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Abstract

The general expression for the second-order perturbation energy of a Maxwell-
drift kinetic system derived by Pfirsch and Morrison [Phys. Fluids B 3, 271 (1991)]
is evaluated for the case of a magnetically confined plasma for which the equi-
librium quantities depend on one Cartesian coordinate y. The conditions for the
existence of negative-energy modes with vanishing initial field perturbations are
also obtained. If the equilibrium guiding centre distribution function fgs) of any
0
particle species v has locally the property UII%% > 0, where || is the guiding cen-
tre velocity parallel to the magnetic field, and if this holds in the minimum energy
reference frame, parallel and oblique negative-energy modes exist with no essen-
tial restriction on either the orientation or magnitude of the wave vector. This

condition also holds for the equilibria of a homogeneous magnetized plasma and
: (0)

an inhomogeneous force-free plasma with sheared magnetic field. If v”—gﬁ <0,
the oblique negative-energy modes possible in a magnetically confined plasma
are nearly perpendicular. The condition for purely perpendicular negative-energy

0 (0)
modes reads igg%—a—g% < 0, where P is the plasma pressure. For the cases

of tokamak-like and shearless stellarator-like equilibria, which are described on
the basis of, respectively, a slightly modified Maxwellian and a Maxwellian distri-
bution function, the existence of perpendicular negative-energy modes is related
to the threshold value 2/3 of the quantity n, = dIn7,/dIn N,, where T, is the
temperature and N, the density of some particle species. This is lower than the
critical 5,-value for the onset of linear temperature-gradient-driven modes. For
various tokamak-like and stellarator-like, analytic cold-ion equilibria with-non
negative 7.- and negative 7,-values, for which the criterion above is not neces-
sary, a substantial fraction of thermal electrons is associated with negative-energy
modes (active particles). In particular, for linearly (marginally) stable equilibria
with 7. = 1 nearly one-third of the electrons are active. For all equilibria con-
sidered the phase space occupied by active electrons increases as one proceeds
from the center to the plasma edge region. Consequently, negative energy modes,
related to nonlinear instabilities, which could cause anomalous transport exist
equally well in both confinement systems.




I. Introduction

The existence of negative-energy perturbations in a linearly stable plasma may be
related to nonlinear instabilities and cause anomalous transport. An instability of
this kind was exemplified in a transparent way for the first time in 1925 by Cherry
[1]. He examined a simple, linearly stable system of nonlinearly coupled oscilla-
tors, one possessing positive-energy, the other negative-energy, and the frequency
of one oscillator was twice that of the other, which means third-order resonance.
The exact two-parameter solution set he found exhibited explosive instability for
arbitrarily small initial perturbations. Pfirsch [2] considered the corresponding
three-oscillator case and found the complete solution of this problem. It shows
that in the resonant case almost all initial conditions lead to explosive behaviour,
whereas in the non-resonant case the initial perturbations must exceed thresh-
old amplitudes which are related to the frequency mismatch. Self-sustained drift
wave turbulence in a linearly stable plasma regime resembling the tokamak edge
regions was demonstrated numerically by Scott [3, 4] in the framework of a non-
linear, collisional two-fluid model. His study also showed that parallel particle
dynamics plays an essential role in turbulence. A related result was recently ob-
tained by Pfirsch and Correa-Restrepo [5]. From the general energy expression for
linear, quasinutral, electrostatic drift modes, obtained within the framework of
dissipationless multifluid theory and applied to plain configurations, they found
that negative-energy modes localized at a mode-resonant surface exist only if
electron parallel dynamics is included. It is therefore very likely that the results
obtained by Scott are understandable in terms of nonlinearly coupled positive
and negative-energy modes. In addition, the same physical mechanism was in-
voked by Nordman et al. [6] to explain the existence of self-sustained toroidal
n;-mode turbulence below the linear instability threshold. This result was ob-
tained numerically within the framework of nonlinear, dissipationless two-fluid
theory.

The present paper discusses such problems within the framework of collision-
less Maxwell-drift kinetic theory. For collisionless Maxwell-Vlasov and Maxwell-
drift kinetic theories general expressions for the second-order perturbation energy
were derived by Pfirsch and Morrison [7, 8]. Assuming strongly localized electro-
static initial perturbations (kyrr > 1, with k, the perpendicular component of
the wave vector and rz, the Larmor radius), Morrison and Pfirsch [7] also showed,
in the context of the Maxwell-Vlasov theory, that all inhomogeneous equilibria
of interest allow negative-energy modes. The degree of localization actually re-
quired along with the conditions for the existence of negative-energy modes were
investigated by Correa-Restrepo and Pfirsch in the context of the same theory for
the cases of a magnetized homogeneous plasma [9] and an inhomogeneous force-




free plasma with sheared magnetic field [10]. It turned out that negative-energy
modes exist even without any strong localization of the associated wavelenths,
a feature which enhances the relevance of these modes. Negative-energy modes
with not strongly localized wavelengths (kirr < 1) can be investigated more
conveniently with the use of drift kinetic theories which have automatically elim-
inated from the outset all the perturbations with wavelengths smaller than the
gyroradii. In this context, Pfirsch and Morrison [8] examined a magnetized ho-
mogeneous plasma and found that parallel and oblique negative-energy modes
(ky # 0) exist for arbitrary wave vector k whenever

7
Ov|

v >0 (1)
holds for some particle species v and parallel guiding centre velocity v. The
investigation is extended in the present paper to the more interesting equilibria
of a magnetically confined plasma with sheared magnetic field for which the
equilibrium quantities depend spatially on just one Cartesian coordinate. The
equilibria of a homogeneous magnetized plasma and an inhomogeneous force-free
plasma with sheared magnetic field are also examined as specific examples. The
most important conclusions are:

1. Condition (1) for the existence of parallel and oblique negative-energy modes
remains valid for all the equilibria considered without any essential restric-
tion on k.

9. In the case of a magnetically confined plasma the existence of perpendicular
negative-energy modes, which are found to be the most important modes,
is related to the threshold value 2/3 of n, = @InT,/d1n N, where T, is the
temperature and N, is the density of some particle species v. This is lower
than the critical 7,-value for the trigger of linear, temperature-gradient-
driven modes.

The derivation of the general expression for the second-order perturbation
energy within the framework of Maxwell-drift kinetic theory by Pfirsch and Mor-
rison [8], slightly adapted to the needs of the present paper, is first reviewed in
Sec. I1. This consists of two subsections. The first concerns the energy-momentum
tensor for general nonlinear and linearized kinetic theories. In the second the lin-
earized energy-momentum tensor is derived in the case of Maxwell-drift kinetic
theory based on the Lagrangian formulation of the guiding centre theory given
by Littlejohn [11] and later regularized by Correa-Restrepo and Wimmel [12].
We preferred to include this introductory section because, otherwise, repeated



reference to the original analysis [8] would make for tedious reading. The equi-
librium properties of the magnetically confined plasma under consideration are
discussed in Sec. III. The second-order perturbation energy with vanishing initial
field perturbations is obtained in Sec. IV. Part of the relevant lengthy calcula-
tion is presented in Appendix A. The conditions for the existence of negative-
energy modes are derived in Sec. V. First the cases of a magnetized homogeneous
plasma and an inhomogeneous force-free plasma with sheared magnetic field are
examined; then the conditions for parallel, oblique and perpendicular propaga-
tion of negative-energy modes in a magnetically confined plasma are separately
obtained. The consequences of the condition for the existence of perpendicular
negative-energy modes in tokamak-like equilibria, described by using a slightly
shifted Maxwellian distribution function, are examined in Subsection VI.1. For
various analytic, cold-ion equilibria of the drift kinetic equilibrium equation with
non-negative 7. values, as well as with negative 7,-values for which the criterion
concerning the 7.-threshold value does not hold, the fraction of the electrons
connected with negative-energy modes is also obtained. The same issues are
addressed for stellarator-like equilibria, derived on the basis of a Maxwellian dis-
tribution function, in Subsection VI.2. The main results are summarized in Sec.

