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Abstract

This report is intended to provide collision data and data fits for implementing
elastic collisions between neutrals and ions in neutral gas transport codes.

Classical methods are employed to calculate cross sections and collision rates
for elastic collisions between neutral atoms or molecules and ions. The algorithm
for deriving all relevant data needed for kinetic description such processes in a
background plasma with Maxwellian ion velocity distribution is presented. Data fits
for these quantities are presented for hydrogenic and helium species. Furthermore
data fits for the  integrals needed in a hydrodynamic description are given. The
implementation of such processes into kinetic Monte Carlo neutral gas transport

models is described.
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1 Introduction

Neutral gas transport studies in tokamak plasmas have routinely been carried out in
the past by employing analytical, numerical and Monte Carlo methods. Until recently,
inelastic processes such as ionization, dissociation and charge exchange have been con-
sidered exclusively. The need to establish a high recycling regime near divertor targets
to allow efficient impurity control and ash removal has focused attention on high density,
low temperature boundary plasmas. Under such conditions, however, elastic collisions
between neutrals and ions become more important. They are, essentially, thermalization
and backscattering (i.e. momentum transfer-) processes for neutral particles penetrating
a plasma and they are relevant up to plasma temperatures of about 10 to 20eV.

Therefore, neglecting them is a very good approximation in model calculations address-
ing neutral gas transport properties in early limiter or divertor tokamaks and they often
are irrelevant even for present day divertor plasma conditions. However, in some recent di-
vertor tokamak experiments, as e.g. in DIII-D, JET, and ASDEX Upgrade (refs.[26], [27],
[14]) such low temperatures and sufficiently large densities have been measured. More-
over, such conditions are presently considered necessary for achieving acceptable particle
and energy removal efficiencies and simultaneously tolerably low surface erosion. Next
generation divertor concepts will focus on such conditions, as for example the so called
”charge exchange divertor” for ITER ([21]). Therefore, it is timely to implement elastic
collision processes into the various neutral gas transport models used for evaluating such
divertor concepts and for interpretation of data from experiments addressing these issues.
In two previous papers the effects of such collision processes have been described. Firstly,
in refs. [3], [4] we employed a simple relaxation ansatz, a slab configuration and used
analytical methods (verified by independent Monte Carlo solutions of the same model
equations). Secondly, in ref. [24] the full linear collision kernel and it’s implementation
into a general Monte Carlo neutral gas transport algorithm code was briefly summarized,
and first exemplary applications to a simulation model for the ASDEX Upgrade divertor
was given. In particular, the neutral helium transport was investigated.

In this report, both for reference purposes and for providing the basis for extending
the model to other elastic collision processes we derive a complete and consistent set of

data needed to simulate such process from first principles. Discussion is restricted to the
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classical theory of binary collisions. Thus all quantities are then directly derived from the
interaction potential field, and from the laws of energy and momentum conservation.

All data needed for implementing elastic neutral-ion collisions will be derived, and we
will also provide those derived quantities which are useful for a consistent neutral gas -
plasma transport calculation (i.e. Maxwellian averaged momentum and energy exchange
rates) and which often are missing in atomic and molecular databases (section 3).

A motivation and key consideration in the present paper is to present data in such
a format that they may easily implemented in neutral gas transport codes, and, in par-
ticular, in kinetic Monte Carlo algorithms. These latter procedures require very frequent
evaluation of the scattering angles for collisions between two individual randomly selected
particles. The data required and the implementation of this process in general and into
the EIRENE code in particular is described in section 4.

Collision data are calculated for binary elastic collisions between neutral particles and
ions. Starting point is the interaction potential for the colliding particles which is taken
from literature. Allinformation needed in a classical decription is contained in the classical
deflection function y. From this, total cross sections, transport and viscosity cross sections
(sections 2) as well as rate coefficients and momentum and energy exchanges rates are
derived (section 3). These rates as well as the collision rates needed in a hydrodynamic
description ({2 integrals) are fitted to polynomial expressions (section 6).

Whereas the discussion is kept general in sections 2, 3, the following processes will be
considered in detail in this paper: H* + H [7] (section 5.2), H* + He [7], (8], [1] (section
5.3), H* + H, [10] (section 5.4), He™ + He (section 5.5). However, the procedure outlined
here is kept general to permit other collisions to be treated in the same framework.

Results to an ASDEX-Upgrade SOL Plasma model will be published in a forthcoming
paper.




2 (Classical Collision Kinetics

2.1 Fundamentals

A binary collision event between two particles of masses m; and m,, moving with velocities
7, and ¥, at the points 7; and 7, respectively, is described within the framework of a
classical theory as the motion of a point with the reduced mass m, and the relative energy

E, in the effective potential field Vez(r):
Vers o= V(r) + E-(b/r)", (1)

E, :=mw?/[2, m, = mimy/(m1 4+ ma), v, :=| 01 — Vs |, 7:=| 71 =72 |;

b is the classical impact parameter and V' is the interaction potential field. We define the

function

$(r,b, E,) :=1=Voss(r)/E. =1 =V(r)/E, — (b/r)%. (2)

If the equation
(r,b,E)=0 (3)

has the positiv roots

'f'i(b, ET): 1= ]-: ey 25
the distance of closest approach from infinity, r*, is given by

maz{r;} ,n>1,

0 ,otherwise.

The classical deflection function x is then defined as:
x(b, E,) := 7 — 2 ] “dr vt g2, (5)

In the classical approach all information needed is contained in this deflection angle x.
Its functional properties depend on the nature of the potential function V(r) which will
be discussed in more detail for repulsive and Morse-like potentials in sections 2.2.1, 2.2.2,
respectively. Due to attraction x may become negative, and even, in case of spiraling (see
below), ¥ may range from —co to 7. The observable scattering angle, 8, ranges from 0 to

7 and follows directly from x, e.g. via the relation 6 = arccos(cos(x)).




