?**P /K], The series therefore converges very rapidly for {,v S 1. If §,v>> 1, on
the other hand, there is increasing internal cancellation among the lower order terms;
hence, although convergent everywhere, Eq. (43) can be used in practice only for values
of £, v not exceeding a few units. As we have shown in the previous section, however,
this is fully sufficient for our purposes. The first few functions J} (v) for p = 1 are shown
in fig. 13.

The rapid convergence of the representation of the quasilinear diffusion coefficient
based on Eq. (43) does not by itself guarantee the convergence of the Legendre expan-
sion (38), of course. The advantage of using (43) instead of a power expansion of the
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Bessel function is that at moderate energies it guarantees a rapid convergence of (38)
for nearly perpendicular velocities, where it is most important, and confines possible
convergence problems to nearly parallel velocities, where there are much less particles.
A straightforward Larmor radius expansion of D [5], although giving a somewhat sim-
pler form to the quasilinear operator, localizes the worst convergence problems of the
Legendre expansion near perpendicular velocities, and therefore becomes useless already
at much lower energies (of course, this problem arises only when the expansion is used
in conjunction with the Ansatz (38), not in fully 2-dimensional Fokker Planck solvers).

Substituting (38) and (45) into the quasilinear operator we obtain

1 8F, B 1 10 (45 OF,
L08) (D) {32 (wrtnm n2)

(47)
10 Do(n,m, v) 8F, DP(n,m,v
_ FE(UD&("’"’”’ U)Fm) + Dol 9) 0Py _ (o, )Fm}
whith -
D¥;(n,m, v) = Dg Y _ Q%*(2n,2m) DY (v) (48)
k=0
where the coefficients ,-_,;k are integrals over Legendre polynomials:
k + k
Qi nm) = [ Palu) (1= w242 2 P () s
1 .
k +H oi+p , 2k [, OPm
bmm) = [ P (- 2y (WO ) (49)
7 PP oP,
k — n 1— 2\1+p 2k( m)d
Qi1 (n,m) ];1 (”a,u)( WP (g )
and
Qilgbk(n:m) = Qg’lk(m: n) (50)
hence
DfO (n: m, 'U) = Dgl (m) n, 'U) (51)

Although it is possible to give analytic expressions for these integrals or to evaluate them
numerically, both methods have disadvantages, particularly when high order polynomes
are involved. We have found much more convenient to evaluate them using Mathemat-
ica.
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For completeness, the general expression for the heating rate in the Legendre repre-
sentation becomes

w + 5 oF
m—-’f 'Ud‘vf 1-p )D(U,M)(v—v*#a)d#

(52)
= — vEDE(y Hk'n ——-K"nF’U
35 [T npo {mow (n) Falo) pdo
where
By = [ (1= W) P dis = QL . 0)
- (53)

in 8P, \ , -
Ky(n) = / = T e (ua—”) du = Q% (n,0)

Obviously, only the isotropic part F,, contributes to the density and energy content.

4.2 — Numerical implementation. In the numerical implementation, the Legendre
expansion was cut at the 20-th polynome, including only even terms in agreement
with the symmetry of the problem. The resulting set of coupled ordinary differential

equations
oF, ) aFﬂ)
s =0 (54)
Vi { O )con O QL}

where the first term is given by (39) and the second by (47), has been integrated using
finite elements for the discretization of the velocity variable. This method is particularly
well suited to this problem, both because of its numerical efficiency, and because it makes
particularly easy to impose the required boundary conditions.