VIL

II. Review of the Maxwell-Drift Kinetic Theory

A. The Energy-Momentum Tensor

The second-order energy of perturbations around an equilibrium state is given by
F@ - / d®z T, (2)

where T{% is the energy component of the second-order energy-momentum tensor
T‘S?)“. To derive the tensor ng)“ in the context of kinetic theories, Pfirsch and
Morrison [8] used a modified Hamilton-Jacobi approach. The main steps of the
derivation are as follows:

1. Let H,(pi,q:,t) be the Hamiltonian for particles of species v for the per-
turbed state in a phase space gy, ..., g4, pi,...ps [With (91,92,93) = (21,%2,23) = @
and correspondigly (p1, p2, ps) = p, where @ is the position in normal space; ¢4, pq
are needed to describe guiding centre motion], H(°)(P;,Q;) be the equilibrium
Hamiltonian' in the phase space Pj,...P;, Qy,...Q4 and S.(P;, giyt) be a mixed-
variable generating function for a canonical transformation between Pi, ¢; and

1The theory is more generally valid for a reference Hamiltonian H so)(P;, Qi,t) which pos-
sesses an explicit time dependence [8].




P.,Q;. The z, t dependence of H, is given via the dependence of H, on the elec-
tromagnetic potentials ¢(x,t) and A(x,t) and, for the drift kinetic theory, also
on the electric and magnetic fields E(z,t) and B(=,t) and derivatives of them.
The derivatives occur only when Dirac’s constraint theory formalism is used for
constructing an appropriate Hamiltonian because the starting Lagrangian, Eq.
(15) in section I1.2, is of non-standard type. But even with Dirac’s formalism the
variation of these quantities makes vanishing contributions to the Euler-Lagrange
equations and the energy-momentum tensor (see remark after Eq. (33) in Sec.
I1.2). The general formalism is therefore equivalent to that for Hamiltonians not
depending on the derivatives of E and B. The quantities p; and (); are obtained
from S, as

as, . s,
pi = 3_@-_’ Qs = -5}71 (3)

]

and S, must be the solution of the modified Hamilton-Jacobi equation
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The time-independend, zeroth-order solution S{%) of Eq. (4), needed to obtain
g (2)# is then simply given by the identity transformation S; 0) = 3 Pg;.

2. With the notation defined on page 273 of Ref. [8], the Lagrangian for the
* whole theory (Maxwell-Vlasov and drift kinetic) irrespective of the special choice

of H® is
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Using the Euler-Lagrange equations resulting from the variational principle

t2
6| Ldt=0, (6)

t

with ¢,, S,, and A, the quantities to be varied, and Noether’s theorem, one
obtains the following expression for the energy-momentum tensor of nonlinear
theory:
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where L is the Lagrangian density in &-space corresponding to L.
3. To obtain the linearized theory, one first considers perturbations of an
equilibrium represented by

H:(zo)(Pi:Qi): (pf,o)(P,-,q,-), SLO)(Ph Qi)a ALO)(w)a
which include yet all orders:
&pu(Pg,q,‘,t), 5SU(P,',q.',t), 5A“(2,t).

Expansion in these quantities leads to first-, second-, and higher-order expressions
for the perturbed Hamiltonian H,(05,/0¢;,qi,t), the equilibrium Hamiltonian
H()(P;,8S,/0PF;), and the Lagrangian. The variations of the variational princi-
ple (6) can then be done in terms of the quantities dp,, 6S5,, 6A,. Variation of
the first-order Lagrangian yields zero because the unperturbed quantities are so-
lutions to the variational principle and thus variations around them vanish. The
lowest-order expression of the Lagrangian that is relevant is therefore of second
order. Replacement of the quantities ép,(P;, ¢;,t), 8S,(P:, qi,t), 6A,(2,1) in this
expression by their first-order approximations (P, ¢, 1), S{(P;, gi,t), AQD(, t)
yields therefore the Lagrangian of linearized theory:
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and

Y 2 9P, 0P, 040§«
The tensor T for the linearized theory is derived by replacing in Eq. (7) L,
S,, A,, and F , by L&, SM AN and FL):
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with f(© = ¢ the equilibrium distribution functions. In this expression the
s
time-derivatives —y— are given by
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where the mixed variable Poisson bracket has been defined as

= da0b Badb
"7 8G; 0P, 0P 0q’

B. Hamiltonian for the Guiding Centre Motion

The Hamiltonian for the guiding centre motion is obtained in Ref. [8] from the
Lagrangian given by Littlejhon [11] in the regularized form [12]. The Lagrangian
is defined in terms of the variables

t, z= (Q‘l,tIz,Q:s) and g,

where g4 is an additional velocity variable needed to describe the motion. It
is given by [the index for the particle species is suppressed for the rest of this
section]

L= (e/c)A* - & —ed", (15)




where

A* = A + (mc/e)vog(2)b + vE], (16)
e¢” = e¢ + uB + (m/2)(¢; + vE); (17)
vg = ¢(E x B)/B?, (18)

b= B/B, (19)

z =i/ vn, (20)

p is the magnetic moment of the gyrating particle and vy a constant velocity.
The function g(z) has been introduced to regularize a singularity which occurs in

the context of nonregularized theory when the guiding centre velocity v = b - &
(eB)/(mc)

approaches the critical value v, = The nonregularized theory is

obtained for g(z) = z, in which case ¢4 = ';(" holds (see Eq. (22) below). Thus,
g(z) must have the property g(z) = z, § = dg/dz ~ 1 for small z (|z| < 1). For
large z, however, g(z) must stay finite, g(co) = 1, so that with vg > Vihermar one
has vog(00) < v.. A possible choice for g(z) is g(z) = tanh 2.

Since L is linear in ¢ and does not contain ¢4 it is not of the standard type
and therefore does not allow the standard way of obtaining a Hamiltonian from
it. The corresponding equations of motion are

1
E*+-vx B* — %gng =0 (21)
C
and
b-& = v = q/d, (22)
where v = & and '
104" 0¢*
E* — o e B* — *. 2
c Ot oz’ kati (23)

From these equations one obtains the guiding centre velocity v = v, and the
“velocity” ¢4 = Vj as functions of @, ¢4 and t:

v = v, = (¢4/§B})B* + (c/ B))E* x b, (24)

gs = Va = (¢/mg)(1/Bj)E" - B”, (25)

where B = B”*-b. The momenta canonically conjugated to  and ¢4 follow from
Eq. (15) as
oL e, oL

P=5271 ,P4=a—¢1—0- (26)



Since these relations do not contain @ and ¢y, they are constraints between the
momenta and the coordinates. A consequence therefore is that Hamilton’s equa-
tions based on the usual Hamiltonian corersponding to the above nonstandard
Lagrangian are not the equations of motion. To overcome this difficulty, Dirac’s
constrained theory [14] is applied. It starts with the usual or “primary” Hamil-
tonian

oL oL

o 0L 0L o um
H ==z 5% + 114644 ed (27)
Dirac’s Hamiltonian is then given by
H =e¢" + v, (p—(e/c)A) + Vaps, (28)
from which the guiding centre motion follows:
. OH . O0H
z=3—P—='vg, Q4=a—p‘1=m (29)

But in general there are more solutions than those given by Eq. (26) according
to p = —%‘g and py = _9 g . These equations can be transformed to

d/ e D 0 e )\ O0Vy
az(P‘zA)*‘(a—m”g)'(”‘z“’)‘a—ﬁ’% 30)
: dv, e oVy
=P (p_far) = Ty,
P4 6q4 (p C ) 6q4 Pa (31)

Special solutions of Egs. (30, 31) are obviously the constraints (26). It is, how-
ever, important to note that p — %A* = 0 and ps = 0 do not represent special
values of some constants of motion. Therefore é-functions of the constraints
are not constants of motion either. The distribution function f must, however,
guarantee that the constraints are satisfied. Hence it must be proportional to
such é-functions, but it must also be a constant of motion. Both conditions are
satisfied by

£ = 608 (p — SA7) 0. Bi @, vy 1), (32

where the guiding centre didtribution function f, is a solution of the drift kinetic

differential equation of of of
el | . 2l LY 28
o TP Bz T e
In f, a dependence on the magnetic moment p has been added, being a constant

which has the character of a parameter distinguishing between different “kinds”
of particles. Later (see transformation (74) in Sec. IV), one must sum over all

=0. (33)




these kinds of particles in order to obtain the total energy-momentum tensor, i.e.
one integrates over p. Note that the form (32) of f has the consequence that in
the Lagrangian (5), any variation of v, and Vj [ see Eq. (28) | is multiplied by
zero. Thus, although v, and V, depend on the derivatives of E and B, these
dependences are unimportant for both the variational principle and the energy
momentum tensor.

