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Abstract

For a system of van der Pol-like oscillators, Lyapunov functions
valid in the greater part of phase space are given. They allow a finite
region of attraction to be defined. Any attractor has to be within the
rigorously estimated bounds. Under a special choice of the interaction
matrices the attractive region can be squeezed to zero. In this case the
asymptotic behaviour is given by a conservative system of nonlinear
oscillators which acts as attractor.

Though this system does not possess, in general, a Hamiltonian
formulation, Gibbs statistics is possible due to the proof of a Liouville
theorem and the existence of a positive invariant or ‘shell’ condition.
The ‘canonical’ distribution on the attractor is remarkably simple de-
spite nonlinearities. Finally the connection of the van der Pol-like
‘system and of the attractive region with turbulence and fluctuation
spectra in fluids and plasmas is discussed.

*Lecture at Spring College on Plasma Physics, ICTP Trieste, 17 May - 11 June 1993.
Revised version of IPP 6/277.




1 Introduction

The purpose of the van der Pol equation [1] was to study the nonlinear
oscillations of a L-Ccircuit driven by a triode. The tension at the grid was
taken as a solution of the equation

i+ -1y+y=0. (1)

The term —y represents the amplification of the triode while 427 is due
to its nonlinear characteristic curve (see for example [2]).

Due to standard theorems (2] of Poincaré, Bendixon, Levinson and Smith
the existence of an attracting limit cycle to equation (1) is known. Practical
calculations of the limit cycle are done by means of series expansions and
numerical calculations. A typical phase plot is given in Fig. 1 .

limit cycle

Fig. 1

Let us introduce here a modified van der Pol equation |3] for which the
Lyapunov function and the limit cycle can be constructed easily. The modi-
fied equation is

G+ (" +9 -1y +y=0. (2)
Multiplying equation (2) by y one obtains
P26+ = =+ - 1) 3
2 0t :

Due to Lyapunov stability theorems one obtains
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Stability if 92 + y% > 1,
Instability if g% + y*® < 1,
y%2 + y? = 1 being the equation of the limit cycle.

2 Stability of a system of van der Pol-like os-
cillators

The existence theorems [2] for limit cycles are restricted to the case of a
single oscillator. They cannot be extended to general systems of oscillators,
in particular due to the possibility of more complex attractors like ‘strange
attractors’ [4, 5]. Systems of oscillators of the kind given by (2) turn out
to be more tractable as shown by author’s work [3] and as expla.med below.
Consider the following system

Y + ((Y,AY) + (Y,BY)N — P)Y + CY =0, (4)

where Y is a real vector of arbitrary length r . A, B, C, M, N, P are real
r X r matrices and (..,..) is the scalar product. These matrices can be split
in symmetric A,, B, ... and antisymmetric parts Ay, B, ... .

Assume C, = 0 and A,, B,, M,, N,, P, and C be positive definite with
largest eigenvalues ay, f1, g1, 11, T1, 71 and lowest eigenvalues ayg, B, fo, Yo, To
and o respectively. Take the scalar product of (4) by ¥

((Y Y)+(Y,CY)) = —((,AY)Y,MY)+
(Y,B,Y)(Y,N,Y)— (Y,RY)). (5

26t

Two inequalities can be extracted from (5)

L2 (9,9)+ (Y,0Y)) < —fun((¥,7)+ (4,07) +
Ho
(v, (ﬂoqu C)Y) - ﬁovo)(y V), 6)
Zat((Y Y)+(Y,CY)) > —Bun((Y,Y)+(Y,CY) +
(¥ (24, = O)Y) — 2o )(F,¥), @




From inequality (7) we have instability around the origin, and in case

#1
0 <0
Py i P ®
the instability persists if
. . by
(¥,Y) + (v,CY) < 5= (9)
2
From inequality (6) and
E%‘-E;A, =0>10 (10)
it can be seen that the system is stable if
e A (11)

% ﬂo”u

This leads to the definition of an attractive region in the (Y,Y), (FLiGY)

plane (see Fig. 2) G5

attractive

region

Elgs 42

Under Conditions (8),(10) any solution of system (4) will be ‘trapped’
after some time in the attractive region defined by the bounds on the right-
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hand sides of (9) and (11). The detailed asymptotic behaviour is very difficult
to study, and one should expect, in general, a kind of high dimensional
‘strange attractor’. :

If, however, the attractive region is zero in the (Y, Y),(Y,C Y) plane, then
the attractor of system (4) obeys itself a system of conservative nonlinear
oscillators [6] together with a ‘shell’ condition as will be shown below.

3 Special cases of attracting systems

Under special choices of the matrices A,, B,, M,, N,, P, and C the attracting
region of Fig. 2 can be made to shrink to zero.