The differential elastic cross section o(@, E,) is determined by the deflection function

(5) with the following relation
o(0,E,) =Y b;|db/dx|/sin8 (6)

where the summation is over the branches b;(x) of the, in general, multivalued function
b(x). ¢*(0, E,) is unbounded if either § = 0 or § = = for impact parameters b different from
zero (”glory scattering”) if the deflection function has a local minimum, i.e. dx/8b, =0
("rainbow scattering”) for some b, > 0. '

The total cross section ¢(E,), the diffusion cross section ¢?(E,) and the viscosity

cross section o¥(E,) are defined by the following equations, respectively:

o'(E,) :=2n /ﬂ df sinf o(0, E.,); (7)
0
ol(E,) :=2x /w df sinf (1 — cos8) o(6, E.,) (8)
0

=dn [ b sin® | 5x(8, B,)] (9)
e*(E,) :=2x /ﬂ df sinf (1 — cos?®d) (0, E,) (10)

0 .
=2r [ dbb sin® (b, E,). (11)

0

Inserting (6) into (7) yields the well known result that finite classical total cross sections
are obtained only for interaction potentials with finite range. The potentials considered
in this paper do not have this property, i.e. the total classical cross section would become
infinite. This problem could be dealt with more rigorously in a quantum mechanical
treatment only. However, in our strictly classical approach a cut-off angle xo has to
be introduced in order to obtain finite results. Clearly, this cross-section is then largely
determined by this choice, which therefore must be based on physical arguments. Distinct
from the total cross section the diffusion cross section and also the viscosity cross section
remains finite at least for potentials which tend to zero at infinity faster than r=! (s.
section 2.2.3). In order to define a meaningful cut-off angle xo (s. Appendix 1) we
first point out that the diffusion cross section is the physically more relevant quantity
since it weights collisions according to their influence on transport effects. We evaluate,

therefore, the integral (9) for a decreasing sequence of cut-off angles yo until it does not



change significantly anymore. In particular we require xo to be small enough such that
the correct diffusion cross section is accurately represented within about 1 percent by the
diffusion cross section obtained with this cut-off angle.

It is shown in section 7 that | xo | = 0.1 fulfills this criterion for all collision processes
considered here.

In Appendix 2 we discuss a semi-classical approach for calculating total cross sections.
The numerical results obtained there agree rather satisfactorily with the classical results,

thus serving as independent justification for the above choice of the cut-off parameter.

2.2 Numerical Procedure

Within the framework of our classical approach the deflection function y completely

describes the collisions process. To obtain this function we have to compute the integral

I(b,E,) = f dr v~ ¢71/2, (12)

in which ¢(r*) = 0. To investigate the convergence of this integral at the lower integration

limit we expand the function ¢ at r* up to the second order:

$(r) 2 ' (r) (r =)+ 5¢"(r") (r—r")* + ... (13)

We distinguish the following cases:

¢'(r) #0; (14)

¢'(r)=0, ¢"(r*) £0; (15)

P'(r*) =0, ¢"(r*) =0. (16)

The integral (12) is finite only for the first case (14). For the second case (15) it is
logarithmically divergent. For the third case (16) it is also divergent, but of higher order.
For an interaction potential V' (r) for which the condition (15) or (16) is accessible for some

values b and E,, the integral (12) (and therefore the deflection function x) is unbounded

("capture”).




Considering the first case suggests a Gaussian quadrature rule with weighting (r—r*)'/

for the integral (12). This leads to a Gauss-Mehler quadrature [15] for the integral (12):
1
1 1 l—-=z
I=— [d . 17
o e e (17

We use, instead, the slightly different quadrature rule:
1
. z(1 -
F o /d:c f(‘”) I z) (18)
™ 3 :c(l $(r[z)

because the abscissas z; and weights w; are given by closed form expressions [2]:

— (1+cos 22_171'), Wi = = (20)
2 n

n

This finally leads to the following approximated expression for the deflection function:

X g’”l: - ~ i /m‘))jl (21)

=1

The evaluation of x can be carried out very efﬁc1ently, with n = 8 or n = 16 resulting
already in approximation errors less than 1 percent (except near "glory”- or "rainbow”
scattering). The computational efford is determined by the efficiency of the root finding
procedure for 7. One should note that in a Monte Carlo procedure (see section 4) in gen-
eral many thousand evaluations of x (and therefore of 7*) are necessary. Representations
which are faster than (21) would be desirable. For an inverse power potential V(r) ~ 77",
for instance, an expansion of x in V(b)/E, can be carried out, leading to single parametric
dependency for the deflection function y (s. [20], [5]). For the potentials considered in
this report, however, analogous formulae do not seem to be known.

In the following we consider two classes of potentials: purely repulsive (Case I) and

Morse-like potentials with one repulsive and one attractive component (Case II).



Figure 1: Qualitative behaviour of the classical deflection function x for Case I (repulsive

potential).

2.2.1 Case I: Repulsive Potential

For a repulsive potential the deflection function y is a one-to-one relation of the impact
parameter b. It decreases monotonically from 7 to 0 with increasing b (Fig. 1) and can

very accurately be represented by a two-parameter fit

: M N
X =~ Y. > A(m,n)b" (nE)", (22)

m=0 n=0

bmin S b S bmar) Ermin S Er S Ermuz

with matrix elements A(m,n) obtained by a least square fit procedure (cp. section 5.2).
Performing the integration in eq. (7) from xo to 7 and using the relation (6) we obtain

for the total elastic cross section:
b1
o(E,) = 271'/ dbb = 7H(E,), (23)
0
with the maximum impact parameter b,(E,) defined by
bi(E;) := {b: x(b, E;) = xo} (24)

(cp. Fig. 1). The total cross section of(E,) can be approximated by the two quadratic




fits according to

Ino'(E.) ~ > a, (InE,)", (25)
n=0
E. < E,
2
In o'(E,) =~ Z b, (In E,)", (26)
n=0
B = B2,

The diffusion and viscosity cross sections (8) (10) are calculated by means of the

trapezoidal rule and can also be fitted according to (cf. [13]):

N
in ¢**(E,) ~ Y a2 (InE,)", (27)
n=0

Ermin S Er S Ermaz-

(Cp. sections 5.2 - 5.5.)

