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Abstract

A multiple time scale formalism in three-wave interaction with
negative-energy modes is applied to the structurally similar problem of
a charged particle on an axially symmetric parabolic hill (V = —(2?+
y?)/2) with a small potential perturbation 8V = —4ez®/3 , € <<
1, and a sufficiently strong magnetic field in the z-direction. The
multiple time scale solutions of first-order in € are compared with the
linearized solutions as well as the numerical solutions. In the light of
the multiple time scale formalism the usual linearized theory should
be valid only up to times of order 1, whereas the multiple time scale
solutions of first-order in € can be expected to be valid up to times
of order 1/e . The linearized theory of the particle-on-a-hill problem
predicts stability and allows positive and negative energy modes. For a
resonance situation given essentially by the gyrofrequency being twice
the drift frequency, a multiple time scale formalism applied to the
nonlinear theory predicts explosive instability, except for some special
cases. Explosive instability is also found numerically for certain initial
conditions with dominant nonlinear force. However, for initial values
with z2 + y? and %2 4 9? of order 1 the nonlinear force is initially
not dominant. In this case the multiple time scale solutions and the
numerical solutions agree fairly well for the initial phase, lasting for
a time interval of order 1/e¢; then the multiple time scale solutions
explode and the numerical solutions run away exponentially.




1 Introduction

In 1925 Cherry [1] discussed two one-dimensional oscillators of positive and
negative energy that are nonlinearly coupled in a special way. He obtained
for the case of third-order resonance a class of exact solutions of the non-
linear equations showing explosive instability independent of the strength
of the nonlinearity and the initial amplitudes. One of the present authors
reformulated and generalized Cherry’s model [2] to three oscillators with a
Hamiltonian essentially given by

3
H = Y wbil + abibols + o 66, (1)
k=1
where ]
b E(Pk + 2 qx); (2)

k is the oscillator number. ¢ £ is the momentum canonically conjugate
to & . In quantum mechanical language one can call £; a creation operator
for quanta possessing the energy wy and & the corresponding annihilation
operator. If there is resonance corresponding to the conservation law

w1+W2+w3 = 0, (3)

then a three-parameter set of solutions to the equations of motion corre-
sponding to the Hamiltonian (1) is

wa” 13 1 iwk;ig 2 S
te i Teste Al

B and the ¢;’s are constants of integration.

A more general system would, in addition to the kind of nonlinear terms
occurring in the Hamiltonian (1), contain other “three-wave interaction”
terms which are not resonant for w/s satisfying eq. (3). They would van-
ish by averaging over time. One can therefore speculate that these terms
are less important than the resonant ones and that the latter still lead to
unstable behaviour.



A method which introduces a certain kind of time averaging is the multi-
ple time scale formalism. In this paper a simple physical example is treated
which implies linear positive- and negative-energy modes and resonant as
well as non-resonant coupling terms. The example is a charged particle on a
hill characterized by the potential

Uey) = -5 (@ +¢) - 52, (%)
where € will be used as a smallness parameter. A contour line plot of the po-
tential U(z,y) is shown in Fig. 1. Superimposed is a constant magnetic field
B in the z-direction. For B > 2 the linear problem (e = 0) has only oscillatory
solutions, half of them possessing positive energy and half of them negative
energy. The first ones represent essentially gyro motions and the second ones
drift motions. Resonance means that the frequency of the positive-energy
mode is twice the frequency of the negative-energy mode.

In Sec. 2 the problem is solved to first order in € by applying a multiple
time scale formalism. It can be expected that this order is valid for time
intervals of order 1/¢ if the initial values for z + y% and &% + y? are of order
1. Section 3 presents a comparison between the approximate solutions thus
obtained and numerical solutions.