Whereas Eq. (32) for f is sufficient in the nonlinear theory to pick out the
correct solutions, this is not the case with the linearized theory. In this case,
since the constraints are imposed along the perturbed orbits, a displacement
vector (&,£4) in @, g4 space, similar to the displacement vector in macroscopic
theory, is introduced [8]. That is, since the zeroth-order distribution function
always selects V = P; = 0 with

de *
VE 1/m)P - (e/0) A", )], (34)
it is reasonable to expand S(U) in powers of V and Py:

50 = §0(z,q,) - & -mV - ¢Py

+higher-order terms, (35)

so that a5 a5
—_— = - 5 = - . 36
aP V=P4=0 E 8P4 V:P;:D 64 ( )

As is shown in Appendix A, for the equilibria considered in the present work
the higher-order terms in expansion (35) after imposing the constraints don not
contribute to T¢?° 2.

The constraints yield the following expressions for the displacement vector:

| a5W ¢
= ——B. (—-— - —A*(‘)) , 37
64 ijﬁ(o) aw & ( )
£ =&, + M=,q)B*O, (38)

with
& = £ [b*(ﬂ) . 6,5'_(1) _ S 4+ g+« p(©)
1 7 eB*0)2 oz c
&(1)

-B*x (agm - %A*(”) ] (39)

2In general, since the highest-order g;-derivatives of s appearing in T{gz)o are eventually
of second order, e.g. see Egs. (71,72) in Sec. IV, terms up to second-order in the expansion
(35) have non-vanishing contributions. This fact was overlooked in Ref. [8].
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1 a5
*(0) ( aq4

- +mgb® -51) . (40)
mgB"
With these relations T}z)“ is a functional of

. (1) ~
AW, A7, ¢, 5N (@, g4, p)- (41)
Except for ¢(!); which is constrained to
V. E® = 47p"), (42)

these quantities can be freely chosen in the sense of initial conditions. The p
dependence of 5§ has been added for the reason given after Eq. (33).

The tensor Tf)“ for the Maxwell-drift kinetic theory based on the Hamiltonian
(28) can now be evaluated for each specific equilibrium, to which only terms up
to first order in the expansion (35) contribute, and for any initial conditions.

III. Equilibrium

In this paper we investigate plasmas whose equlibrium quantities depend spatially
on just y in a Cartesian coordinate system z,y,z, with unit basis vectors ez,ey, €..
It is assumed that there is no equilibrium electric field E© and the equilibrium
vector potential and magnetic field are given by

A© = AO(y)e, + AV (y)e., (43)
B© = BO(y)e, + BO(y)e., (44)

with .
(AVY = BY, (AP) = -BY. (45)

Here the prime () denotes differentiation with respect to y. Macroscopically, the
mean Lorentz force 5@ x B©®, which is in the y-direction, balances the pressure
gradient VP(©. Equation (44) implies that the drift velocity has no y-component
and therefore y is a constant of motion. Since there is also no force parallel to
B9 another constant of motion is g4. The guiding centre distribution function
is therefore a function of y  , g4 and the adiabatic invariant magnetic moment
p. To calculate the current density 3@ from fég), we need the guiding centre
velocity v(9, Eq. (24). The following quantities are prerequisites:

gv?

B B(©
= st :_e = b0, + b, (46)

(0) —z_
b BO) Y

(0) (0)
3From the drift kinetic differential equation (33) it also follows that 6—5%- = 6—'532”— =0.
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A0 = 4@ 4 TWE, b (47)
e,d, " = uB® + (m,/2)q], (48)
vg = 0, (49)
E*0 — a¢—:(0) - _‘!_"'__(B(O))’ (50)
¥ oz ey &
B:® = BO 4 ™, 4v x p© (51)
and _p
with
You(y) 6O (v x 5) = OO - (6080 (53)
Moreover, it can be readily shown that
b® . (6@ =, (54)
and
B = B, (55)
The guiding centre velocity then takes the form
q
) = b — *(0,(3“”) (e, x B), (56)

G e,

and therefore it consists of a component parallel to B®) and a component per-
pendicular to B® due to the grad-B drift. To calculate the current density (),
we apply the general formula (8.15) of Ref. [13], which was derived in the context
of Maxwell-drift kinetic theory. The result is

i® = (c¢/4m)V x B®
- Y& j dgs dp §,B© fOp© — XV x / dai i { B £

(0) 4 MwVOCHYy  p(o) (0)]}
x[,ub + e (B (e x 8O . (57)

The components j{°) and j{°) read
i@ = (c/4m)(BOY
= 5 [ daud{ BLOGHO LY — dcu[(BOYHO 19 + (B0 10
m,C (B( i p(0) £(0)
-0 (“ gy BO 052) |} (58)

v
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and

i = —(c/4m)(BYY
= ¥ [ daadu{ BO0bO 1 + oeu[(BOYHOL + (BOWOSLY
m,c (BOY
+ = vogu( 30 bgo)fég))f]}_ (59)

Multiplying Egs. (58) and (59) by the integrating factors B and B, re-
spectively, subtracting the first from the second of the resulting equations [Eq.
(59)B©)-Eq. (58) B{”] and doing some straightforward algebraic manipulations
leads to the pressure balance relation *

d
(0) (0)\2 s
= [P + (B®) /8«] =0 (60)
with
pO — ) /dq‘,dpg‘,pB(o)B:(o)fgS). (61)

Evidently, only two of the equations (58), (59), and (60) are independent in the
sense that by treating any two of them one can derive the third one.

For distribution functions symmetric with respect to g4 the contributions to
Eq. (57) of terms in its integrands which are odd functions of g4 vanish and Egs.
(58) and (59) take, respectively, the simpler forms

C
—i = ——(BOY
32(0) w02 )
= 5[ dae e { [mecanton, Yoo + en(BOYHO] 1 + e [BOSD]
(62)
and
: _ _ S oy

!
2 f dgy dp {[m»cq4voguYzzbﬁ°’ + éuc#(Bw’)'bLD)] FO + cpd [Bimf,f?’] }

(63)

4This relation can also be derived by the momentum-conservation equation H%IT;‘ =0
g,p=1,2,3,z¢ —z,y,z]for p= 2, with the tensor T} given in an explicit form by Eq. (76)
of Ref. [15].

12




Equations (62) and (63) impose a constraint on the y-dependence on fég), namely,

50 _ _
f{9 and —g-"’—"— must be invariant under the transformation B{®) «<= B (B —

(B;EO)) This condition is fulfilled if f(o) belongs to a specific class of functions,
Maxwellians included, such that its potential dependence on the magnetic field
involves the magnetic field modulus B(®) only (the functions fgf? remain free to
depend on y either explicitly or implicitly through any other quantity not related
to B().