2.2.2 Case II: Morse-like Potential

A variety of model potential functions are used in the literature to describe short range
repulsive - long range attractive interaction between two particles (cf. [28]). A particular
form of such potential functions, which has the advantage of a small number of parameters
is the so called Morse potential with a cut-off at the minimum (cf. [18]). It is defined by

the formula

V(r) = ¢ [629(1""’) — 2 eg(l—")] , (28)
r g for p<1

p=— = ' (29)
T 9192 for p=>1

€ is the potential depth, r,, the equilibrium separation (cp. Fig. 2); ¢, g, are constants.
The greater the value of g the narrower the width of the the potential field. All short
range repulsive - long range attractive collision processes considered in this report (sects.
5.3, 5.4,5.5) are described by such Morse-like potential functions. Some characteristic
features of this potential function (28) are:

Finite value at

r=0:V(0)=¢ (¥ —2¢); (30)
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one root

ro i= Tm (1 - 19;) , V(o) = 0; (31)

one minimum at

T 2 Vi(rn) =0, Vira) = —¢ (32)
one point of inflection at

V(rw) = ——. (33)

Tw ‘= Tm (1 + ln_z.) 3 V,’(Tw) = 0: VI(TW) =
p +

9
rm
To compute the deflection function x by means of eq. (21) the roots r* of eq. (3) have
to be determined. In order to discuss this, we rewrite eq. (3) as

(03

Vs =V(r) + = =E,, a:=E/b (34)

r2
(« is proportional to the square of the angular momentum). If there are more than one
solutions of (34), r* is understood to be the largest one. Typical curves of the effective
potential (34) are displayed in Fig. 2 with a being the parameter. It can be seen that there
exists a ”critical” curve with the "critical” parameter o, := E,.b% such that all curves
with 0 < @ < ¢, have one maximum, one minimum and one point of inflection which
coincide at the critical curve. For a > o the effective potential decreases monotonically
with increasing r and approaches 0 at co. In this case the potential acts purely repulsive
and can be treated as Case I. For a < «, "orbiting solutions” may appear, which differ
fundamentally from those ones of Case I. These orbiting solutions lead to singularities in
the deflection function x which correspond physically to the mutual capture of colliding
particles. The classical orbiting condition is that the equation (34) has multiple roots
leading to divergent integrals for . This is the case when the relative energy E, coincides
with the maximum value of V,5;: E, = Vess(ra) with rar(a) denoting the separation at
the maximum of V,;;. Of course, at the maximum point rp(c) the condition (15) holds,
while the egs. (16) determine the critical distance r. and the other critical parameters
re, F,. and b,.
These critical parameters can be determined as follows:

Assume that the relative energy E, is given. We then seek a solution of both equations

Vess = E; and V;; = 0 with V(r) given by eq. (28). We obtain the equation
E, = h(r) := V(r) + % V'(r) (35)

12



that defines the auxiliary function h(r) and represents the equation to be solved. The
root 7 of this equation can, in general, only be found numerically. When such a solution

rar is known, the corresponding impact parameter bys follows from

bar = e /1 = V(ra)/Er, (36)

and furthermore: aj; = E,b%,. For Morse-like potential functions (28) k(r) has one
maximum at the critical separation r.. I.e. there exists a critical energy F,. above which
eq. (35) has no solutions. If r. is known the other critical parameters follow according to

(p—3) (p* —3p+3)

Erc =¢c (2p e 3)2

with p :=r.g/r,, and

Pre
b = ——m———, 38
VPP —=3p+3 ()

and, finally, a. = E,.b%.
In Fig. 3 the dependence of the separation at the maximum 75; on the relative energy
E, for R2 is shown. On the basis of these quantities we can now discuss the procedure to

find the distance r* of closest approach.

13
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Figure 4: Qualitative behaviour of the classical deflection function y for a Morse-like

potential (Case II).
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r* Discussion (C(r*)):
We try to find the roots 7* in dependence of the collision parameter b and the relative
energy B, under the condition to keep the numerical computation time as low as possible.
Assume that the characteristic distances rq < r,, <1, < r. < b, and the critical energy
E, are given for each collision process. We define p := \/m .
Independent from the value of the relative energy E, it is:
(i)0<b<rg:
1 root r* with b < r* < ro.
(ii)ro < b<ry:
1 root 7* with rp < r* < 7.
For s vy, it is:
(ii1) g < 1A pb, < 1y
1 root r* with r* > rg.
(iv) g < 1A pbe > 1y
(iva) ry < b < pby:
1 oot ¥™ wath € 7 € 7,
(ivb) b > pb,:
1 root 7* with 7* > rq.
(v) p> Uph, > ry):
(va) my < b < pbe:
1,2, or 3 roots r; with r* := maz{r;} > r,.
(vb) b > pb.:
1 root r* with r* > r..
(va) can be simplified furthermore if rp(E,) (cp Fig. 3) is known.
In summarising the above results, we note: each collision process described by the

Morse-like potential eqs. (28), (29) is determined by the 9-parameter set R
R': (5191392,Tm;7"017'w,7"c, bC)Er(:)- (39)

The first four parameters define the potential field. rq,r, are given by egs. (31), (33),
respectively. The last three parameters (numerical calculation) are interrelated by egs.
(37), (38). So for each collision process R the deflection function x(b, E,) can be calculated

by Gauss-Mehler integration (21) with a numerically determined r* by means of the
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above procedure C(r+). The qualitative behaviour of this deflection function is shown
in Fig. 4. x is no longer a one-to-one relation of b. Several classical trajectories may
contribute to the same scattering angle x: the positive angles correspond to net repulsion
and the negative angles to net attraction. In Fig. 4 the three different impact parameters
b, by, by correspond to the same observable scattering angle xo. The rainbow scattering
results from a minimum of the deflection function y for low energies at the rainbow
point (br, Xr)s X+(Er) := x(br, E;). For relative energies smaller than the critical energy
E, < E,. rainbow scattering corresponds to mutual capture: (b,,x-) = (bar, —00).

For Case II the cross section is no longer given by the expression (23) which is valid
only for Case L. It has to be changed as follows.