2 The particle on a hill solved by multiple
time scale formalism
With
(=z+1y (6)

the motion of a charged particle in the potential (5) and a superimposed
constant magnetic field in the z-direction obeys the differential equation

(+iB¢—¢=¢€(C+ ¢ (7)

Multiple time scale formalism means the following expansion:

C= ie" G(Tim,-3) (8)

v=0




with
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In lowest order in € we have
¢ 9o
Gt R =0 ©)
This equation has the general solution
(o =—af(ry, ) €™ 4 g (7y,...) €™ (10)
with
B B?
wy = E = o T - 1. (11)

For B > 2 both frequencies are real. For large B the term with w; describes
essentially a gyro motion, and the term with w_ a drift motion. The Lorentz
force is compensated in the case of gyro motion by the centrifugal force and
in the case of drift motion by the “hill” force from the potential (5). The
energies of the w;— and w_— motions are

—|ai[2\/—-—1 \/——I:i: ) (12)

Be >0, B <0 (13)

In the following we consider the third-order resonance case

and thus we have

Wy = 2. (14)

which requires
B = — (15)

and

R0 w_=%. (16)

The first-order equation resulting from eq. (7) is

%G 0%(o G 0% - "2
5 tigmpe B g ki B m G = etk o d o)




This equation can be solved by means of the Green’s function

Glro—m5) = —

o (O et ) for 75 o, (1)

For (; vanishing at 79 = 0 we have

o /.,., gepa e (e—l'w+('m—'rc',) = e-ew_(fo-f;)) 2
0 s Wy —w-

9%Co . 90
x\2
{(Co+Co) -2 e i1 B -(,E },-F.,cr' :

If the resonance condition (14) holds, the integral leads to contributions to
¢1 which increase indefinitely with 75. The 7;-dependence of (o can, however,
and must be chosen such that these secular terms vanish. This condition,
with the w's given by egs. (16), leads to the following equation for the
amplitudes a4 and a_ :

(19)

i Oa . i Oa_
ai+$a—;= : 2a+a_—ﬁa=0. (20)

We first observe that there exists a Cherry-like two-parameter set of solutions
to these equations (20), namely

e

1 e
5 1]-= T ! a+

1
=S e —— 21
2\/51_1_11 ( )

where ¢ and T are constants of integration. The initial values for z,y, Z,¥
belonging to these solutions are to lowest order in €

a. =

cosyp sin2p sinp cos2p

G = S 22
" 2T e =r =P oT 22T (22)
: sing cos2p ; cosp sin2yp
I = — . =
0 22 T 2T W BT 2T



2.1 General solution of egs. (20)

One can also find the general solution of eqs. (20). Multiplication of the
second equation by a_ yields

0

a-
31’1

= —i4v2ay fa_[*. (23)

Taking the time derivative of the first equation (20), one obtains

o7 = a\@aﬁ a2 = 8ayla_|* = 4V2ay 'aﬁ" (24)
Let us write :
a;, = A (25)
with A and ¢ real. We further introduce the notation
0
WA iy 26
31'1 ? ( )

then we have 5
52 = + VA2 + pra2 27)
1
with positive sign because the left-hand side is a modulus and therefore
positive. Thus eq. (24) becomes

A+ 2A — A + igA = &V/2 A\JA2+ f2a2 (28)

The real part of this equation is

A — A = V2 A\JA2 + 242 (29)

and the imaginary part

26A + ¢A = 0. (30)
The latter equation has a first integral
¢ = % (31)




with constant 4. Inserting eq. (31) into eq. (29) yields an equation for A

alone:
2 2
- fY . 7
A-—E=4\/§A\/A2+F. (32)

From this relation it is seen that
sign A = sign A, (33)

which means that unstable solutions always exist, especially for initial con-
ditions with sign A = sign A . Multiplying eq. (32) by 2A, one obtains

6 " 2 3 2 aA2
on (A 18 A’) W24 A2 o (34)

Integration over 7; yields

+ /A2 + E = 2v2 (A% +0). (35)

The constant C can be expressed by the initial values Ay, Ao of A and A:

C = 2 -—— : 36
- 43+ 5o A3 + (36)
Equation (35) can also be written as
1A2+i__4(,12+0)2=0 (37)
2 2 A? :

Formally eq. (37) is the energy of a “particle” with the coordinate A in the
potential

S 3E) o N 2 2
V(A) = 5 A2 4(A°+0C) . (38)
The Cherry-like solutions (21) are obtained with
Yy T R o= (3g)
7 5 ] = (P 2 ’ B 'JS_ T b = f ]

which implies C = 0 from eq. (36).




