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Abstract

A sufficient stability condition with respect to purely growing modes
is derived for resistive magnetohydrodynamics. Its ‘nearness’ to ne-
cessity is analysed. It is found that for physically reasonable approx-
imations the condition is in some sense necessary and sufficient for
stability against all modes. This together with hermiticity makes its
analytical and numerical evaluation worthwhile for the optimization
of magnetic configurations. Physically motivated test functions are in-
troduced. This leads to simplified versions of the stability functional,
which makes its evaluation and minimization more tractable. In the
case of special force-free fields the simplified functional reduces to a
good approximation of the exact stability functional derived by other
means. It turns out that in this case the condition is also sufficient
for nonlinear stability.

Nonlinear stability in hydrodynamics and magnetohydrodynam-
ics is discussed especially in connection with ‘unconditional’ stabil-
ity and with severe limitations on the Reynolds number. Two ex-
amples in magnetohydrodynamics show that the limitations on the
Reynolds numbers can be removed but unconditional stability is pre-
served. Practical stability needs to be treated for limited levels of per-
turbations or for conditional stability. This implies some knowledge
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of the basin of attraction of the unperturbed solution, which is a very
difficult problem. Finally, a special inertia-caused Hopf bifurcation is
identified and the nature of the resulting attractors is discussed.

The purpose of this lecture is to report recent progress on resistive or
dissipative magnetohydrodynamics (MHD) in general geometry. Though the
problem of linear stability has not been completely settled analytically, it has
reached the mature level of a general quadratic and Hermitean form ready
to be minimized numerically in a way similar to that of the ideal energy
principle.

In contrast, nonlinear stability analysis still falls far short of the stage
of maturity attained by the linear theory. It was recently possible, how-
ever, to prove general statements concerning unconditional stability of three-
dimensional force-free fields and unconditional stability with respect to two-
dimensinal perturbations.

The paper is organized as follows : Sections 1-3 are devoted to the linear
stability condition. The topics are sufficiency and necessity of the condition
and simplified versions of it. Nonlinear stability is analyzed in section 4. The
topics are force-free fields, two-dimensional perturbations and a special Hopf
bifurcation.

1 Sufficient condition for linear stability

In a previous note [1] the author derived a sufficient condition for the stability
of purely growing modes,valid for general dissipative systems and general ge-
ometries. This condition is applied here for resistive magnetohydrodynamic
(MHD) equilibria. These equilibria generally have a flow which, for simplic-
ity, we neglect in the equation of motion, but which we keep in Ohm’s law.
The equilibrium equations are given by

IxB = VB, (1)
V.-B = 0, (2)
E+VxB = nl. (3)

As usual B is the magnetic field, J = V x B, E is the curl-free electric
field, V is the flow velocity due to resistivity o and F, is the pressure. The
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‘existence’ of magnetic surfaces is assumed and the resistivity is taken as
constant on these surfaces. The equations of the linearized perturbations are

pE+VP —jxB—-JIxb = 0, (4)
e+fxB+Vxb—nI—nj = 0, (5)
Vxe = —b, (6)

V.b = 0, (7)

j = Vxb, (8)

B-Vyi+b-Vpe = 0, (9)

P, = —yFRV-(-¢-Vh, (10)

where p is the mass density, Py, j, b, e and 5; are the perturbations of,
respectively, pressure, current, magnetic field, electric field and resistivity.
The boundary conditions are n-b = n- ¢ = 0, where n is the normal to a
perfectly conducting wall.

Let us express e and b in terms of the vector potential A and take the
gauge of zero scalar potential :

e = —A,
b: = VoA

with the boundary condition n x A = 0. We insert j from eq.(5) into eq.(4)

to obtain a system written in terms of ¥ = ( i ) ;

NV + PU + QU =0, (11)
where N, P and Q are given by, respectively,
aifep. {0
v=(43);

_ [ B/mox(---xB) (---xB/no)
P_( —(-++xB/no 1/m0 )’




and

[ V(=7Po(V-...)) I x(Vx-)
—V(...-VPR) —1/noVPy(B-V)}(V x...- Vo)
+B/no x (VX Vx--)

0 Vs qhvje
+3/n0(B - V)"V x ... - Vo)
\ ~V/no X V x -+ )

The first two matrix operators are symmetric and positive. The last
operator Q) is obviously not selfadjoint. For this reason we cannot find a
Lyapunov functional which would lead to a necessary and sufficient condition
for stability as in, for example, [2] or [3].