IV. Second-order Perturbation Energy

The second-order perturbation energy, see Egs. (2,13), will be calculated in the
case of equilibria defined in the previous subsection for initial perturbations

AW = AY — 0. 1t is also shown “a posteriori” that one can choose initial
perturbations without changing the particle-contribution to the energy, so that
the corresponding charge density p(*) vanishes. Choosing initial perturbations of
this kind we set from the outset

F =0, AN =0. (64)

Equation (13) then reduces to

asM & (., 880 ..
10 = - [ didP oo (10 5% D) 1+ 5 [ dadP O - HOD) 65)
and Eq. (14) to
o5 |
o = —1st, H]. (66)

The Dirac Hamiltonian, Eq. (28), with the help of relation V; = 0 [following from
Eq. (25)], takes the form

H® = e, + () - (P - 24,9, (67)
Taking the relation "
9*H\?

— = 68

oF.F, (68)

into account, Eq. (10) yields
M = 0. (69)

Integrating by parts the term which contains derivatives of f9 in Eq. (65),

asM o (0)6.5‘ )_ .- (0)3551) 8 9SWm
_zjdqdp 6t3 (f,, o —Ev:qudeu e (1)
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and using of Egs. (66),(69), and (12) for HO®) leads to

TOO

with

A E

T / dgdP fO A, (71)

50 GHO §SH S OH® dSY

B aQiaPK BQN

PHO 95D 9SM 152 H® aSY aSY

6})1 _aQiaQK aPr: 8-P:.

—aQia-Ps aq:-: aR +§aqiaqﬁ: aPrc BP: .

After a lengthy calculation, which is presented in Appendix B, one obtains

A = ! d (3—)&1 163_3*(0)};z52 B*(O)((B( ))')"52

2m,,g,,dq
g 1 851(;1)( . 0
+g:[ mygy 044 o
~———(b(°) ¥ 85 )) d
evB:(O) 6‘“ oz

T BO\" oy | ¢ By

L) (o0 %5)

850
(0), Z-v
(b oz )

o250 L) 000 o

0z ox

_ee{[@x,,@]'aéﬁ” ~ [
€y B}jw) z Oz

CH (B(O))' (0) (0)
+ZW{(“’ (-

-

sl ) [
€y

(BOY 5(©) 95"
B x] 0z }éy

i)(b(O)BS.E’ s 958 )
oz /\'*

0z b; oz

8 asw d s
) M Wslesil 128 (0) v
oz (ez oz ) o Bz( * Oz )]

+(bz 5:5 b: ayaz)éy}

+Z,‘i (- %) -

bO. i) 0 '(’1)] 2

oz 6Q4

B TS B (e, 6)68(’] o)
" e, B lag, " ox ) " 9= 0qa b
o [ 9SW 595
_[E;:(ez- Oz ) a (ez- Bz) 0q4 ]b 64} (74)

(0)
We note here that the last two terms in this expression, gﬁ [ ] and — —H—%@}-{ e },

vanish after employing the ansatz (76)

for S(V) below. By substituting the integral
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over the momentum space according to the rule (a proof is given in Ref. [13])

[apsO -~ [ dug B 59 (74)

the second-order perurbation energy, with the help of Eq. (55), can then be
written in the form

FO = [ @21 = [ dgsdug, B;OSD A (75)

Since the equilibrium is independent of « and z, an appropriate ansatz for the
function SV is
50 = GW(y, gs, p)e k=), (76)
The wave vector k., introduced here is defined by

kzz = Kz€; + K.€,, (77)

and therefore it lies on magnetic surfaces. By introducing real quantities by the
rule

AB — %Re A*B (78)

the second-order energy, after some algebra, can be put in the form

F@ = sz [ dgsdpdy O

B*O
x{ u 3 (2_|G(1)l2) "146 E?—(klllG(l)P)kl

m, q4
c\2 , 0 ((BOY (1) (3(0)) (1)2dk¢
+(6y) k 6 (B*(O) lG |)+ B*(D) ( ) ngk.L|G I
__C (B(D))’k"kl—|G£1)I2}
€L 1My,
B+ afo Kkt 8B
= SZ]dqdpdy{ |G(1)|2 g _%;_le(l)lzf(E) 5
S dk
+Q4'—kﬂk¢|G(1)|2 fg +Q4‘—k|| J'|G(l)| (O}
eX2: (B(O)) (1)2afgv c\? -( ) dkL (1)12 £(0)
_(—8:) H9v—F3moy B*(G) J.lG | -2(6_) HGu B*(O) IG | fgu
fu c BO)Y  dk
+ (B IGIPE +2( Vi ks G416 ‘”P o,

(79)
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where
by = (kas - ), k= (6 X k) - ey, (80)

and S is a normalization surface. It can readily be shown that

d
d_y'kJ_ = Ya:zkﬂa (81)

on the basis of which the second term cancels the fourth term on the RHS of Eq.
(79). F® can then be cast in the neat form
B:(U)

F@ = —SZjdq4dpdy{ =

afi g, 0f3)
X(k” S O )} (82)

lelk (k” , vg?}))

with )
*(0) def e, B
PLE (89
and (9 as given by Eq. (56). We note that F® depends on G(!) only via |G(V].
Since the first-order charge density p1) is a gq, p integral over an expression
that is linear in SMand therefore also in G{!), one can satisfy the relation p(!) = 0
(invoked at the beginning of this section) by a proper distribution of positive and
negative values of G{!), on which F (2) does not depend.

V. Conditions for the Existence of Negative-
Energy Modes

The conditions for the existence of negative-energy modes obtain if the chosen
frame of reference is the one of minimum energy (e.g. for the equilibria of a
homogeneous magnetized plasma one can choose the frame of minimum energy
as that in which the centre-of mass velocity parallel to B vanishes).

The simple case of a homogeneous magnetized plasma is first examined; then
more complicated equilibria are considered as follows.

A. Homogeneous Magnetized Plasma

For B© = constant the guiding centre velocity ‘vgf,) is parallel to B and fg(g)
is independent of y. Since the plasma is homogeneous, the perturbations can be

of the form
S = GO gy, p)eE®), (84)
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where k = k.e, + kye, + k.e, and F (2) takes the simpler form

FO = vy [ dasip [ GOPEO . k)
3

Q4 f ] (85)

gv 6q4

with V a normalization volume. Thus, F® < 0 if
af(ﬂ)

>0 86
gu a% ( )

holds for some ¢4 (we recall that H_ is the velocity parallel to B®)) and x and

for any particle species v. The condltlon (86), which was first derived by Pfirsch
and Morrison (8], guarantees the existence of negative-energy modes without any
restrictions on the magnitude or orientation of the wave vector other than & # 0:
0

it suffices to localize G{!) to the region in g4, p where g%%% > 0. Outside this
region G!) vanishes. All the other G’&l), i.e. with A # v, are set equal to zero. The
sign of F(?) is then determined only by the sign of the integrand in the region of
localization. For f;, (0) symmetric with respect to g4 the condition (86) is satisfied
if a minimum w1th respect to g4 exists in fj, (0),

B. Inhomogeneous Force-free Plasma with Sheared Mag-
netic Field

The equilibrium magnetic field now has a constant twist as one proceeds along
the y-axis. It is given by
B = BO(sin aye, + cos aye.), (87)

with B(® = constant and o~! the twist length. The electric current associated
with this sheared magnetic field is

3@ = —(¢/4r)aBO, (88)

and therefore the mean Lorentz force vanishes. In order to guarantee a uniform
plasma pressure, f(o) (as in the case of a homogeneous magnetized plasma) need
not depend on y. Smce B = constant, the perpendicular component of 'v(o) due
to grad-B drift vanishes and the second-order wave energy [Eq. (82)] reduces to

B*(D)
FO = -5Y [ dydgidu | S 100PK
af(O)
.9' 8q4] o

i



This form again implies that if the condition (86) is satisfied locally in ¢4 and p
for any particle species v, with the localization of G (y, g4, p) being performed
in g4 and p as in the previous subsection, negative-energy modes exist without
restriction on the magnitude or orientation of k.. (other than r) # 0). This
result agrees with that obtained by Correa-Restrepo and Pfirsch [10], condition
(67), in the context of Maxwell-Vlasov theory.