We start by introducing one further characteristic energy Ero which is defined as that

energy where the three points by, br, by coincide (s. Fig. 4):
b{(Er) = {b :I X(b, E.,.) l: Xo A bl S b2 S b3},'l: = 1,2,3, (4:0)

ETU = {Er : Xr(Er) = —XO}' (41)

For relative energies E, not less than E,o the total cross section is (as in Case I) given by

7b? (egs. (23), (24)). Otherwise (E, < E,o), it has to be changed to

oH(E,) = 27 ( fo " dbb + /b b dbb) = (- B+ 02). (42)

If by is very large compared to by,bs the rainbow scattering dominates and the total
cross section is approximately given by o* ~ 7b2. With increasing relative energy E. the
minimum y, will be less pronounced and b3 — b2. In this limit this results in of — wbj,
which, indeed, is the result for E, > E.. So finally we can define the total cross section

as follows:
(E,) = b2 for E. > E,o, (43)
b2 — bi + b3 for E, < Eo.
Indeed, this cross section is a continuous function of the relative energy. In particular,
there is no cut-off at E,o in our cross section results as it was the case in those of refs. [7],
[8] (s. Fig. 8 where one result of [7] is also included). Moreover, extending the definition

of E,o such that it is 0 for Case I one sees that the expression (43) includes also this case.

Because the functional dependence of the total cross section on E. is different for both
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energy ranges (see section 5). We therefore need two different representations for the two
different energy ranges.

Contrary to the total cross section the diffusion and the viscosity cross sections (8), (10)
do not have the slowly decreasing high energy tail (see the discussion of the asymptotics
following section 2.2.3 and the results in section 5).

The total, diffusion and viscosity cross sections can be approximated by the least
square fit

’ N
Ino(E,) ~ Y ab®? (In E, )", (44)
Eonin < By < Fomas.
Outside the range of validity of the approximation we need asymptotic expressions for

the cross sections.

2.2.3 Asymptotic Behaviour of the Cross Sections

We have calculated the cross sections in the energy range of from 0.01eV to 100eV. One
needs, however, for the integration involved in evaluation of the collision rates (section
3), the data for the whole energy range (0,00). Therefore we now discuss the limiting
behaviour of the cross sections for low and high energies, respectively.

(i) B, —

For this case the perturbation expression can be derived from eq. (5):

F(b
x(b, E, = o0) >~ — EL)’ (45)
.’EV b:c

For the following model potential functlon, which is assumed to give representative asymp-

totic estimations for both considered Cases I and II,

V()= Yoo e, >0 (1)

=1

F' can analytically be expressed as:

F())=—5Y aici Ko(be:) (48)

1=1

B



with Ko being the modified Bessel function of zeroth order. This results in the closed
form expression for the deflection function

X = Ei,. ga;cJ{o(bci). (49)
If the argument of the modified Bessel function is large, the leading term of the asymptotic
expansion (2]

Knle) ~ yfo (1 + o(%)) (50)

T

can be used. Considering only the largest term, denoted by I, the following equation

T 1
\/glarl\/b-c‘fﬂb‘ﬂml (51)

has to be solved. Replacing b in the square root by a representative mean value b, we

obtain the solution
b
bl—lln—, \/ '“"\/C’ (52)

By means of eq. (43) we obtain the asymptotic expression for the total cross section:

T £\
ol(E, — c0) =~ 2 (ln ET-) : (53)
1 r

Defining the constants A, B by

A:=B InkE,, (54)
B = —\/—T_r, (55)
Ci

we arrive at the following asymptotic expression for the total cross section
ol(E, - 00)~(A — B In BN (56)

For the diffusion cross section we obtain the simple relation according to egs. (9), (45),

(46)

c(E, — c0) = 4r jw dbbsin® éx(b, E,. — o) (57)

0
~ / % dbby2(b, E, — o) (58)

0
resulting in
C

o (B, — 00) B (59)
Ci=m / b db F2(b). (60)

18




The diffusion cross section decreases faster than the total cross section for E, — oo.
An analogous asymptotic expression (59) also holds for the viscosity cross section (10).

If the integral (46) is convergent the deflection function can be estimated to x ~
V(b)/E.. For an inverse power law potential V(r) = a,r " it is x ~ a,b™"/E,. For
n > 0 the deflection function is finite and the integral (48) convergent. For the diffusion

cross section it results:
o o ] “db b V(b) = (anr/E2) j P (61)

which remains finite for n > 1. So the diffusion cross section is finite for potentials which

1 at infinity.

tends to zero stronger than r~

(i1) E, — 0
We use the standard procedure of [13]:

Inc"*(E, - 0)~C +DInE,. (62)

The various asymptotic estimations (57), (59) and (62) are summarized and general-
ized to

In o & ag + a; In E, + az(In E, )%, ' (63)

where a term of second order in In E; is additionally included. Eq. (63), ideed, is a special
case of representations (25), (27), respectively, with N = 2. It will be used as standard
asymptotic representation. So cross section data for the whole energy range (0,00) are

presented in this report (section 5).
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3 Collision Rates

3.1 Definitions

The deflection function x(b, E,) (5) was the starting point to calculate the total cross
section ot (7), the diffusion cross section o¢ (8) and the viscosity cross section o” (10)
which are denoted as follows:

ot =0

a(l)(E,) e
21 [5°db b [1 — cos' x(b, E.)], {>0.

(64)

Knowing these cross sections we can calculate the respective collision frequencies v{!),
v = ngu.ol. (63)
Let
fap (@) = [(Fag)y [ dBapfap=1. (66)

denote the distribution functions of the particles «, 3, normalized to 1. The quantity

J(Va, Ug), averaged with the distribution function fg, is written as

(#(5as o)) 1= [ diip fo §(Tar 3p) (6
Averaging once again, with the distribution function f,, we write
(g(gaaﬁﬁ))ﬁa = ((g(aaagﬁ))ﬂ)a' (68)

We consider the following quantities (collision rates) (cf. [9]):
(1) rate coefficient:

(v, o) (69)

(i1) momentum transfer rate:

(%) = —-m,(f)',,z/(l)) (70)

(1i1) energy rate:

( ) (B, - B+ —2—””‘“50@,):/(1)) (71)
with 7, = U, — U, Ea,g 1= ;Ma,gV2 g, Ky 1= 2mamg/(mq + mg)?.