2.2 The case vy =0

This case is more general than the Cherry-like case of eq. (39) with 4 and C
equal to zero and can be solved exactly. 4 = 0 in eq. (37) yields

0A

=i +v8 (A + 0). (40)
T1
Defining
w = +cl,
o= % = sign(do) ,
T=0V8Wmn = ocV8Wet, (41)

we write the solution of eq. (40) corresponding to the initial conditions

A=Ay A=Ao at n=1=1t=0

in the form
- A Ao o
Ty = arcth arcth for C positive , (42)
1 A-W Ag+W :
T =g In(A+ T W) for C negative . (43)
This allows us to determine the explosion time ¢, by inserting A = Fo0 :
te = -\/_glﬁﬁ(g - 3 arctg%) for C positive , (44)
s A - W ;
JaEh I ( ) ok v BT
2 BW I n T W for negative (45)
with '
s = sign(e Ap) .

The t. values resulting from eq. (45) are real due to C > — A2 , which follows
from egs. (35-36).

For positive C there are always poles at positive times t.

For negative C only one pole exists. For negative ¢, the solution does not

explode at positive times.
For C — 0 one gets the Cherry-like solutions (21) and (39).
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2.3 Remarks on solutions with v # 0

In general, v and C are non-zero. The exact solution of eq. (37) can be
presented by means of elliptic functions; however, the discussion of stability
can be done much more simply by using the potential given by eq. (38).
We interpret eq. (37) as the energy of a “particle” in the potential V of eq.
(38); A is its co-ordinate and A its velocity. The energy vanishes, hence the
“particle” must not enter any region with positive V. The essential difference
to usual potential problems in classical mechanics is that the potential (38)
depends via C on the initial velocity A,.

The potential (38) has three zeros with respect to A% of which at least
one is real and positive. For

M2oaALy, (46)

the potential is negative, which means an allowed region. For C' > 0 this is
the only real zero of V. For C < 0 there are two additional real zeros. But
for these A% + C' < 0 must hold, which is forbidden because of eq. (35).

Figure 2 presents six examples of the potential V versus A. We discuss
here only the cases with 4 # 0. The behaviour of the moving “particle”
essentially depends on the direction of its initial velocity Ao:

o If eAg >0, the “particle” runs downwards and explosion occurs.

e Ifedy < 0 , the “particle” climbs upwards for some time, in Fig. 2
in left direction, until it is reflected at A = A,,;,, where the gradient
dV/dA is negative. Therefore the particle returns, runs downwards and
explosion occurs.

Thus we expect explosion of all solutions with v # 0.



3 Comparison between first-order multiple time
scale solutions and numerical solutions

The first-order multiple time scale solutions - labeled “first-order solutions”
for short - are given by eqs. (8), (10) and (19). In this section we compare
for some examples the first-order solutions with the corresponding numerical
solutions of differential equation (7). We keep the notation z, y for the
numerical solutions and write u, v instead of z, y for the first-order solutions:

ut+iv = CU + ECla

where (o determines via ay, a_ the explosion time or, if there is no explosion,
the stability; ¢; influences the phase.

Let us look for an adequate representation of the results.
Figure 4 shows the numerically obtained solution z(t), y(t) (solid) and the
first-order solution wu(t), v(¢) (dotted) versus time for one example. z, y, u
and v contain oscillations with both frequencies w_ and w, ; superpositioning
them leads to rather noisy curves.
Figure 5 shows the same example as Fig. 4. The simpler curves in Fig. 5
are obtained by plotting the absolute values

r=/z? +y? ; p=Vulto?, (47)
which oscillate essentially only with the frequency
Wy — wo = wo .
Most of the figures therefore show r(t) and p(t) .
3.1 Input of the initial conditions

The initial conditions for ¢ = u, y = v, 2 =4, y = v at ¢t = 0 can be
expressed in terms of initial values of a4 and a_ :

= oo, @
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and

C'——i(wa+wa) +e(§9—+-+92-_—)
B R AT T1=0 671 371 T1=0 ?

which upon use of eq. (20) becomes

+ 12 e(ai -2 ﬂ+ﬂ:) . (49)

T1=0

C" = —1 (w+a+ +w-a_)

1 =0
Starting time is t = 0 ; with Ap = A at t = 0 etc. :

The examples are defined by the parameters € , Ag ,Ap , ¢o and 4, from
which a4 and a_ are obtained via eq. (25) and the first of the eqs. (20).