The first step in the FEL discretization is to put (54) into weak variational form by

requiring

0= E f { (A,,m df;”’“ +BmF2m) +G(v) (c ‘ﬂ;z"‘ +Dan2m)} (55)

for all G ('u) from an appropriate test function space. Here

1
Amn = 32{‘1’::('0) bpm + (Zn - E) v2D80(2n, 2m, v)

Bopn =20, (v) 6pm — (211 RS 1) vDYy(2n, 2m, v)
(56)

G == (2n+ 2) vDh; (2n,2m, v)
c( )

Dmn = 2n(2n + 1) bnmi + D51 (2n,2m, v)
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If the velocity integral is cut at a large but finite velocity V, one shold in principle
add a boundary term arising from the integration by part of the terms containing
second derivatives, and which represents the net flux of particles leaving the region of
integration. In steady state this flux must vanish, hence the boundary term must be
omitted. The only boundary condition to be explicitly imposed, therefore, pending
normalization of the distribution function, is

Fp(0) =1 Fp,(0)=0 forn>1 (87)

The discretization is performed using as test functions cubic hermite polynomials [21]
localized on each mesh element.

4.3 — Applications of the SSFPQL code to first harmonic ion cyclotron heating.
Figs. 14 to 16 show some examples of solution of the two dimensional steady state
equations obtained with the SSFPQL code for the low density ASDEX Upgrade plasma
already considered in the previous section. Fig. 14 a) is a logarithmic plot of the
energy distribution at constant pitch—angle, such as it might be reconstructed from a
charge-exchange diagnostic; fig. 14 b) shows a contour plot of the same distribution
function in the vj—v, plane. These figures are made assuming an ohmic temperature
of 2 keV for both ions and electrons, and a power absorption by the ions of 0.5 W/cm™3.
Figs. 15 and 16 plot the results of a power scan for the same plasma. At low power the
effective temperatures versus W is identical to that obtained from the one-dimensional
approximation, but the agreement is somewhat less satisfactory when W exceeds about
0.5 W/cm™3.

As anticipated, at the power levels characteristic of FHIC heating the suprathermal
ion tail is relatively weakly populated, although rather flat. At W = 1 W/cm? the total
energy content of the quasilinear distribution is only 0.35 keV per particle higher than
in the ohmic plasma. On the other hand this energy is stored in an ion population with
kiv) /Sl much greater than the thermal value; this is sufficient to boost the heating
rate by 40% over the linear value The suprathermal tail is also very anisotropic, the
increase in parallel energy being only about one fifth of the total energy increase.

A scan of the quasilinear modification of the heating efficiency of FHIC heating of
the Tritium component in ITER versus the initial temperature is presented in figs. 17
and 18. According to these results, self-boosting of FHIC heating can be hoped only
if the temperature of the ohmic plasma already reaches 8 to 10 keV. This conclusion
might be somewhat pessimistic, however, since it is obtained at a constant power density,
W = 0.5 W/cm®. Keeping in mind that at 20 keV a fraction of the order of 50% of
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the power is absorbed by the electrons, this seems to be an upper limit for W near
ignition. As the temperature decreases, however, the single-pass absorption by the
electrons decreases faster than that of ions, so that the balance shifts in favor of the
latter; thus somewhat higher values of W might be possible at ohmic temperatures.
Moreover, the situation can be further improved by starting heating at a density lower
than the the steady state value required during the ignited phase. It turns out on the
other hand that altering the isotope composition of the plasma at a constant density
has no favorable effect on FHIC heating. First harmonic heating of Deuterium is about
50% more efficient than FHIC heating of Tritium, as can be deduced by comparing
figs. (19) and (20) with the previous ones.

These estimates are subject to the critics mentioned at the end of the previous
section. To avoid misunderstandings, we also recall that the the quasilinear modifica-
tions of the distribution function and of the heating efficiency in a given target plasma
discussed here establish themselves within a collision time from the beginning of the
heating pulse. They should not be confused with the steady-state attainable after a
sufficiently long heating period, of the order of the energy confinement time. To predict
the evolution of the plasma on the latter, slower time scale, it is necessary to model
the energy balance by including radial transport and losses. We do not try to quantify
further these consideration here, since reliable conclusions can be reached only by using
SSFPQL in conjunction with both a wave code and a tokamak transport code. We only
wish to point out that SSFPQL offers a very efficient and flexible complement to such
codes.