As shown in [1], one can, however, write a sufficient condition for stability
against purely growing modes in the form

SW = (¥,Q¥) >0, (12)

where the scalar product is defined with purely real quantities. Only the
symmetric part Qs of Q survives in eq.(12), but if a symmetrized form for
eq.(12) is wanted, it is easy to construct Q*, the adjoint of Q, by integration
by parts, and use Qs = (@ + Q*)/2 instead of Q in eq.(12).

Criterion (12) implies volume integrations which can be reduced to inte-
grations on the magnetic surfaces and integrations across them. The operator
(B-V)™!in eq.(12), which comes from integration of eq.(9), is singular across
the rational surfaces (1/x singularity). This singularity is physically prohib-
ited by the breakdown of eq.(9) due to a finite heat conduction x (k| is
assumed to be infinite and £, = 0 for eq.(9) ). In fact, 5; should not become
infinite on the rational magnetic surfaces, but small. It is then natural to
define the integrations across the surfaces in the sense of Cauchy principal
parts (no delta functions) as in [3]. Note here that these singularities are
not aggravated by the above-mentioned symmetrizing integrations by parts,
because they occur on the surfaces.

Let us now write 6W explicitly:

oW = [dr(yPo(V-67 +(EVER)V-E)
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+fdr(VxA)2—/d'r.§xJ-VxA+
+p [ dr3-(A — € x B)(B-V)™(1/10)(Vro- V x A)
= ]dT(A — € x B)-V x (V x A)1/no. (13)

If we choose in §W the MHD test function A = ¢ x B, then §W reduces
to éWumpmp. In the tokamak scaling (large axial wavelength and magnetic
fields) and for J = e,J, noJ = ct-, £ = e, x VU, V = 0, §W reduces to the
necessary and sufficient condition found in [3].

It is more convenient to treat §W in Hamada-like coordinates especially
for the term (B-V)~!, which also appears in [3]. The symmetrization of
Q, if desired, can be done either analytically in the same coordinates by
integration by parts or after discretization in the case of numerical evaluation
by computing the adjoint matrix.

The equilibrium quantities in eq.(13) should satisfy equations (1)-(3).
To determine the contribution of the last integral in eq.(13), one requires a
knowledge of unavoidable [4] Pfirsch-Schliiter- like flows, which are important
especially for stellarators. The flow in a tokamak can probably be neglected
if the aspect ratio is large enough and the poloidal currents are weak. One
can then take V x oJ =~ 0 as in [3].

The main advantage of (13) is that it can be numerically evaluated by
spectral methods well known in ideal MHD stability and recently extended
to MHD stability of stellarator equilibria. A second positive aspect is that
this approach to resistive MHD stability is the only one which takes real
geometry into account together with the complex flows it generates, and in
an exact way at that.

2 Necessity of the condition

As already known (see [6]), conditions (12)-(13) become necessary and suf-
ficient for all modes if Q. = 0, Q. being the antisymmetric part of Q. In
the incompressible case with tokamak ordering, Tasso and Virtamo derived
some time ago a necessary and sufficient condition (see [3]) which has been
evaluated numerically (see [7]). In the general case it does not seem possible
to find a system of dynamic variables for which @, = 0. One can, however,
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‘upgrade’ conditions (12)-(13) for two interesting situations : 1) for Q, ~ €
small, which relates to the tokamak scaling and 2) N = 0, or neglecting in-
ertia, which is valid for time scales much larger than the Alfven or acoustic
time scales.

24~ Qe

Let us first show that for @, = 0 any unstable mode must be purely growing.
For that purpose let us assume that

¥ = ¢“'Yy(r), (14)
w = twp + Yo (15)

with wp and 4 real. Inserting (14) and (15) in (11) yields
(two + 70)* N + (iwo + 70)P¥o + (Q, + Qo) ¥o = 0. (16)

Taking the scalar product of (16) with U3, integrating over the plasma volume
and using the usual notation for the scalar product reduces (16) to

[(7(2) = wg) Sk 27:70“’0](\1,0) N\I’U) ) (70 3 iwg)(‘l'o, P\I,O) it (‘1’0, (Qs 3 Qa)\I‘O) =0.
(17)
Since N, P and @, are Hermitean, the imaginary part of (17) is

270(4)0(‘1’0, N‘I’o) + LUQ(‘I’Q, P‘I’o) e (‘I’o, QG\I’Q) = 0. (18)

Since N and P are positive and if we assume @, = 0 and 7, > 0, it follows
from (18) that wp = 0. This proves that for Q, = 0 exponentially unstable
modes must be purely growing.