3.1 First choice
Assume that|[3]

A,=cl,B, = BI,C = %I, M,=ul,N,=vI,P,=7I, (12)

where [ is the identity matrix and a, 8, u, v, 7 are any real positive numbers.
Relations (12) leave M,, P,, N, undetermined so that we are led to distinguish
between two subcases.

1. My = N, = P, = 0. In this case the attracting system is given by

. a# =

V+5Y = o, (13)
')+ 2yy) = &
TN+ 5 0Y) = 2 (14)

Eqgs.(13) and (14) represent a system of r linear oscillators with a ‘shell’
condition on their amplitudes.

2. M,, N,, P, are any real antisymmetric matrices. In this case the at-
tracting system in reduced form is given by

Y+ (Y, Y)M. + (Y, Y)N,-P)Y+Y =0 , (15)
¥ +(1Y) = e=z. (1)
)




Apart from the case of r = 2 oscillators which is completely integrable
[7], system (15) is not expected to be, in general, integrable [8]. It is shown
[6] that system (15) does not possess, in general, a Lagrangean formulation
in terms of Y and that (16), the only known constant of motion, cannot play
the role of a noncanonical Hamiltonian.

3.2 Second choice
Assume that[9]

B, =pI,M,=uI,N,=vI,P, = 71,C = ﬁiA,. (17)
v
In contrast to (16), the new ‘shell’ condition is given by
(Y,Y) + (Y,CY) = const. (18)
The attracting system is now

Y+((Y,Y)M, + (Y,Y)N, - P,)Y + CY = 0. (19)

4  Statistics of the attracting systems (15)
and (19)
Y
X

Introduce
the ‘shell’ conditions (16) and (18) become

1=2r

Z:E:z = € (20)
=1
i=r 1=2r
dYozl+ Y zmicjz; = const. (21)
i=1 1,7=r+1

It can be shown [6] that systems (15) and (19) represent incompressible
flows in the phase space X or

1=2r Oi: 2r
= Z zng;z; =0. (22)
; Ox; ij=r+1 e
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Liouville’s theorem (22) and the shell conditions (20) and (21) allow us
to define microcanonical distributions if an assumption of ergodicity is in-
troduced. Canonical distributions can also be derived if the systems were in
contact with an ‘amplitude bath’.

These distributions lead for the first choice associated with (16) to an
equipartition in the amplitude expectations (see discussion in [10]). The
second choice leads to a richer class of attracting systems whose statistics
generate a larger class of fluctuation spectra [9]. In particular, a f1_2 fluctua-
tion spectrum can be produced, which compares very well with experimental
observations of magnetic fluctuations [11].

5 Connection with turbulence and outlook

In the previous section we were able to apply a slightly extended Gibbs
procedure because we were in possession of constants of motion and of a
Liouville theorem. Both properties are related to the fact that the attractive
region of Fig. 2 has zero thickness. This corresponds to exact compensation
of driving and damping at each time for each oscillator. Real situations of
turbulence correspond to a huge region of attraction usually estimated from
above only [12]. There is no way to squeeze it to zero by making some choice
of interaction matrices. In other words we cannot use equilibrium statistics
or some simple extension of it as in section 4.

Nonequilibrium statistics can, in principle, be formulated using the ‘max-
imum entropy’ approach advocated by Jaynes [13]. It consists in maximizing
the entropy

g = / fln fdX, (23)

subject to appropriate constraints which represent our knowledge about the
system

/ f9idX =C;. (24)

It leads to L 2
AT b 5
f=S=2 (29)

where the ); are the Lagrange multipliers and Z the normalizing extended
partition function. The determination of A;in terms of the known C; is made




by inserting (25) into (24).

Unfortunately, the main problem in this procedure is in the choice of the
constraints (see also [14, 15]) which have to be consistent with an extended
Liouville equation for f

of . o(a:f)

ot Oz;

in particular for the time-independent case. This is very hard to check.
The constraints could come from the experiment, which means that the phe-
nomenology has to be done first. This is a matter of trial and error and one
is never sure of the consistency with the Liouville equation. Even in equilib-
rium statistics the choice of constants of motion may be a problem but one
is at least sure to be consistent with Liouville’s equation.

Independently of the kind of statistics, the existence of an attractive re-
gion as demonstrated in section 2, is certainly useful especially if the thickness
of the attractive region is not too large. Better estimates of this region would
be desirable. Since dissipative fluid systems are expected to have asymptot-
ically a large but finite number of determining modes [16], the existence of
attractive regions and the refinement of their bounds may become a powerful
tool in fluid and Plasma turbulence.

=0, (26)
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