4.4 — Quasilinear enhancement of the fusion reactivity. Representing the distribution
function as a sum of Legendre polynomes in the pitch—angle is also convenient in view of
calculating the fusion reactivity, taking advantage of the algorithm suggested by Cordey
et al. [22]. If, as in the present case, only one species (the heated one) deviates from a
Maxwellian distribution, only the isotropic component of the distribution function of the
heated species contributes to the reactivity, and the expression of Cordey et al. simplifies

to
2

871' 00 o] b +1 R o
= f o2 dv F(v) f v Fl(o) [ dpo(@)a (58)
0 0 -

Mg Ty

where

42 =v2 +0'%2 - 20ja (59)

(‘a’ denotes the heated species, ‘b’ the Maxwellian one).
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Using this result, and values of the D-T reaction cross-section o(i) from [23], we
have evaluated the fusion power density in the ITER Tritium FHIC heating case con-
sidered above, in the range 15 < T < 20 (fig. 21). The quasilinear enhancement lies
between 75% anf 50% (the relative enhancement decreases with increasing tempera-
ture). This is much larger than the relatively modest increase of the energy content,
and is of course due to great weight of the suprathermal tail in (ov). If it is not accom-
panied by a degradation of the confinement, the effect is sufficiently large to decrease
the ignition temperature by several keV, and could reduce appreciably the minimum
requirements on the installed h.f. power.

4.5 — Analytic representation of the quasilinear distribution function. In fig. 13, and
in all similar plots obtained with SSFPQL, the difference between F;(v,u = 0) and the
ohmic distribution function would be difficult to appreciate if the reference Maxwellian
had not been plotted at the same time. This strong anisotropy suggests a simple analytic
representation of the resulting ion distribution function, namely

Fi(u,w) = Fp(yu) Fy (w) (60)

where Fjs(yu) is a maxwellian in the parallel velocity taking into account the increase
in parallel energy through the factor v = (T'/Tj 5 £)}/2, and F is the function obtained
by integrating Eq. (31), but reinterpreted as the distribution of perpendicular velocities,
and with the numerical value of D¢y, adjusted to reproduce the total energy content
of the two—dimensional solution. The distribution function (60), in which the parallel
and perpendicular velocity distributions are factorized, is particularly convenient for
use in the investigation of wave propagation. Moreover, in the FLR approximation, the
ion contribution to dielectric tensor is immediately expressed in terms of the Plasma
Dispersion function [24] and the first two moments of the perpendicular part of the
distribution function F),.

Conclusions.

In this report the quasilinear modification of the ion distribution function during first
harmonic ion cyclotron heating, and its effects on the heating rate and on the fusion
reactivity, has been investigated both with a simple already well established analytic
one-dimensional approach, and with a new two dimensional s;teady state solver of the
quasilinear kinetic equation. By accepting to disregard trapped ion effects, the latter
code has been made much faster than full surface-averaged codes, yet it can provide all
the information required to study the influence of fast ions on wave propagation and
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absorption. The insight gained in the derivation and discussion of this model can be used
to build a selfconsistent description of this heating scenario which can be implemented
with a reasonable numerical effort.

The examples presented in this report should be made quantitative by coupling
modelling of FHIC heating with that of tokamak transport. Nevertheless, even in the
present preliminary form, they allow a few interesting conclusions. The first is that
success of FHIC heating of Tritium in ITER might require lowering somewhat the
density of the target ohmic plasma; on the other hand, once started, the suprathermal
tail produced by FHIC heating might lower the ignition temperature by a few keV,
correspondingly reducing the power requirements. The second conclusion is that the
conditions for FHIC heating in ASDEX Upgrade at intermediate density and power are
sufficiently similar to those of ITER to make such an experiment particularly relevant.