3.2 Cherry-like cases

The Cherry-like cases are defined by €, T and ¢ ; see eq. (39).
Let us consider Figs. 5-7. The solid curve is the numerically obtained r
versus time and one of the dotted curves is the absolute value

p = |6+ €

of the first-order solution. Its behaviour is similar to that of the zero-order
solution

ol = grr—eg |3 + VEsinle = 7)., (50

which follows by inserting the Cherry solution (21) for a; , a_ and the
frequency (16) into eq. (10) for {o. From eq. (50) we expect broad maxima
and narrow minima because the square root is steeper for small values of the
argument than for large ones. Replacing the sin by %1 yields

0.85
Pmaz = T et (51)

approximating the envelope for the relative maxima (dotted) and

vhs 0:15
Pmin = T e’

for the relative minima. The zero-order solution (50) differs from the first-

order solution by about 5-30%.

The explosion time is

(52)

t, =

<. (53)
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Figures 5-7 start with the initial value T = 1; hence the explosion time is
1/¢

this roughly describes the explosion time in all examples with initially 2+ 32
and % + y? of order 1. This is the case in our examples; hence the time 1/e
is noted in our plots.

The numerical solution agrees more or less well with the first-order solu-
tion until the latter explodes. Near the explosion time the numerical solution
reaches the saddle curve

$6 490+ 5 = g
also called “separatrix” because it separates the
“outer” region with open U = const lines from the
“inner” region with closed U = const lines around the top of the hill at
z =y = 0; see Fig. 1; U is the potential given by eq. (5).

The separatrix cuts the z-axis at the saddle point

(54)

1
and at .

After general features let us now discuss some examples:

Figure 5 has input data causing the particle on the hill to enter the separatrix
near the saddle point, where the electric “hill force” is much weaker than the
magnetic one, and hence for ¢ > 1/e the motion is a gyration with drift.
From eq. (15)-(16) the gyration frequency is about

B ~ 3w_,

where w_ is the frequency of the r oscillation for small ¢ values, as can be seen
from the distance of adjoining relative r maxima in Fig. 5. After the drift
has carried the particle far enough away from the saddle point, the particle
runs away exponentially, as described in Appendix A.

Figure 6 shows that the particle on the hill for appropriately chosen val-
ues of the parameters can be“reflected” near the separatrix (54). After the

12



explosion of the first-order solution at 1/e the oscillation amplitude of the nu-
merical solution decreases until, say, ¢t & 2/e. Then the oscillation amplitude
increases again; this we call “second start”.

Figure 7 shows r(t) and p(t) for an € value smaller than in Figs. 5 and 6;
hence the time interval of agreement of the numerical and first-order solutions
covers much more oscillations than in the case of Fig. 5 and 6. As in Fig. 5,
the particle reaches the separatrix (54) near the saddle point. The gyration
oscillations, however, exceed the frame of Fig. 7 and therefore cannot be
seen; we present them in the following figure.

Figure 8 shows the orbit of the particle in the z-y plane; the input data
are the same as for Fig. 7. The particle starts near the centre, spirals outward
and reaches the separatrix (dotted) near the saddle point. In this region the
motion is a gyration with drift causing some loops, until the drift carries
the particle far enough away from the saddle point; after this it runs away
exponentially as described in Appendix A.

Figure 9 shows an example with negative ¢ and negative explosion time.
The numerical and first-order solutions agree for times < 1/|e|. After this
time the first-order solution decreases according to eq. (50) for the zero-
order solution (p; the first-order term (; essentially influences only the phase.
Although the first-order solution is stable for all positive times, the numerical
solution increases und runs away. This different behaviour becomes plausible
when the energy of the numerical and first-order solution are compared. The
energy of the particle on the hill

1 /dz\? 1 /dy\? 1 1E g 4 -
5 = 3lz) o5 (@lmamegt ciye

is a constant of motion and positive in the case of Fig. 9. The positive energy
together with the non-linear term in eq. (7) causes the particle on the hill
after sufficiently large times to spiral outwards in the z-y plane and run away
exponentially, similarly to the case in Fig. 8.