In a kinetic description of neutral particle transport such rates enter, averaged once
over the distribution function of the ions according to eq. (67). In hydrodynamic models

such expressens enter, averaged twice according to eq. (68).
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3.2 Rates for Kinetic Description

For kinetic neutral gas models (e.g. for Monte Carlo algorithms) we need the above
mentioned rates for the neutral species « averaged over the distribution function of the
ions 8. We restrict the discussion in what follows to Maxwellian (no directed velocity)

distributions fg:
: -3
fo=(Vmag) eWelool ap = /205 ms. (72)

(1) collision rate:

R := (v,0®)5 = (73)

2 2
— _|.'v
d . (0), (__ ) _ Ur Vo . _ Ur o3
\/_vaag/ v, v o 2 v exp = exp i

(ii) momentum exchange rate (in one direction):

Ry = —m, (vy,0W)5 = \/_vaa,@/ dv, v’ 0(1)( 5 vr) (74)

2 _ 2 2 2
Uy — B exrp — e + (v + 25 erp — 2 t Vo
27)0‘ ag 2'1)0, apg

(iii) energy exchange rate:

Rpq = —&r((Ea — Eg+ W_;‘%‘ﬁaﬁﬁ) v,o)) = \/_'Uaaﬁ ] dv,v? oM ( 2T 2) (75)

2
My mg My + Mg My + Mg Up — Vqy
{[?”3 =g et ) b T - =g eap— S0 )

2
st = T - P, Mt (1))

These rates can be represented in terms of the following I(*®) integrals

2

a ©0 2 2 2
I (B, Tp) = 2om [ dE 470 0(Ty?) (e — (1@}, (76)

({ = unis, § = Ei?.; by the expressions:
R, = 109, (77)
Bpg= myag (I(lll) _ 9 1(1,0))) (78)
Vo
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M m My + M Mg + M m
Rgq = —kr { (——-vz = —%3 - —f'——————ﬁ-af;) 1(1'0) + —-—2—'87_:0,&;31(1’1) — —aﬁ-af,[(l'z]} .

2% 2 4
(79)
The I+ integrals satisfy the equations
6, 1
§ 10w = By 100 4 (5+ ) 10, (80)
1
I(I,n+2) o Tﬂ;ﬂf(l'n) 4 n ‘2|‘ I(l,n) _ 521(1,11) i 25}(!,71-%-1) (81)
d 0 n+3
_m 9 m) L op 9 ptn) (___ 52) 7). 39

The various cross sections are included in Monte Carlo transport codes in the form of
polynomial fits (section 5). The collision rates which are functional related to the respec-
tive cross sections, will also be included as fits (section 6). The variety of different fits
of interrelated quantities may lead to inaccuraties in the computation procedure. The
relations (77) - (79) allow to reduce the fits, which are necessary for the Monte Carlo de-
scription, to down to at least one fit for each [. So sources of inaccurities may be removed.

In order to calculate the above mentioned rates we need at least the I Integrals I®® and
J1.0), '

3.3 Rates for Hydrodynamic Description

We outline here only the sim;l)lest approximations (cf. [9]).

The rates entering a hydrodynamic description are essentially determined by the de-
pendence of the resp. collision frequencies on the relative velocity v, and the approach
of the distribution function for both species o and 3. Representing the relative velocity

vector @, := 7, — Ug as the sum of the directed (@) and the random (w) velocity

— —

G, =A@, §= il — g, © = Da — Wp (83)

and restricting to the case u << w, one proceeds by expanding the rates in terms of
7. In what follows, the distribution function fos will be assumed to be isotropic (which
corresponds to Grad‘s 5-moment approximation). We then obtain for the rate coefficient
in zeroth approximation the wellknown result

(1) collision rate:
I == (’U,-G'(D))ﬁa = %aaﬁ /:o dé & e U(O)(Taﬁéﬂ) (84)
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with £ := v, /aqap, aiﬁ = a2 + a = 2Top/m,; Tap is the effective temperature.

(i1) momentum exchange rate:

(T W) op ~ @ 7, (85)
v §§\/T? ng asg | dE € € o(Tupt?). (86)
(iii) energy exchange rate:
] ((; mavl — %mgv ) v() 5q o (87)
m—a:—?nﬁ (Ta s Tﬁ + maui —— m,@uﬁug + (mﬂ - ma)uo,uﬁ) .

The energy rate is also approximately given in dependence of the averaged collision fre-

quency 7. It is related to the diffusion coefficient by [9]
D=T,z/m.b. (88)

The transport coefficients can be expressed in terms of the Q integrals which are defined

analogously to ref. [12] by

AN = 22 [“de € @000(Te) ()

For the diffusion coefficient one obtains

3 Tup 1
= —— 90
16 m,ng Q1) (%0)
Eq. (90) is the simplest example of the relation of the  integrals to the transport
coefficients. Furthermore: R = 8Q(00).

The following relation holds for the €2 integrals [12]:

af

urey _ 2 H3 Q). (91)

It allows to calculate the Q integral of the next order from a given Q") integral. To
calculate the transport coefficients for diffusion, thermal diffusion, viscosity and thermal
conductivity one needs the following ) intergrals: Q1) Q(1.2) Q(3) Q(2.2) (cp. [12]). By

means of eq. (91) the first three  integrals can be expressed in terms of (1) only.

23




Integrating the I integrals over a Maxwellian distribution function for the neutrals
they can be related to the Q integrals by
' e\ 2
(I027)) = 8 (?‘:—) Qtm;  n=0,1... (92)
So the I integrals in the Monte Carlo description correspond to the  integrals in the
hydrodynamic approach. The integrals of different order in the second variable are related
one to another by egs. (80), (91), respectively, which reduce the number of fits needed in
both approaches to the lowest order one (n = 0).