TABLE 1
ASDEX U. ITER (T) (D)
Toroidal radius 1.65 m 7.75 m
Plasma radius 0.5m 2.25 m
Magnetic field on axis 2T 6T
Central density 510'° m—3 1.4 10% m—3
Central temperature 2 to 5 keV 5 to 20 keV
Frequency 60 Mhz 60.1 Mhz (91 Mhz)
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Fig. 1 - Stix approximations for the coefficients of the linearized
Fokker-Planck collisional operator.
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Fig. 2 - Perpendicular index squared versus n o’ ASDEX Upgrade,
low density plasma.
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Fig. 4 - Power spectra for the symmetric (a) and antisymmetric (b) antenna
configurations; ASDEX Upgrade low density plasma.
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Fig. 5 - First harmonic heating quasilinear diffusion coefficient for the
spectra of the ASDEX Ugrade antenna; low density plasma,
plane stratified geometry.. -
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Fig. 7 - Interpolation of the isotropic part of the quasilinear diffusion coefficient.

a) Exact average of J 12 (Ew); b) Asymptotic behaviour ~ 1/(§v);
c) Asymptotic behaviour ~ 1/(Ev)2
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Fig. 8 - Isotropic part of the quasilinear diffusion coefficient at W = 1 W/cm 3
a) ASDEX Upgrade plasma.
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Fig. 8 - Isotropic part of the quasilinear diffusion coefficient at W =1 W/cm3,
b) ITER Tritium first harmonic heating.
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Fig. 9 - Isotropic part of the quasilinear diffusion coefficient versus energy,
atW=1W/cm>. a) ASDEX Upgrade plasma.
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Fig. 9 - Isotropic part of the quasilinear diffusion coefficient versus energy,
at W = 1 W/em? . b) ITER Tritium first harmonic heating.
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Fig. 10 - Isotropic part of the quasilinear distribution function at W =1 Wiem® .
a) ASDEX Upgrade; b) ITER Tritium first harmonic.
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Fig. 11 - Isotropic part of the quasilinear distribution function at different power
densities: ASDEX Upgrade, T =2 keV.
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Fig. 12 - a) Average energy in the quasilinear distribution function versus
initial heating rate. ASDEX Upgrade, initial temperatue 2 keV.
b) Energy at which Dz(v) =7,
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Fig. 13 - Coefficients in the Legendre-polynomial representation of the
quasilinear diffusion coefficient for ICR first harmonic heating.
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Fig. 14 a) - ASDEX Upgrade first harmonic heating (plasma parameters in Table 1),
W = 0.5 W/cm3. Distribution function at constant pitch-angle.
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Fig. 14 b) - ASDEX Upgrade first harmonic heating (plasma parameters in Table 1),
W = 0.5 W/cm3. Contour plot of the ion distribution function (levels are in
geometrical progression).
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Fig. 15 - Effective temperature versus Heating Rate, ASDEX Upgrade
first harmonic heating. The dots are the effective temperature
predicted by the analytic one-dimesional model.
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Fig. 16 -- Quasilinear vs linear heating rate, ASDEX Upgrade first harmonic
heating.
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Fig. 17 - ITER first harmonic heating of Tritium (plasma parameters in Table 1);

Quasilinear heating rate vs target plasma temperature for a linear rate of
0.5 W/em®.

keV

1.25¢

0.75¢

Q3T

5 10 15 20

Fig. 18 - ITER first harmonic heating of Tritium (plasma parameters in Table 1);
Quasilinear increase of the energy content vs target plasma temperature.
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Fig. 19 - ITER first harmonic heating of Deuterium (plasma parameters in Table 1);
Quasilinear heating rate vs target plasma temperature for a linear rate of
0.5 W/em®.
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Fig. 20 - ITER first harmonic heating of Duterium (plasma parameters in Table 1);
Quasilinear increase of the energy content vs target plasma temperature.
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21 - ITER first harmonic heating of Tritium (plasma parameters in Table 1);
Fusion power vs target plasma temperature for a linear heating rate
of 0.5 W/em?
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