Let us estimate the energy in first-order approximation by replacing d/dt by
w_ or wy and z,y by a4 or a_. Inserting the Cherry solution (21) yields

1 1
@@= T @+l

Eapp
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which goes to zero with increasing time in contradiction to the energy con-
servation mentioned above. This means that the particle described by the
first-order solution asymptotically approaches the top z = y = 0 of the hill
similarly to some zero-energy solutions.

3.3 Non-Cherry-like solutions

The case of positive parameters Ay, Ao and € roughly corresponds to the
Cherry-like Figs. 4-8 and is not discussed here. Therefore we restrict our-
selves to some cases with negative e.

Figure 10 is an example of 4 = 0 and positive C' with a first-order solution
(42) exploding at the time given by eq. (44). For Ay < Ao the numerical
solution runs away after the explosion of the first-order-solution, qualitatively
similarly to the “second start” in Fig. 5.

Figure 11 is an example of ¥ = 0 and negative C and e. The first-order
solution (43) explodes at the negative time given by eq. (45) and goes — W
for increasing positive time. From this one might incorrectly conclude that
also the numerical solution should be stable for all positive times. This is,
however, not the case:

Numerical and first-order solutions agree for, say, t < 1/|e|; after this the
numerical solution increases and runs away. The reason for this discrepancy
is the artificial symmetry introduced by the time averaging procedure in Sec.
2, causing the first-order solution to circulate around the top of the hill at
a distance of order W. In reality, however, there is no symmetry; hence the
numerical solution may spiral outwards in the z-y plane und run away for
sufficiently large times, as in the examples of Figs. 9 and 11.

Figure 12 differs from Fig. 11 by a small y-value # zero, which causes the
first-order solution to explode near

In|y|
T e il 1 57
llv=2C (57)

(see Appendix B, eq. (B8)).

In all cases we have numerical solutions which run away exponentially for
large enough times. If the initial values are of order 1, the numerical and

14




first-order solutions agree more or less well up to times about 1/|¢| (marked
in the figures). The amplitudes decrease due to the negative ¢ and increase
again after becoming minimal. For negative € and positive initial values A
and Ao (as in Figs. 9-11) there is no connection between the explosion of the
first-order solution and the transition of the numerical solution from closed
to open U = const lines (as in Fig. 5).
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Figures

Fig. 1
Solid: Equidistant contour lines of the potential
1 4
Uy) = —5 (& +9) - 52 ()

in the z-y plane. The small quasi-circle near the top of the hillat z =y =0
has the same height (U-value) as the line at the left edge of the figure. Further
left the absolute value of the potential grows rapidly.

Dotted: the saddle curve of eq. (54)
with saddle point S left at = = —1/4¢.
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Fig. 2

The potential V(A) from eq. (38) vs. A
for 7 #0 (solid) and 4 =0 (dashed) .

For details concerning v # 0 and C <0 see Fig. 3.
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Fig. 3
Square roots of the contributions to the potential V (s. eq. (38)) vs. A and
the zeros of V(A) for

v/V2 = 06, G5 =1 w=,IC|=1.

Solid: 2 |A2—W?| vs. A.
Dotted: v/v2 A vs. A.

The cutting points are the zeros of V(A).
The particle starts at A > A, and goes left until A,;,, , which is the largest
zero. Then it runs right and explosion occurs.

X/ I2A

2| A2 -W?|
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Fig. 4
z , y (numerical, solid) and
u, v (first-order solution, dotted)

vs. time for the Cherry-like case:
=003,
¢=08,
T=10.

The dotted vertical liesat t =1, = 1/¢.
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Fig. 5
r = /z?+y? (numerical, solid) ,
p = Vu?+v? (first-order solution, dotted) and

the envelope ppq. (dotted, eq. (51)) vs. time for the Cherry-like case
e=0.03,

p=028,

=10

The data are the same as in Fig. 4.