C. Magnetically Confined Plasma
1. Parallel Modes (k. =0)

In this case Eq. (82) again reduces to Eq. (89) and therefore negative-energy

modes exist if the condition (86) holds for some y, ¢4 and p. Since fg(g) is now

y-dependent, the perturbations GM(y, g4, p) are localized around the values of y,
, afL) : .

g4 and p at which g’%—afi— > 0. Outside this region G{!) vanishes. The functions

Gf\l) for the other particle species are set equal to zero.

2. Oblique Modes (k) # 0 and k; # 0)

. " aryQ ;, Of)
With the definitions C = kg - 'ug?) and D = k“—a—é% — kl;%@_@%_ Eq. (82)
implies that F(? < 0 if

(C>0 and D>0) or (C<0 and D<0) (90)

We now consider separately the following cases:

a) If

udl) g

gv 94
holds again locally in y,q4 and p for any particle species v, it follows from inequal-
ities (90), with the help of the equilibrium condition (60), that negative-energy

modes exist, provided

k k
i < ITliIl(AU,My) or | > m&x(Ava Mu)'; (91)
kl k.L
with ) o)y (950 /
A déf _ 47"9u#(P ) d_.e_;f gll( fgv/ y) (92)
v —"mu%B(u)wz(o)' ) v w:(o)(afgy/aq4)'
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The perturbations G{!) are localized as in the previous case of parallel propa-
gation. The order of magnitude of A, and M, depends on the particle energy.
For particles with velocities of the order of the thermal velocities (v, ), (thermal
particles), these being the most representative particles, one can use the unreg-
ularized theory [g(2) = 2, §, = 1, ¢4 = v)] because (v, ) is far lower than the
critical velocity at which the singularity discussed in Sec. II1.2 appears in this
theory. Defining

myc

Ru(y,m) = —pryone:(v) = U(I(I,)Y () (93)

with the help of Eq. (53) for Y;, one has

(Uu)thl _ (TLu)th
W) L L
From Eqs. (51), (52) and (55) it then follows that B}(® = BO)(14 R, (y, (v,)m) =
B©) and from Eq. (83) that w*©® =~ w(®. Therefore,

pB® 1 max(P®)  (v,)u P(0) il ( 75

R,(y, (v.)m) = <1, (94)

th
A = m, ()i w® (BO)?2/8x ~ GO L (BO)?/8xr ~ L Ai(0) <1
(95)
and 1
M, ~ ('Uu)th _ (TLv)th <1, (96)

WwO L L
where (71, ) is the Larmor radius at a thermal velocity, L is the macroscopic
scale length, and P(®(0) and B;(0) are the pressure and local beta at y = 0,
respectively. Consequently, condition (91) imposes no essential restriction on the
magnitude or the orientation of the k;. connected with negative-energy modes.

b) If
94 af
gu a‘h
at some y,q4 and g for any v, a condition which is more frequently satisfied, e.g.
in the case of a Maxwellian distribution function, it follows from inequalities (90)
that negative-energy modes exist if in addition

<0, (97)

L] < max(A,, M,) (98)
ki

holds. For particles with thermal velocities the last condition, with the help of
(95) and (96), implies that

min(A,, M,) <

51, (99)



and therefore the most important negative-energy perturbations (in the sense that
the less restrictive condition (97) is involved) concern nearly perpendicular modes.

3. Perpendicular Modes (k = 0)

Using the equilibrium condition (60), Eq. (82) reduces to

F? — 47r32jdde4dy [&(C/eu)ﬂGE})lzki

B(0) gx©)
dP© 5f(©)
< :;; ] (100)
This implies that if the condition
dP©® 9O
o 6; (101)

is satisfied locally in y, g4 and p for any v, negative-energy modes exist without
0

any restriction on k; and irrespective of the sign of the quantity gi%‘—;:i). We note
that in the cases of a homogeneous magnetized plasma and a.nuinhomogeneous
force-free plasma with sheared magnetic field, in which gradients are not present,
propagation of perpendicular negative-energy modes is not possible [for kj = 0
Egs. (85) and (89) yield F®) = 0.

The consequences of condition (101) for tokamak-like and stellarator-like equi-
libria will be examined in the next section.

VI. Perpendicular Negative-Energy Modes in Equi-
libria Related to Magnetic Confinement Sys-
tems

A. Tokamak-like Equilibria

To describe equilibria of this kind, we use a shifted Maxwellian distribution func-
tion. Since we shall be interested in thermal particles, the unregularized theory is
again employed, in the context of which the shifted Maxwellian distribution func-
tion reads (to simplify the notation, the superscript (0) is suppressed in the rest of
this section on the understanding that all the quantities pertain to equilibrium):

P () R S () P {_#B(y)+1/2mu[q4—m(y)12}
@~ \2r/) 1+4R(y,V(¥) T3 *(y) T,(y) '

(102)
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Here, V, (y) is a parallel shift velocity so small that

V;J ~ (rLu)th
(Uy)th L

<1, (103)

where N, and T, are, respectively, the number density and temperature (in energy

units) for particles of species v, and R, (y, V.(y)) = -—LV (y)Yzz(y) [Yz: defined by
Eq. (53)]. We shall later show that V,, produces a net “toroidal” current (the coor-
dinates x and z correspond to the poloidal and toroidal directions, respectively).
The distribution function has been normalized so that

| das [ duByfu = N.. (104)
In addition, performing the integrations in Eq. (61) one obtains as expected,

P=Y / dgsdp pBB:fp, = S N,T,. (105)

Inserting the distribution function (102) in condition (101) yields

v

Pohy _ [N ST pB(L By, mla-VRT:

dy By N, 2T, T,\T, B 5 T, T
R:/ q4 — ‘/U r]
—1 S R,, + m,- T,, Vy fgv < 0. (106)

The terms T%: and m,q“—j_:ﬁV‘j in (106) can be neglected because

IRV(y) Vv(y))l < |Ru(ya (vu)th))| <1 (107)

and

v P, ‘/u"“" ¥ -
R} W) (w)wl L L

Condition (106) can then be written in the form

(q4 — VV)V’ ~ 1 !~ 1 ‘/:’ — ]' (TLu)th < 1' (108)

dP Bfgy N!
dy Oy ( )Q fov <0. (109)
Here, N,
ZN 15 ( ) (14 n,), (110)
with

N, =0InT,/0ln N,,
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and

def 3 é[ 4_W(N:,)-‘ ] l 4
Q, =1 5+ T n+ N, P +§myT—ynu. (111)