If it is assumed that condition (12) is violated for some test function, it
follows that for e = 0 a purely growing mode with wp = 0 exists and satisfies
(16) for Q. = 0. Now supposing that @, is small and of order ¢, we expand
(11) up to first order in €

U =T, + eV, (
w = 7o + ewr, (20)
YN To + %P + Q, ¥ =0, (
270w1 N + 2N, + w PUo + 40 PY; + Q,¥, + Q.%o = 0. (
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Taking the scalar products of (21) and (22) with ¥} and integrating over
the plasma volume, we obtain

73(“1'01 NII'O) + 70(\1,03 P‘I"J) * (\IJDa Qs‘DO) 5T 0’ (23)
290wy (Yo, NWo) + wi(Po, P¥o) + (To, QaTo) +
7301}0? N‘Ijl) A 70(\110: P‘Pl) 18 (‘IJU, Qsml) = 0. (24)

Using (21) and the fact that N, P and Q, are Hermitean reduces (24) to
wi1[270(Po, N¥o) + (Yo, PTo)] + (¥o, Qa¥o) = 0. (25)

Since the original system of equations is real and the mode is purely growing
(wo = 0), ¥o can be chosen real without loss of generality. It then follows
from (25) together with the positivity of 7o, N and P and the antisymmetry
of @, that

This means that if the purely growing eigenmode were affected by Q, = e,
the effect would be of order € or higher. A small Q, affects the unstable
spectrum very weakly.

2.2 N =0, or neglecting inertia

Equation (11) becomes
PU + (Q, + Q.)¥ = 0. (27)

Taking the scalar product of (27) with ¥ real and integrating over the volume,
we obtain o(v, PU)

MY - a(w.quu) (28)
We see that the positive form (¥, P¥) is a Liapunov functional if condition
(12) or (13) is verified. Now these conditions are sufficient for stability against
all modes, not only the purely growing ones.

The analysis presented in this section cannot make condition (12) nec-
essary and sufficient for all modes but does give more weight to it. One
could say that the condition is ‘nearly’ necessary so that its analytical and
numerical evaluations may be worth doing. As mentioned in [5], condition
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(12) reduces to the ideal MHD energy principle and to the resistive energy
principle of Tasso and Virtamo (see [3]) in the appropriate limits. Extensive
numerical calculations in the particular limits for ideal MHD (see [8]) and
for resistive MHD (see [7]) show that both ideal and resistive modes can be
stabilized if § is small enough, the safety factor large enough and the current
distribution well chosen.

Condition (12), however, may be violated in general by test functions
reminiscent of resistive ballooning or resistive drift modes or other residual
modes. Nevertheless, its degree of violation can be taken as a ‘measure’ of
the optimization of magnetic configurations. As in previous work (see [7]),
numerical evaluation of the condition is made possible by its Hermitean form.

3 Simplified versions of the condition

The test functions £ and A in (13) are general and together constitute a
six-dimensional test function space. As mentioned above and in [5], ideal
MHD can be recovered by restricting to A = ¢ x B. In the tokamak scaling
and for V - £ = 0 one recovers the resistive principle derived in (3] .

In this section we introduce a physical restriction by the following argu-
ments. Perpendicularly to the magnetic field a weakly dissipative plasma
behaves like in ideal MHD but parallel to B it may behave quite differently,
essentially because of resistivity. This suggests the following restriction in
test function space :

A=¢(xB+Ap, (29)

where Ap,, is the part of A parallel to B. Crossing relation (29) with B, we

find for ¢ Bt ox
E = _B""_  H £pars (30)

where &,,, is the part of ¢ parallel to B.
If we insert (29) and (30) in (13), we obtain a first simplified version of
(13) :

BxA
BZ

Bx A Bx A
BZ

W = j dr(7Po(V - ( + &par))? + (

B2

VBV - (—5— + &par))



+/dT(VxA)2——jdr(B;—2A+§pa,) xJ-VxA+
47 [ dr(I - Apur)BY)(1/10)(V0 - ¥ x A)
s fdrA,,,,, -V x (V x A)L/n0. (31)

Instead of a six-dimensional test function space we now have a four-
dimensional one. One is tempted to minimize (31) with respect to {,q as in
ideal MHD. This does not lead to V-£ = 0 but to a rather complicated expres-
sion together with a difficult equation for £,,,. Despite this fact, expression
(31) is already simple enough to minimize either numerically or analytically
(e.g. for perturbations localized about magnetic surfaces or magnetic lines).