The first-order solution explodes at ¢t = 1/e.
The oscillations at ¢ > 1/€ stem from the gyration near the saddle point.

60
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Fig. 6
r (numerical, solid) , p ( first-order solution, dotted) and

the envelope p,,.. (dotted, eq. (51)) vs. time for the Cherry-like case

e=0.03,
¢=0.,
T=1.0.

The data are the same as in Fig. 5, except for ¢ .

This example shows that the particle on the hill for appropriately chosen val-
ues of the parameters can be “reflected” near the saddle point. Its oscillation
amplitude decreases until, say, t ~ 2/e and increases again after this.

160
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Fig. 7

r (numerical, solid) , p ( first-order solution, dotted) and
the envelope pmq, of eq. (51) vs. time for the

Cherry-like case

e=0.01,
¢=0.,
=10,

The data are the same as in Fig. 6, except for .
No reflection or second start is found.

11
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Fig. 8

Orbit (numerical) of the particle on the hill in the z-y plane
for the Cherry-like case of Fig. 7 (solid).

The dotted line is the saddle curve of eq. (54).

The particle starts near the centre and surrounds the centre until it comes
near the saddle point, where the electric force is much weaker than the mag-
neitic one and the motion is a gyration with drift. Bottom-left the solution
becomes exponential according to eq. (A2b) in Appendix A.
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Fig. 9
r (numerical, solid) , p (first-order solution, dotted)

and its envelope eq. (51) (dotted) vs. time for the Cherry-like case

= —0.01,
¢ = 23562,
T =0.354 .
The explosion time t, = —35.4 is negative, hence the first-order solution does

not explode at positive times but goes to zero with increasing time according
to eq. (51).

11 |
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Fig. 10
r (numerical, solid) and p ( first-order solution, dotted) vs. time for

e=—0.01,
Ap=04,
Ag=1.0,
¢0=0'01
7=00.

For Ag < Ap the numerical solution runs away after the explosion of the first-
order solution, qualitatively similarly to the Cherry-like cases of the foregoing

figures.

' 5 300
7 1/ e 2/ el
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Fig. 11
r (numerical, solid) and p ( first-order solution, dotted) vs. time for
e=—0.01,

Ao=1.0,
Ap=104,
¢0=0'01
7v=0.0.

In the case of Ay > Ao and v = 0 the first-order solution does not explode
due to violation of energy conservation in first-order approximation.

11

0 ! ‘ 300
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Fig. 12
r (numerical, solid) and p ( first-order solution, dotted) vs. time for
e=-—0.01,

Ap=1.0,
Ao =04,
¢0=0°03
v = 0.002 .

The data are the same as for Fig. 11 - except for the the small v value
causing the first-order solution to explode near ¢ = 2.8/|e|.

11 Il :
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Appendix A

Asymptotic Behaviour

We investigate the behaviour of the solutions of the equations of motion
i —By—z=4ex?,

j+Bi—y=0 (A1)

for very large values of |z| , |y|, |£| and |y].
Two classes of asymptotic behaviour are as yet found numerically:

a) Exploding solutions

Eages) )]
L5 et
i 3/2
e C—tof (A2a)
b) Exponentially increasing solutions
y = — —;— cgt .
z = — 02 (A2b)

to is a constant of integration.

Relevance to multiple time scale formalism

The initial conditions relevant to comparison with multiple time scale ap-
proximations can be characterized by

4+yl and F2+yY: << (A3)

1 .
|_€i ’
we therefore ask for the initial conditions leading to the explosive case and
test whether - or not - these coincide with eq. (A3). The general answer is
very complicated; we therefore restrict ourselves to a special class of initial
conditions.
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Special initial condition

In the explosive case the particle must reach large positive x values; therefore
we regard a 1-D class of initial conditions with variable zo and fixed initial
velocity Zo;yo and initial yo. We choose

2= v F Ay =g =y=0+ a s =0. (A4)
Furthermore, we get rid of the parameter € by inserting
f=dex, n=4ey
into eq. (Al). This yields
§-Bi-¢=¢8,
i+ BE-n=0,

which is equivalent to eq. (A1) for e=1/4. (A5)