4 Monte Carlo Procedure'!

Usually, Monte Carlo methods for neutral gas transport in plasmas are developed from
intuition. Rigorous Monte Carlo procedures to describe inelastic processes in plasmas are
well known (e.g. [23] and references therein), therefore we restrict ourselves here to a
description of the elastic interactions. In order to illustrate this, we write the collision
integral in the linear Boltzmann equation (for the single particle distribution function f)

for hydrogen neutral particles in a hydrogen plasma background in the following form:

d
(‘6_{) ol [ ] Wi = von)f(v)f(vh)dvadv'dvy
o ]ff W(V,VI — V’, vg.)f(v)f(vl)dvld‘v’dv& (93)

which can readily be generalized to dissimilar masses (e.g. the H +4 H, collision mentioned
above). Here Wis a transition probability for post-collision states v (for the neutrals)
and v (for the ions), given pre-collision states v’ and vi. Implicit in this form is the
assumption of a finite cross section, which in our case is ensured by introducing a maximum

impact parameter as discussed above. The transition probability is given by

v — ! . 2 et Y2
W(V,Vl — V',VI1) = U(l vV—Vi1 |,9)‘53 (V+VI 2v Vl) -0 ((V Vl) 2 (V Vl) )
(94)

where o denotes the differential cross section, 8 is the observable scattering angle in the

centre of mass system. The delta functions express conservation of momentum and energy,

1Written by D. Reiter, cf. [24].




respectively. The second integral in eq.(7) yields the term [n; - (o(vret) - vret) /0] - v - F(0),
wherein the first factor is just the macroscopic cross section £(v) ( the inverse mean free
path). Including this term in the Monte Carlo procedure is simply done by enhancing the
total macroscopic cross-section accordingly.

Because we are only concerned with the fate of the neutrals, and not the ions, we can

formally express the first integral as

j C(v' = v) - B(') - v f(v')dv’ (95)

where the kernel C' now reads, after some rearrangement:

e —=v)=]] n“’ V1 2 VY1) vt dvy. (96)

(0 vrer)(v')

In order to incorporate this kernel C' into the Monte Carlo procedure, random vectors v,
given v/, have to be generated, once an elastic collision process is identified by a random
selection between all processes contributing to the total cross-section. This requires ran-
dom sampling from a multidimensional distribution involving the differential cross-section

(as e.g. in ref. [1]). To avoid this, we rewrite Cas:

V — V /f [ UreI * Urel * f(,;’g.)} . [QWb(vreI)] . [33() " 51()] o dV’ldde (97)

TZ., ag- vrcl)(

According to the standard Monte Carlo method, sampling the post-collision state v now
proceeds as follows: First sample v} from the first factor in eq.(15), then find b according
to the second factor (conditional on v}) and € from a uniform distribution, and finally
compute v from the deterministic delta distributions (given b, € and | v/ — v} | and the
effective potential field V,54(r) eq. (1). Thus we see that the Monte Carlo simulation
of the elastic processes as described above and as implemented into the EIRENE code
is entirely equivalent to solving the linear Boltzmann equation. Up to this point we
have described how to generate the pathes of a stochasic process corresponding to the
linear Boltzmann equation. In order to optain macroscopic quantities from such random
walks, (generally referred to as "responses” in neutron transport applications), standard
Monte Carlo estimation techniques can be applied. They involve various different types of
maxwellian averaged cross-sections, ie. collision rate coeficients weighted by the particle,

momentum or energy exchange rate per collision [25] (section 3).
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5 Data Fits for Cross Sections

5.1 QOutline of Procedure

Each collision process is decribed by the vector R which is compared to eq. (39) redefined
by adding the second characteristic energy E.q (41):

5 0 for E, =0
fr= ( ) > ° (98)
(f: 91592, T'my T0, Tws Tes Oy Ere, Ero) for Epo >0
€, 01,92, "m — parameters (29) of the Morse potential (28)
ro — eq. (31)
Tw — €q. (33)
Critical parameters (section 2.2.2):
r. — numerically calculated
b. — eq. (38)
E.. — eq. (37)
As maximal collision parameter we use: bp., = 25.
All cross sections are calculated in the energy range
0.01eV < E, < 100eV.
and fitted according to:
8
In c"*(E,) ~ Y a4 (ln E,)", (99)

n=0

Ermin S Er _<.. Erma.:z-

Ermins Ermar are given. For the total cross section and Case II (R2 - R4) these limit
values are given by the characteristic energies E,., E,o. This shows the meaning of these
quantities: The total cross section of Case II is approximated by a least square fit in the
energy range between E,., E.o; outside this range it is only an asymptotic quantity (63).

d,v

Diffusion and viscosity cross sections ¢*? are represented analogously according to

(99) and (63). The energy limits are the computation limits.
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The asymptotic parameters ao,a1,d2 are additionally labeled by either "I” ("left”, i.e.
E, — 0) or 7" ("right”, i.e. B, — 00).

In order to be consistent with [13] we go over to the laboratory ton energy

m; my
Elab = —2—1’,2. = EE,- (100)

We use the above mentioned fits, replacing there the relative energy E, by the laboratory
ion energy Ejgp-

The following dimensions are used:
Er(fab): V in €V,
ghd in cm?,

b in ao=0.52917A.

52 Rl: H"+ H

(Repulsive) Potential (Case I) [7]:

ViF)= e ([S(r) =1~ [r'"l - (1 + r'l) e —(1+ r)er] + 7"_1) , (101)
S@r)=(1+r+17/3) &7, e=21211eV, : (102)
R =(0). (103)

The deflection function y is represented in Fig. 5. The matrix A(m,n) is represented
in Tab. 1 The two-parameter fit is according to eq. (22). (There we use exceptionally
the relative energy E, instead of the ion laboratory energy Ejqs.) Cross Sections s. Fig.

6, fitting parameters s. Tab. 2.
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b-Index:

CO 3 O Ut = W N = O

b-Index:

o

o =~ O O s W =

b-Index:

o =~ O O = W N =

Er-Index: 0

1.776566650789D-04

5.800163476447D-01

8.961720867515D-04

-5.378363832594D-03
1.403086334034D-05

1.263297186698D-04

-2.395080677610D-05
1.987085392037D-06

-6.093049227396D-08
Er-Index: 3

-3.664907417572D-03
1.666138990907D-01
3.714506245192D-02

-9.872736783319D-02
3.516381498679D-02

-5.562242214128D-03
4.622506110672D-04

-2.022300842732D-05
3.796451629808D-07

Er-Index: 6

5.260472693069D-03
6.293258269033D-03
-4.799935529825D-02
3.119154873654D-02
-6.011121508833D-03
-4.366350033421D-05
1.366859407965D-04
-1.475015885534D-05
4.883487802579D-07

Table 1. Matrix A(m,n)

1.855322980624D-03
4.025727537412D-01
2.717940166261D-02
-3.679620344642D-02
7.716290911417D-03
-1.067207481809D-03
1.062049115863D-04
-6.034790121757D-06
1.381514509566D-07
+