A further simplification consists in setting V - £ = 0 from the outset. In
this case one can solve for §,,, by setting

€par = B (32)
and using (30) to obtain
v-(B;AHB-va:o, (33)
whose solution is
o =i (Bev) Vi D ;A_ (34)
Inserting (32) and (34) in (31), we obtain a further simplified version of (13):
BxA

§W = /dr((VxA)z—( )xJ-V x A)

B?
—pjd'r((B V)1V B;A)VPO VxA+

p [ dr(3 - Apur)(B- V) (1/n0)(Vio - V x A)
= f drA e -V x (V x A)1/70. (35)

3.1 Application to force-free fields

In the case of a resistive field obeying

J=)B (36)
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with A = ¢t., one knows (see [10]) that 7o also has to be constant and V = 0.
The field satisfies

B = —no)\?B. (37)

Though expression (13) is derived in [9] for time-independent equilibria, it
should hold in the limit no — 0. Therefore, inserting (36) and (37) in (35)
as well as V = VP = 59 = 0, then reduces §W from (35) to

§W = j dr((V X A)? = Myerp - V X A), (38)

where A, is the part of A perpendicular to B. Expression (38) compares
very well with the exact §W derived in [11] for the field (36)-(37),

5W=fd'r((VxA)2-—/\A-VxA)20, (39)

which is sufficient for stability. The difference between (38) and (39) is in an
A, term not containing the singularity (B - V)~!, which means that this
term vanishes smoothly for e — 0.

In view of the physical (but formally not exact) restrictions in the test
function space this is a remarkable result and gives us hope that expressions
(31) and (35) for the simplified W are good even for equilibria with pressure
and A # ct. In these cases, however, inaccuracies of the kind above can be
amplified by the singularity (B - V)~! despite the ‘principal part’ before the
integral.

4 Nonlinear stability

The stability of complex systems such as fluids or plasmas is usually inves-
tigated in the linearized case. Obviously, the linearization is done in order
to simplify the analysis and obtain a first insight into the problem. This is,
however, by no means sufficient for practical stability for the following rea-
sons : If a system is linearly stable, it implies stability only for infinitesimal
perturbations. If it is linearly unstable, it may saturate at a low or high level
in the nonlinear regime. Since for practical situations the perturbations are
finite and the saturation levels critical, the study of nonlinear stability, espe-
cially for fluids and plasmas, becomes an important and sometimes crucial
issue.
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In hydrodynamics (HD) the planar Couette flow and the Poiseuille flow
in a circular pipe are both linearly stable for all Reynolds numbers (see [12]
and [13]). In practical situations turbulence occurs at Reynolds numbers
larger than roughly one thousand. It is attributed to nonlinear instabilities
or instabilities due to finite perturbations. This view was lent support by
simple amplitude expansions [13] and numerical calculations [14] .

In HD and magnetohydrodynamics (MHD) exact sufficient criteria for
nonlinear stability exist (see [15], [16] and [17]). Such criteria are powerful
and robust, and provide nonlinear stability for arbitrary perturbation lev-
els. In other words, they ensure so-called unconditional stability, which in a
certain sense is too good and is not needed for practical stability, since the
perturbations can be assumed to be limited in an experiment, especially if
one wants to avoid strong vibrations etc. Accordingly, the critical Reynolds
numbers delivered by these criteria are too low, of the order of 5 (see [15])
and 20 (see [17]).

Unfortunately, no rigorous criteria are available in HD in the range of
Reynolds numbers larger than roughly 20 . This lack of knowledge is precisely
in the range where the nonlinear stability margin will probably depend upon
the perturbation level. This is equivalent to saying that what is missing is a
knowledge of the basin of attraction of the unperturbed solution in functional
space. For very low Reynolds numbers 5 to 20 the basin of attraction is
infinite and for very large Reynolds numbers it is probably infinitesimal or
very small.

Fortunately, the situation is not as bad in MHD. It is possible there to find
unperturbed equilibria with zero flow which are unconditionally stable for all
magnetic Reynolds numbers. A first example is the case of so-called force-free
fields, whose nonlinear stability was recently analyzed by the author [18].