VI.1.1 Singly peaked density and temperature profiles

It is now assumed that both the density and temperature profiles have only one
maximum for all particle species v, which is the most common case in tokamak
equilibria, and therefore 5, > 0 for all v. [Equilibria which exhibit singly peaked
density and hollow temperature profiles or vice verca (7, < 0) will be examined
later.] This implies that P'(N]/N,) > 0 and consequently the condition (109) is
satisfied if @, < 0. Since the last two terms of Q,, which involve the perpendic-
ular and parallel particle energies are non-negative, taking the limit 4 = 0 and
gs = 0 the inequality @, < 0 is satisfied if

n, > 2/3 % g (112)

holds for some particle species v. The existence of perpendicular negative-energy
modes for any wave number k, is therefore related to the threshold value 2/3
of the quantity 7,, a quantity which usually rules the onset of temperature-
gradient-driven modes. The linear stability properties of these modes have been
extensively investigated. To be specific, performing a kinetic stability analysis
of the ion temperature-gradient-driven mode Hahm and Tang [16] obtained a
¢ > 1. Hassam et al. [17] examined the same in-
stability for short and long wavelengths in a wide range of collisionality. For
collisionles modes of arbitrary wavelength, a domain which corresponds to that
of the present analysis, they calculated { = 2. In addition, Guo and Romanelly
[18] recently studied the linear 7{ threshold in various domains of collisionality,
wavelength and shear. For singly peaked density profiles they also calculated a
threshold value nf > 1 (see Egs. (21) and (23) of Ref. [18]). Accordingly, the
value n¢ = 2/3 appears to be subcritical in the sense that it is lower than the
linear threshold 7n¢ value, and therefore the possible existence of negative-energy
modes below the instability threshold implies that self-sustained turbulence may
be present in a linearly stable tokamak regime. This result agrees with numer-
ical results on drift-wave turbulence obtained by Nordman et al. [6] within the
framework of a nonlinear dissipationless fluid model. Specificaly, in this paper it
was demonstrated that the presence of 7;-mode turbulence substantially below
the linear stability threshold, e.g. in the example given in Fig. 1 therein 5 < 1
with 7f > 1, and the driving mechanism is attributed to the interaction between

critical value for instability 7
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negative- and positive-energy modes. The subcritical 7i*-value (depending, ac-
cording to the authors, on the finite Larmor radius parameter k’r}) is, however,
not uniquely specified. We also note that self-sustained drift-wave turbulence in
a linearly stable plasma slab resembling the edge region of tokamaks was demon-
strated numerically by Scott [3, 4] in the context of a nonlinear collisional fluid
model.

We shall now calculate the phase space occupied by the particles associated
with negative-energy modes on the basis of analytic solutions which are derived
as follows (henceforth particles of this kind will be called active particles).

Inserting the distribution function (102) into the equilibrium equations (58)
and (59) and carrying out the integrations with respect to ¢4 and u, they can be
cast in the form

. B b, B 1
e L EeUNV-—cE(NTVBZ%) (113)
and
! !
o= =e = g, ZeyNV+cE(NTVB ) (114)

Each of the last terms in these two equations,

B’ ! CNUTU Vu (TLu)th CNUTU ((T"Lu)th)2
V.= ~ R 115
("'N LYo g2, ) LB (v)m L IB \' L 115}
with 7 = z, z, is much smaller than the rest of the terms, C%P' and
vB em, T, NT, V. L N,T,
bees NV, = S SPEN,Y, S ~ (116)

cm, B my(vy)th LB (v,)w (rL,,)thN LB

They can therefore be neglected. For simplicity we now restrict discussion to
T: = 0. For cold ions and a constant “toroidal” magnetic field B, = By, Egs.
(113) and (114), respectively, yield

C%P' + eb.N. V. =0 (117)
and
De = cB.
CEP —6b N‘/c,_—_/-l-ﬂ'_ (118)
with e, = —e and
Pe= N1 (119)
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Let us briefly discuss here the meaning of V.: For V. = 0 one obtains from Eq.
(114) the “toroidal” current density

. ch,

Jz = ? £, (120)
On the other hand, Eq. (117) yields for this case P’ = 0. Hence there is neither
a pressure gradient nor a “toroidal” current.

For a y-dependent “toroidal” magnetic field component B.(y) and V., = 0,

Eqgs (113) and (114) become

B, b,
/4
bz

and their solutions satisfy the relation B, = c¢B, with ¢ = constant. The mag-
netic field is therefore shearless and the only possible equilibrium which can be
described by any of Egs. (121) and (122) is a stellarator-like configuration with
vanishing “toroidal” current, a case which will be examined in the next subsec-
tion. _

To obtain analytic tokamak-like equilibria with V, # 0, it is convenient to
consider, instead of Eqgs. (117) and (118), Eq. (117) and the equilibrium condition

B B

et o _ 12
P+ 5 = B By, = constant (123)

Two of the quantities B, P, V,, N,, T. appearing in Egs. (117), (119) and (123)
can be arbitrary functions of y. Accordingly, assigning the y-dependence of P
and V,, one can obtain from Eq. (123) the magnetic field modulus B and, since
the toroidal magnetic field B, is given (B, = B, =constant), the “poloidal”
component B, (strictly speaking, the absolute value of B;). N, can then be
determined from Eq. (117) and subsequently T. from Eq. (119).

Choosing the singly peaked pressure profile

_Bf 1

S Sl (124)
with B, = constant, p = y/L, L corresponding to the plasma radius, and
B+ B =B, (125)
one obtains a hollow B-profile
B = (B? + B?tanh® p)'/?, (126)
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Ve(y) (Choice)  Ne(y)  Te(y) e

By 1 N(0)  Ze(U)
Ve(0) _BQ coshp  coshp cosh p

By, 1 T.(0)
Ve .
O%F coeh?p C;fm“t cosh’p
e(0
%(0)%0- (Tds%% constant 0

Table 1: Equilibrium quantities for non negative-n.. B is given by Eq. (126)

an antisymmetric “poloidal” magnetic field
B, = B, tanh p, (127)

and a peaked “toroidal” current density

. —CB;: . jz(O)
2= T4 T cosh? p’ (128)
with B
. CD,

We note that Eq. (118) is then satisfied identically.
VI.1.1a Phase space occupied by active particles

In the following we find the phase space occupied by the active particles for the
three cases of Table 1, which are characterized by three constant 7.-values. We
note here that only four of the constants By, Bs, Beo, Ne(0), Te(0), jz(0), Ve(0) and L
appearing in the various expressions, e.g., Bo, Ne(0), 7.(0) and L, can be treated
as free parameters. The others can be expressed in terms of the free parameters
via the relations (125), (129),

NAOVL(0) = (130)
and
N.OT.(0) = B2, (131

the last two relations following, respectively, from Eqs. (118) and (124) evaluated
at p=0.
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i)

The condition (109) then yields

Ne =1

Wy

W 1

T —
[1+T(p)] 7 tT <3 (132)
with W, = pB, W) = §m.v? and
def 8T N(0)T.(0) 1
T(p) = .
() B* cosh? p (133)

The fraction of the active particles is represented by the shaded area of Fig. 1.

Wy
T ]
2(14T(p))
IS
(0,0)

Figure 1: The phase space occupied

Invoking the theorem of equipartition of
of T'(p), maxT'(p) = I'(0) = Bi(0), is an

CE

by the active electrons for 5. = 1.

energy, and since the maximum value
order of magnitude lower than unity,

relation (132) implies that nearly one-third of the thermal electrons are active.
Thus, since the value 7. = 1 is equal to the critical value for linear stability or
probably a little lower, negative-energy modes involving a considerable number
of thermal electrons are present in a marginally stable (or stable) regime.
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il) me — oo

In this case a flat density profile results from the choice of V, given in the second
line of Table 1, whereas, to guararntee that the pressure remains unchanged, the
temperature profile becomes more peaked. Since N = 0, condition (106), instead
of (109), is now evaluated and leads to

W

2+ r(p)]";j o< (134)

The phase space occupied by the active electrons, following from inequality (134),
is represented by the shaded area in Fig. 2.

CE

Figure 2: The phase space occupied by the active electrons for 7. — oo.

All thermal electrons are now active, as expected, because 7. approaches an ex-
tremely large value.

ili) 7me=o0

This equilibrium exhibits a flat temperature and a peaked density profile (see
the third line of Table 1). In this case condition (109) furnishes

B
2+ ’—‘T—P(p) <0, (135)
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Ve() Ne(y) Te(y) ne(y)

constant Ne(O)%Qa;iT; TE(O)B}% - (22_(%) p)
By 1 B By 1 2+ T(p)

ve(0) (E% cosh? p) NC(O)BE TE(O)—BQ cosh? p —( I'(p )

Table 2: Equilibrium quantities for negative-n.. B is given by Eq. (126) and I'(p)
by Eq. (133).

and therefore no negative-energy modes exist, as again expected, because 7. takes
its lowest non-negative value well below the subcritical one.