Figure 13 shows numerical solutions to system (A1+A4+AS5) for some initial
values near o = 1. It seems that there is a singular solution separating
solutions running away into the negative z-direction, such as (A2b) from
exploding solutions running away into the positive z-direction. The explosion
time of the solution to system (A1+A4+A5) is within the plot inaccuracy of
Fig. 14:

(1 —1.0205/ )28

to: ~-2. A
and hence there is no explosion for zo < 1.0205 . (A7)

The separatrix (54) cuts the positive z-axis at z = 0.5; hence the interval with
exploding solutions is of no relevance to multiple time scale approximations.
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Fig. 13
z vs. time for the initial condidtion used in Appendix A

=4y, g=2=9=0 at"T=0
for 4 different z, values.

It seems that there is a singular solution separating explosive solutions ex-
ceeding the upper plot frame from exponentially increasing ones going to
negative = values with increasing time.

4¢x 1.03’ /1.0205039
30

1

0 t
-10

0 7

1.02
1.0205038
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Fig. 14
Explosion time ty vs. zo, square root scaled,
for the initial condition used in Appendix A

Fo=cgg-—c gy =i)gf-—¢ =)

Solid: the interpolation formula

(1 — 1.0205/z0)~0%
VZo :

Rhombuses: values obtained by solving the differential equation (A1) numer-
ically.

to ~ 2.98

(s.A6)

Explosion occurs for zo > 1.0205.

s 10 100 %€ %o
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Large initial values ¢

For very large xo values one can derive rule (A6) also analytically. In this
case eq. (Al) reduces to

i = z?,
which yields together with initial condition (A4)
18, 1
53:2 = §(x3 —-z3).
Introducing
=t e s and e X (A48)
To
yields =
itz e Pl s S = =
= X3-1 ; X(r=0) 1[5
which gives

T_j"_if_f__
i VU3 -1

the case X — oo corresponds to the explosion time.
From eq. (A8+A9) one gets the explosion time

/ 3 2.98
to = 24 —_— = — Al
9 3 22:0 ‘\/I_o ( 0)

in agreement with rule (A6) for large zo.

= 243 for X — o0 ; (A9)

The evaluation of integral (A9) may be done numerically or by means of the
relation :

senil (UGt -1/4 ST ) < an0
j;ﬁ_zxa x Fla=15, ¢ =90°,

where F' = 1.5981 is the elliptic integral of the first kind; see, for example,

3] .
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Appendix B
Explosion for v # 0
Let us estimate the explosion time for the class of solutions with
C=-W? , Apositive , y<<1 , sign(edo) negative (B1)

corresponding to the non-exploding solutions (43) with 4 = 0. For non-
vanishing 4 the potential V has a relative maximum near A = W and a
hollow for A < W. From eq. (46) the “particle” cannot enter the potential
hollow at A < W and must move along the slope A > W. In case (B1) the
“particle” quickly runs upwards until the region

A== W

is reached, where it moves more slowly. Then A — W and v are both small
quantities; expanding eq. (37) up to lowest order yields the differential equa-
tion

dA
pice e Pl i 2 _ (%2
= E\J(A-W)-G (B2)
with 5
G= B3
TR W (B3)
and
E = V32| W, (B4)

which approximatively describes the motion of the particle in the region
A =~ W. We write the solution of eq. (B2) in the form

A=W + % G? Blt-t) 4 % ealinl)., (B5)
with
i In(2(Ao — W))
0 R E
following from the initial condition and the assumption of small . The term
with G? runs away exponentially until the range of validity of approximation

(B2-B5) is exceeded. For sufficiently large A values eq. (37) approximatively
becomes JA

dt

(B6)

= \/§EA2,
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which has a solution exploding shortly after exceeding the range of validity
of approximation (B2-B5). Defining this range rather arbitrarily by

Alt)=2W (B7)

and inserting eqgs. (B5) and (B6) into eq. (B7) gives

1
t,=-E-(4.8+In(Ao—W)+5InW—2In|7[), (B8)

which roughly approximates the explosion times obtained by solving eq. (37)
numerically.
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