4.1 Nonlinear stability of force-free fields
Let us assume as unperturbed solution
j=)B (40)

with A = ct. bounded by a perfectly conducting wall.
The equations of motion are those of incompressible MHD with a material
resistivity n constant in space and time. For any finite perturbations v of the
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velocity field with n - v = 0 at the boundary and A of the vector potential
with n X A = 0 at the boundary the equations of motion are [18]

v+ v -Vv=JyxB; +j; x Bo+Jji x By, (41)

with V-v =0,
A = v x (Bo+ B1) — nj1, (42)
B, = V x (v x (Bo + B) — 7). (43)

Taking the scalar product of (41) with v and that of (43) with B;, adding
and integrating over the volume, we obtain

0 rd :
E/%(vz—{—Bf):/\deVXBo'Bl—/dTT”?- (44)

Many quadratic and cubic terms integrate to zero because of the boundary
condition being taken as perfectly conducting. Taking the scalar product of
(42) with By, we can solve for v X Bo- By, and, inserting into (44), we obtain

8 rd : :
a_/-é‘:(vi’—{—Bf—AA-VXA) = —ﬂde(ﬁ_’\Bl “J1) (45)

or

d 1, 2 = 2
Edei(" +(VXxA?—)A-VxA) = —q[dr((VxVxA) £
AV xA.-VxVxA). (46)

Since (46) also holds for the linearized case, which was discussed a long time
ago in [11], we reproduce the proof given there for the sufficiency of

/dr%((v x A —)A -V x A) >0 (47)

for nonlinear stability. Note first that n x A = 0 impliesn -V x A = 0 at
the boundary, so that if (47) is satisfied for n X A = 0, then the right-hand
side of (46) will be satisfied for n - V x A = 0. By means of the Lyapunov
theorems the expression under the time derivative of the left-hand side of
(46) is a Lyapunov function if (47) is verified. Condition (47) is sufficient
for stability independently of the values of the resistivity and viscosity. As
mentioned above, there is nothing like this in HD .
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4.2 Two-dimensional perturbations

A less spectacular example in MHD is the nonlinear stability of a straight
z-pinch or tokamak surrounded by perfectly conducting walls. Here it is pos-
sible to prove nonlinear stability with respect to 2-dimensional perturbations
if the current density is homogeneous, the velocity of the unperturbed fluid
vo being zero. The equilibrium is given by

AV = Jy= -—P'(‘I’), (48)
jO = eng, (49)
vo = 0. (50)

¥ denotes the flux of the poloidal magnetic field, Jp is the current density
in the z direction and P(¥) is the pressure as a function of ¥. A constant
magnetic field B, in the z direction could be added without changing the
shape of ¥, which is determined by (48) for any given boundary condition
on V.

The MHD equations of motion for an incompressible fluid with mass
density equal to unity are

o g i 3
a—:+V‘VV = J1XBO+JOXB1+J1XBl—VP1+,UAV, (51)
0B :
‘a_tl = —Vx(vx(Bo+Bi))+1V xj, (52)

where v and B, are finite perturbations of the velocity and the magnetic
fields having n-v = n- B; = 0 at the boundary. Taking the scalar product
of (51) with v and that of (52) with B,, adding and integrating over the
volume, we obtain

dal
dt 2
Many quadratic and cubic terms integrate to zero because of the boundary
conditions. The right-hand side of (53) would be negative if the first integral

on the right-hand side of (53) vanished. We now prove that this is the case
if jo = ct. Introducing the vector potential, we have

(v? + BY)dr = ]v-jo xBldT—pf(V xvz)df—nj(v x B2). (53)

fVXjQ'VxAdT:fA-(jo.Vv__.v.Vjo)dT____0_ (54)
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The last equality is due to the two-dimensionality of v and the assumption of
a constant vector jo. This means that the expression under the time deriva-
tive on the left-hand side of (53) is a Lyapunov function, from which non-
linear stability follows. Again this condition is independent of the Reynolds
and magnetic Reynolds numbers, in contrast to, for example, [17], but the
stability is unconditional.

For the above two examples we were able to obtain sufficient and uncondi-
tional stability conditions without limitations on the Reynolds numbers. Our
examples are of course special and contain an important ingredient vo = 0,
i.e. no flow in the unperturbed state. This is nontrivial only in the MHD
cases. In contrast, the criteria [15], [16] and [17] are very general but imply
severe limitations on the Reynolds numbers. The examples given in this note
and the general criteria [15], [16] and [17] have one thing in common, viz-they
all deal with unconditional stability.