For all the equilibria considered [see inequalities (132), (134), (135)], since
I'(p) is a decreasing function of p, the shaded area in Figs. 1 and 2, and therefore
the fraction of active electrons, increases slightly as one proceeds from the centre
(p = 0) to the edge (p = 1). This indicates that self-sustained turbulence exists
to a higher degree in the edge region.

VIL.1.2 Hollow temperature or hollow density profiles

For equilibria with negative values of 7. criterion (112) does not obtain. Equi-
libria of this kind have been experimentally observed in H-mode confinement in
tokamaks [19], as well as in discharges with electron cyclotron resonance heating
in stellarators [20]. For this reason two equilibria with pressure, magnetic field
and current density profiles identical to those considered previously, Egs. (124)-
(129), but with negative n.-values, are examined as follows.

VI.1.2a Singly peaked density and hollow temperature profiles

This situation is realized by the first line of Table 2. Condition (109) yields

w, 3 1 3 ( 2B? 2)
-T;<§_H;—-§+ 1+ Bf cosh Pl (136)

We note that the perpendicular particle energy Wy does not appear in inequality
(136) because the factor which multiplies uB in Eq. (111) vanishes. Inequality
(136) imposes no-restriction on the active thermal electrons.
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VI.1.2b Hollow density and singly peaked temperature profiles
This situation is realized by the second line of Table 2. Condition (109) leads to

2[1 +T(p)]

T HRHTEIZL <)+ 34T, (s

€

and the phase space of active electrons is depicted in Fig. 3.

Wy
T 5 1
11 IFTG)
:oooco-oc 3 F(P)
I ING T
(0,0) W,
T.

Figure 3: The phase space of active electrons for hollow density and peaked
temperature profiles (negative 7,).

Nearly all thermal electrons are active.

For the equilibria with negative 7.-values considered, [see inequalities (136)
and (137)] the phase space of active electrons, as in the cases of equilibria with
non-negative 7.-values, increases slightly as one proceeds from the centre to the
edge.

B. Shearless Stellarator-like Equilibria

The distinguishing feature of these equilibria in comparison with the tokamak-like
ones is that the net plasma current vanishes. To derive equilibria of this kind, an
appropriate distribution function is a y-dependent Maxwellian

_ (M2 No(y) #B(y) + 3mu.q}
Jou = (51?) T2 (y) l‘ T,,(yz) :

which is a special case of Eq. (102) for V,, = R, = 0. Consequently, if one performs
an analysis similar to that followed in the previous subsection, first-order terms

(138)
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in (rz,)/L do not appear and only those of the equations (104)-(123) which
contain V, and R, must be modified by replacing V, = R, = 0. Thus, the
condition %g—%;ﬂ < 0 furnishes , through (109), the same subcritical value
n° =2/3.

To obtain the fraction of active particles in the case of cold ions, we first
consider the relevant equilibrium equation '

cB! b

o= =SE =P, (139)

which contains the single “toroidal” magnetic field component B.. The equilib-
rium condition (123) is not an independent equation and therefore the pressure
P(y) can be an arbitrary function of y, as it is in the case of tokamak-like equi-
libria. Choosing the same singly peaked pressure profile given by Eq. (124) the
solution of Eq. (139) reads

B, = B = (B? + B?tanh?p)'/%, (140)

We note that to prevent B, from vanishing at y = 0, the constant magnetic field
By must not be zero; otherwise a singularity would appear because the Larmor
radius would approach infinite at y = 0 and the drift kinetic theory would become
invalid. The “poloidal” current density corresponding to B,,

¢ 1 tanhp

Jo =

47 L B cosh®p’

(141)

is an odd function of y and therefore no net current flows through the plasma.
The electron density profile N.(y) can be freely chosen; the temperature T¢(y) can
then be determined from the relation P = N.T'e. The same N,(y) and therefore
n.-profiles examined for tokamak-like equilibria are adopted. We note that the
scale length L and three of the constants B, Bo, Boo, Ne(0), Te(0), e.g. Bo, Ne(0),
and T,(0), can be used as free parameters. The other two can be expressed in
terms of the free parameters via relations (125) and (131). The phase space
occupied by the active electrons can be obtained from relation (109) for N; # 0
and (106) for N, = 0. In these relations the only macroscopic functions involved
are P, N,, T. B and their derivatives. Thus, since these functions are identical
in form to the corresponding functions considered in the case of tokamak-like
equilibria, the results of the previous subsection that concern the phase space of
active particles are also valid in the stellarator-like regime. It therefore turns out
that, as far as the existence of negative-energy modes is concerned (within the
approximation considered in the present work) the two confinement systems are
equivalent.
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VII. Conclusions

The conditions for the existence of negative-energy modes with vanishing initial
field perturbations were investigated for the cases of homogeneous magnetized,
inhomogeneous force-free and magnetically confined plasmas with plane equilib-
ria. To this end, the second-order perturbation energy was obtained, Eq. (82), by
evaluating the general expression derived by Pfirsch and Morrison in the frame-
work of collisionless Maxwell-drift kinetic theory. The conditions need only be
satisfied for some particle species v, locally in ¢4 and x for a homogeneous mag-
netized and an inhomogeneous force-free plasma, and locally in y, ¢4 and x for a
magnetically confined plasma, and they obtain if the reference frame is the one
of minimum energy. They are as follows:
For a homogeneous magnetized plasma and an inhomogeneous force-free plasma

with sheared magnetic field:

(0)
If gi?géi’— > 0, parallel and oblique modes (kj # 0) exist with no restriction

on either the orientation or magnitude of the wave vector k.
For a magnetically confined plasma:

1. For parallel and oblique modes the above condition is also valid with no
essential restriction on k.

(0)
2. H gi%'%:— < 0, a condition which is more frequently satisfied, the possible
v

oblique negative-energy modes are nearly perpendicular.

3. Purely perpendicular negative-energy modes (kj = 0) also exist for any k,
i 4P g tive of the sign of the quantity 20 (p(y)
1 Hf_agy_ < 0, 1rrespective of the sign of the quantity gy_ai_ y) 1s

the equilibrium plasma pressure).

The consequences of the last condition were examined for tokamak-like and
stellarator-like equilibria, described on the basis of, respectively, a slightly mod-
ified Maxwellian distribution and a Maxwellian distribution function. It turned
out that the existence of perpendicular negative-energy modes is related to the
threshold value 2/3 for 7,, which is lower than the critical 7,-value for the onset
of linear temperature-gradient-driven modes.

For various tokamak and stellarator-like analytic cold-ion equilibria with non-
negative 7., as well as with negative 7. for which the criterion 5. > 2/3 is not
necessary, a considerable fraction of thermal electrons is associated with negative-
energy modes (active particles). In particular, for linearly (marginally) stable
equilibria (7. = 1) nearly one-third of the thermal electrons are active. For all
equilibria considered the phase space occupied by active electrons increases as one
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proceeds from the centre to the plasma edge. It is shown that the above results
are exactly the same for stellarator and tokamak-like equilibria if their density
and temperature profiles are identical. It therefore turns out that negative-energy
modes related to nonlinear instabilities which could cause anomalous transport
in a linearly stable regime exist equally well in both confinement systems.
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Appendix A

Calculation of the expression A involved in the second-
order wave energy

From Eq. (67), one obtains

oHO '
L =0, % |
BQ4 V=0 (A )
and -
3z |V o =0. (A.2)

We note that the constraint Py = 0 is not involved here, because P; does not
appear in H). If one recalls that P, = (P, P4) and g, = (, ¢4), these relations
imply that

26(1) gH©) 55(1)
a v v v — 0, (A.S)
0q:i0P, 0q. OP;
that is, the first term in A, Eq. (72), vanishes. The other three terms are calcu-
lated separately as follows.