-1.063987732945D-02
1.911893550209D-01
-1.397148070239D-01
3.409146026316D-03
1.353207184504D-02
-3.318847140116D-03
3.163789332944D-04
-1.250896502233D-05
1.392648739108D-07
7

4.717588716645D-03
-2.813415544944D-02
2.078852667665D-02
-5.388469488718D-03
1.443119485342D-03
-5.145545678476D-04
1.006166346060D-04
-8.825780695868D-06
2.824671792873D-07

29

2.814879435626D-03
2.350494282005D-01
8.133177076638D-02
-9.416378439238D-02
2.604212472132D-02
-3.876325025095D-03
3.668225256930D-04
-2.080164719113D-05
5.201314001636D-07
b}

-4.211662874743D-03
1.203931033356D-01
-1.807805463274D-01
7.169447310606D-02
-9.614318042249D-03
-1.702969355132D-04
1.510270667181D-04
-1.255843447284D-05
3.282528647163D-07
8

1.037581141596D-03
-8.090313155856D-03
8.629078009560D-03
-3.624349532837D-03
9.293586951192D-04
-1.823754390621D-04
2.488598774731D-05
-1.875590567703D-06
5.653464120248D-08
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Figure 5: Deflection function x(b, E,) as function of the collision parameter b for

relative energies E, = 0.01 — 10eV.

30




Rl Ht+ H

SIGMA-TOTAL(ELAB)

ELABMIN=ELABMAX=1.8206 eV
a0  0.000000000000D+00 al 0.000000000000D+00 a2 0.000000000000D+00

a3  0.000000000000D+00 a4 0.000000000000D+00 a5 0.000000000000D+00
a6 0.000000000000D+00 a7 0.000000000000D+00 a8 0.000000000000D~+00
al0 -3.253031352541D+01 all -2.559032645641D-01 al2 -1.449996483552D-02
ar0 -3.262937357400D+01 arl -8.719626183599D-02 ar2 -7.346647926269D-02

SIGMA-DIFFUSION

ELABMIN=0.02 eV, ELABMAX=200 eV
a0 -3.349115100108D+01 al -4.047040620920D-01 a2 -4.340959073105D-02

ad  -5.224890973622D-03 a4 -1.019115858754D-04 a5 -3.314157761518D-06
ab  -4.336259011986D-05 a7 -1.781020734395D-06 a8  1.220393550627D-06
al0 -3.320677627738D401 all -2.205942040112D-01  al2 0.000000000000D+-00
ar0 -2.753878563969D+01 arl -2.000000000000D+00 ar2 0.000000000000D+00

SIGMA-VISCOSITY

ELABMIN=0.02 eV, ELABMAX=200 eV
a0 -3.353420922048D+01 al -3.522409780724D-01 a2 -3.587214262651D-02

a3  -4.282561006823D-03 a4 -3.230618998917D-04 a5 -4.343173698940D-05
ab  -1.753965583282D-05 a7 -4.580920664987D-07 a8  3.738689325195D-07
al0 -3.330015157525D+01 all -1.992625366488D-01  al2 0.000000000000D+00
ar0 -2.709329427260D+01 arl -2.000000000000D+00 ar2 0.000000000000D+00

Table 2: Fitting parameters for cross sections for R1 H* + H.
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Figure 6: Cross sections as function of the ion energy Ep for R1 HY + H.
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5.3 R2: HT 4+ He

S. ref. [29].

R= (2.0,2.2,0.85,1.4556, 0.9970, 1.9952, 2.8833, 4.5099, 0.4065, 23.555)

(101)

(The characteristic ion lab energies are: Fjgp. = 0.5081, Ejqpo = 29.4434.)
SIGMA-TOTAL(ELAB)
ELABMIN=ELABC=0.5081 eV, ELABMAX=ELAB0=29.4431 eV

al
a3
ab
al0

ar(

-3.357907136508D+-01
-1.259671949006D+-00
-1.203733922915D+00
-3.355838377904D4-01
-3.706830076698D4-01

SIGMA-DIFFUSION
ELABMIN=0.0125 eV, ELABMAX=125 eV

a0
a3
ab
al0

ar(

-3.425585328953D+01
1.549750110754D-02
-2.207534449376D-03
-3.390101844960D+-01
-3.034765152080D+01

SIGMA-VISCOSITY
ELABMIN=0.0125 eV, ELABMAX=125 eV

a0
ad
ab
al0

ar(

Table 3: Fitting parameters for cross sections for R2 H+ + He.

-3.443725345071D+-01
-6.451669335555D-02
-1.589840628629D-03

-3.432276031579D4-01

-2.978907423990D+01

al
ad
a7
all

arl

al
ad
a7
all

arl

al
ad
a’l
all

arl

-9.811659406594D-02
-4.473947519984D-02
3.525830383820D-01
-2.845473342853D-01
4.204258692619D-01

-8.999762959781D-01
3.963555202866D-02
-3.378852519380D-05
-2.111706771112D-01
-2.000000000000D+-00

-4.337427858507D-01
2.950009865269D-02
-1.502468439244D-04
-2.111706771112D-01
-2.000000000000D+-00
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a2
ad
a8
al2

ar2

a2
ad
a8
al2

ar2

a2
ad
a8
al2

ar2

3.798308269292D-01
1.565182597363D+-00
-3.668922671043D-02
-1.351427675077D-02
-9.648359210100D-02

-3.434858124811D-01
3.343570605088D-04
4.224511209820D-05

0.000000000000D+00

0.000000000000D+00

-2.896488696126D-01
5.752283385868D-03
3.151161681447D-05

0.000000000000D+-00

0.000000000000D+-00
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Figure 7: Deflection function x(b, E,) as function of the collision parameter b for

relative energies E. = 0.01 — 10eV.