As mentioned at the beginning, this is not necessary for practical stability.
If we want to get rid of unconditional stability in our proofs, we have to deal
with finite basins of attraction in functional spaces. Practical stability is tied
to this very difficult problem.

4.3 A manifest Hopf bifurcation

In this section we consider the case for which condition (12) is satisfied and
prove that, if the inertial term can cause some additional overstability, the
modes appearing in this way meet the requirements of the centre manifold
theorem [19]. This means that they can be stabilized nonlinearly through a
Hopf bifurcation, resulting in a limit cycle or nonlinear periodic oscillation.
If N # 0 in equation (11), inertia-caused overstable modes can occur : In a
special example [20], the overstability occurs only in the compressible case,
primarily at the magnetoacoustic resonance.

Let us now consider the case for which (12) is satisfied but (11) is over-
stable for N # 0. Any overstable mode of (11) is given by

¢ = Weliwtt (55)

where w and 7 are real and satisfy
(7% —w?)(¥,N¥) + 4(¥, P¥) +(¥,Q.,7) = 0, (56)
29w(¥, N¥) + w(¥, PY) + (¥,Q,¥) = 0. (57)
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We see from (56) and (57) and, generally, from the reality of the operators
in (11) that £* = U*e(=+t is5 also an eigenmode of (11). It follows that the
modes due to the inertia operator N always come in pairs with opposite sign of
the real frequencies but the same growth rate, all other modes being damped
because of (12). These features are precisely the principal ingredients of the
centre manifold theorem [19]. In summary, if (12) is satisfied, inertia-caused
overstability can lead to a Hopf bifurcation resulting in a periodic nonlinear
oscillation.

It may be instructive to look at the following example, consisting of two
ordinary differential equations :

== f g L =0, 58
(On)(!-’) (UP y 6 ¢ )\y (58)
where n and p are positive. The eigenvalues are given by

(nQ* + pQ + ¢,)* + ¢2 = 0. (59)

The solutions of (59) are

_ —p% /P —4n(g, F iga)

0
2n

: (60)

If we choose ¢, = % , which satisfies condition (12), the threshold for insta-
bility is n|g.| = -”21 =005+

It is conceivable that the Mirnov or ‘precursor’ oscillations, seen in toka-
maks prior to ‘disruptions’, are of that kind, though they need not be related
to that special instability. Pursuing this speculation, we could say that a
further increase of density (or inertia) may lead to a ‘disruption’ because the
limit cycle can no longer be maintained.

One of the puzzling questions is how to describe and follow such highly
nonlinear systems for long times. In hydrodynamics, it is believed that such
systems become turbulent or will tend to a fractal attractor with a large
Hausdorff dimension increasing with the Reynolds number [21]. Estimates of
the Hausdorff dimension of attractors are made, however, from above [21, 22]
and do not necessarily reflect the real situation. Especially in MHD, this pic-
ture could be completely wrong: Nontrivial examples (see sections 4.1 and
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4.2) are known to be nonlinearly and unconditionally stable for all magnetic
Reynolds numbers [18, 23] , which means that the attractors have zero Haus-
dorff dimension, though the estimates [21] would deliver huge upper bounds
such as 10'° or even higher. In other words, nonlinear behaviour and turbu-
lence in MHD is much more configuration-dependent than in hydrodynamics.
The reason is that the dimension of attractors or the number of determining
modes is, to an extreme degree, configuration-dependent.

Let us finally note that, if condition (12) is not satisfied, other unstable
eigenmodes can occur, but since the spectrum is not known, it will be very
hard, in general, to check whether the eigenvalues satisfy the requirements
of the centre manifold theorem.

5 Outlook

Two main future lines of research can be foreseen. Sections 1-3 show that
the linear stability of resistive plasmas, in general geometry, can now be
handled by a Hermitean form, similar to the energy principle of ideal MHD.
The first line of activity will be the analytical and numerical minimization of
that form. Though not straightforward, this task could be done in the near
future.

Concerning the second line on nonlinear stability, the unsolved problems
are those of general equilibria with pressure gradients. The successful use
of Lyapunov functionals in section 4, in particular for force-free fields, gives

an indication of the approach to be used, but progress in this area is unpre-
dictable.
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