52500 HHO S
The term gm —apx— —BP;—

It is convenient to write this term in the form

925M 9H©® §SW K o asy)) BH,E")] asM

dq:0q. OP. OP; oz 0x ) 0P ] OP
8 9SW\ HH® asM)
+(a_¢, o ) 5P P,

8 (0SW\H®Y a8 525 dH©® §SM)
+[a_a:( 3q4) 9P, ] oz dq2 0P, OP;
(A.4)

(0)
By virtue of %%- = (), the last two terms on the RHS of Eq. (A.4) vanish.

(0)
To calculate the first term, use of the relation ng,— = vg?) and Eq. (56) for

'vg?,) furnishes

) (359) ) OHP ﬂi[a 5O . as(}l ) 9 asml ]
9z \ oz P 0P g, |0z p Oz Oz |p
e (BOY [() d ( 88(1) .
e BO % 52 \% )P




0 3.5'(1)
_p0
b o (82 )lp] (A.5)
Equation (34) implies that
P oS oS0
oz |p = Oz ‘V
ool e OA" as,(})
=%z lv <0z 0P ke 6]

Since A*(®) depends only on y for any vector 7., perpendicular to the y-axis [such
as the vectors b, e, and e:], the relation

OA:® 95
Tz ( oz 0P :c) =4 (A7)
holds and therefore a5 o
" e |p =T B v ety

Applying the operator %lP to the last equation yields

8/ aSw 9 AS)
)|P N B—m(rn' oz )V dz |V BP( " The
0 35(1)
m( rz

oz () )’V
_c_,,BAZO_{(m a)[as(ﬂ

c Oz Oz

a c')S(”
a_m (Tz:z

v

By o

Relation (A.7) has the consequence that higher-order terms in the expansion
(35) for S, after imposing the constraint V = 0, do not contribute to Eq. (A.9).
Using this expansion Eqs. (A.6) and (A.9) yield, respectively,

as(l) S ¢, 040
’V—o - Oz +? oz &
S e, d8M
=Pz ¢ Oy St
and
d aSM 9 (r . 65',(,") " e DALY K" . —a-)f]
%(T"' ‘P).P‘V_o T dxz\ T Oz c Oz = dz/)
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where

asM 1 a8Mm
—— (0) L (- v_p(0)

E CVB:(O) (b X 32! ) mug"v aqtl b ' (Alz)

We note that to calculate the RHS of Eq. (A.10) and (A.16), (A.17) and (A.18)

below, relations (55),

%‘3 5@ =0, (A.13)
and -
%b—m 59 =0 (A.14)

are helpful. The second term on the RHS of Eq. (A.5) can then be calculated on
the basis of

ab® 95 ,8560 ,0
T e |p = [ 5 + ()

following from (A.10). The other three terms in Eq. (A.5) can be calculated by
applying the relation (A.11) to ro, = b\, e, and e,:

)| _ i(bm).%ﬂ)_(b(oﬁzsﬁ” " 5(0)3255”) .
P oz oz T 9zdy ¢ Oydz) v

5
- ]ey, (A.15)

d (b(") ast

oz
(A.16)
d s d a5 azs(l)
© o2k — “lenttt Al
oz (e oz P) P Oz (e 6‘.1:) Bz@y Al
d asm d asm 325(1) |
a_a:(e"' oz P)P a 32:( et Ba:) Bydz Y (A-18)

Inserting Eqgs. (A.15) and (A.16-A.18) into Eq. (A.5) and taking the inner product
1
of the resulting equation with %‘S%_-,— = —§ the first term in expression (A.4) reads

(%5 B B = B~ ) (0 )

(b(o) BS ) 0 (6(0).6____5'(’1))
e, *(0) oz oz oz

928 628( )
+(b§”m +HOE ),

oy B2 4 )35 e}

-
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B (b0 2 (020 o2

)

e B 0z Oz
st (00 58 (e 52
o

with §, = (ey - §).
By a similar but simpler procedure, because g4 is a scalar variable and b©
does not depend on ¢4, one calculates the second term of Eq. (A.4):

(6 asMm ) 0H® SV a (9sM OH® as
dqs 0z |P) 8P 9Py E)E(az P OP )8P4
_ W 3((0) a5¢ ) ’ ((n)_ 8)35’9’
= 56500 ) T 40 g ) e
_ceu (BOY { (0)[ ¢ ( 35‘51))
e B 10q4 oz
5(1)
+£4(ea:' ) 6 }
9[- i (e 5) + (e 32) 1)
= 6 * ox/) dqs 1)’
(A.20)
with -
1 as!
_ (0), Z=v
§a = muéyb e (A.21)
The expression (A.4) is then the sum of Eqs. (A.19) and (A.20).
o2H® 9SM oS
The t -
e term 7P, 04, O,
)
Since ?B}%O— = 0, this term can be written in the form
PHO 9SMaSH o (GHPY 9SH aSW
8¢:0P. dg. 0P, a_@,( oP ) oz 0P,
9 OHOY\ 9SW7 asM
[(?9} apP ) oz ] P s
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This expression requires calculation of

d 8H(°) d d
— v — 0 _ " (44 (0)_%(0) (g),a( 1 ) ©)
aq“( aP) B4 " dq4(§:)b OB g B (e, x b@)
d B )
(A.23)
and, with Eq. (A.10) for Qg:-
(iaHﬁm) 95 ‘ _ s b 9 5(1) |
am BP (923 PV:O B 9v Bﬂ.’: PV—O
c 9 [(BYY (0,] a5}
‘ueuam[ B:(O) (e, x &™) " hm
,05(1) ,85M
= gf[(bgﬂ)) 5=+ (bY) _a;_]ey,
(BOY o050 [(BOY o1/050
e {[B*(O)b ] oz _[B:(O)b ] 0z }e”
(A.24)

On the basis of Egs. (A.23) and (A.24) one then obtains

9*H® 95 st ,85() 8w
Gom g = el v w

{[(3(0)) 4O vag(l) [(3(0)) 40 ] 35(1)}&;

B*(0) "2 oz B;‘(O) z
d s s é (BOY a5m as(m
it (%) (b(U)_5_+b(0)_a_)§4—m,,( ) i Yer o 5 (80254025 ),
(A.25)
The 9?H 55 oSV
e term
BqIBQK 8] 3]
After some algebra one calculates
32H(0) d (Q4)
—— =-m A.26
aqg V=0 d<14 gv ( )
&*H® e, v 643 c, (BOY
Y = = e =m,— Gt Yi.e,, (A7
920q4 |V =0 c oz 0q et go e (A2)
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and

a 3H,£0) 351(,1) 0 (0H} (0)
[55( oz ) " OP V= ‘Eyam( )iV-o
&y . B!
— {?g%Y;:z +#By(0)[£W)L] }‘Syey.
(A.28)

Inserting eqgs. (A.26- A.28) in the expression

9*H® a5 g5 0*HO) (83}}3)? (a 6H§°)) s gs(1)

9q:0q. 0P, 0P, 93¢ \ 0P dqs 0z ) 0P 0P
8 aH™\ ast1 asiM
[(55 oz ) aP]' oP
(A.29)
yields
9*H©® 55 g5 , d (BOY
8q:0qx OP. 0P —m"g"dq4(g_)£“+2m”e ‘“g"yﬂ_irﬁ“fyf‘l
_ S ay g2 *(0)[(3“)] 2
(A.30)

On the basis of Eqs. (A.3), (A.4), (A.19), (A.20), (A.25) and (A.30), A is written
in the form given by Eq. (73).
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