34




Cross Section for Elastic Collisions between

13 Helium Atoms and Protons
10
-14
10
\__}FH‘ \‘-H
+ i GRsS
- - |
o "“""‘“wa SR \
+ N \\
\* i \"Qw
T a1 UL vl
5 12 S =
—~ \ N
o~ < ANY
% . \
5 A% \
i\
o N
< il
& 10 A ——
< AN H]
| R
g | S
N | X
\\
AN
-17 N N
10 T
\\
\
\
-18
10 -
T 16 10° 10" 102
ELAB (eV:
+ o_total % o_diffusion % o_viscosity

» og_CUPINI
Figure 8: Cross sections as function of the ion energy Ejo for R2 Ht 4+ He. The result

of Cupini et al. [7] for ¢ar = 0.99 is also displayed.
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54 R3: H" 4+ Hy

S. ref. [17].

R =(2.7,3.0,1.0,2.8355,2.1804, 3.4907,4.1736,6.0591, 1.0399, 41.211) (105)

(Ejabe = 1.5598, Eiqp0 = 61.8164)
SIGMA-TOTAL(ELAB)

ELABMIN=ELABC=1.5598 eV, ELABMAX=ELAB0=61.8164 eV

a0 -3.452141819446D+01 al 1.092015526305D+01
a3  3.466297654768D+01 ad -2.524607958646D+01
a6 -2.770065796605D+00 a7 3.796353200921D-01
al0  -3.275286840950D+01 all -2.351764912137D-01
ar0 -3.537275807146D+01 arl 2.144573517210D-01

SIGMA-DIFFUSION

ELABMIN=0.015 eV, ELABMAX=150 eV
a0 -3.318680874597D+01 al -3.580417289312D-01

a3  -5.005702120342D-02 a4 2.369248748869D-02

a6  -1.357018742589D-03 a7 -1 .393776090855D-04
al0  3.839304000000D-15 all -1.726918000000D-01
ar0  2.568502600000D-12 arl 0.000000000000D+00

SIGMA-VISCOSITY

ELABMIN=0.015 eV, ELABMAX=150 eV
a0 -3.362402037774D+01 al -2.337285826242D-01

a3  -4.473235272373D-02 a4 -4.691524784882D-03
ab 4.229065229431D-04 a7 -6.739555319843D-05
al0 3.053906071449D-15 all -1.726917299089D-01
ar0  2.833830531873D-12 arl 0.000000000000D+-00

Table 4: Fitting parameters for cross sections for R3 H™ + H,.
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a2
ad
a8
al2

ar2

a2
ad
a8
al2

ar2

a2
ad
a8
al2

ar2

-2.732690257819D4-01
1.092376446349D+01
-2.168988142310D-02
-1.045602118569D-02
-4.643079956637D-02

-2.274382376951D-01
5.013459267775D-03
3.029808591929D-05

0.000000000000D+00

0.000000000000D+00

-5.404526201247D-02

3.121568334037D-03
-7.756198335533D-06
0.000000000000D+00
0.000000000000D+-00
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Figure 9: Deflection function x(b, E.) as function of the collision parameter b for

relative energies £, = 0.01 — 10eV.
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Cross Section for Elastic Collisions between

13 Hydrogen Molecules and Protons
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Figure 10: Cross sections as function of the ion energy Eiq for R3 H + Ho.
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Figure 11: Comparison of “diffusion. cross section calculations for H+ — H, collisions;

1 - this paper, 2 - [22].
Our results for the transport cross section are compared with latest calculations of

[22] in Fig. 11. The agreement is rather satisfactory, especially in the energy range of

interest 0.1 — 50eV.
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5.5 R4: Het + He

S. ref. [29].

R = (2.55,2.35,0.9,1.9842,1.3990, 2.6345,3.5986, 5.5410,0.6061,32.305) (106)

(Etase = 1.2122, Eiaso = 64.6090)
SIGMA-TOTAL(ELAB)

ELABMIN=ELABC=1.2122 eV, ELABMAX=ELAB0=64.6090 eV

a0 -3.336949020454D+01  al
a3 2.345459194687D+01 a4
ab  -2.604153028956D+00 a7
al0  -3.201071330248D+01 all
ar0  -3.664691925424D401 arl

SIGMA-DIFFUSION

4.374909804779D+00
-1.969436659467D+01
3.801132783280D-01
-2.416669402887D-01
4.752719886448D-01

ELABMIN=0.02 eV, ELABMAX=200 eV

a0 -3.332091557452D401 al
a3  -8.177418933677D-02 a4
a6  -1.649825718076D-03 a7
al0 4.524094200000D—i5 all
ar0  7.673020700000D-13 arl

SIGMA-VISCOSITY

-3.823354679977D-01
2.593188019755D-02

-2.491587647454D-04
-1.115060000000D-01
0.000000000000D+00

ELABMIN=0.02 eV, ELABMAX=200 eV

a0  -3.379346231200D401 al
a3  -8.223847315134D-02 a4
ab  -5.593294441844D-05 a7
al0 3.261848864837D-15 all
ar( 1.120563328874D-12  arl

Table 4: Fitting parameters for cross sections for R3 H *+ + Hs.

-1.740525006979D-01
-1.443276051210D-03
-1.742244159818D-04
-1.115060177785D-01
0.000000000000D+00
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a2
ad
a8
al2

ar?

a2
ad
a8
al2

ar2

a2
ad
a8
al2

ar2

-1.517973301721D+01
9.472303986781D+00
-2.282922057203D-02
-9.821377921757D-03
-8.280792916138D-02

-2.666453887008D-01
8.3205-363897668])-03
4.351897658362D-05

0.000000000000D+-00

0.000000000000D+00

-8.091712353563D-02
6.530393601967D-03
1.068285383642D-05

0.000000000000D+00

0.000000000000D~+00
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Figure 12: Deflection function x(b, E,) as function of the collision parameter b for

relative energies £, = 0.01 — 10eV.
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Cross Section for Elastic Collisions between
Helium Atoms and Helium lons
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Figure 13: Cross sections as function of the ion energy E. for R4 Het + He.
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5.6 Isotopes

"H” stands also for ” D” and "T". For the isotopes we use the wellknown rule "that the
relevant cross sections are independent of the isotope of hydrogen when the velocity in

the center of mass system is the same” [11]. Let e.g. the following quantities be given:

X(b,E,.), at'd'u(Er)’ (Urgt)ﬁ(EmTﬁ)v (Urgt)ﬁa(Taﬁ) (104)

(Eq := Z2v?) then the the simple scaling relations follows for the isotopes (denoted by

mT

xX'(b,E;) = x(b, WET ! (105)

ool (E,) = oH(E,), (106)
Mz My

(07 15 (B ) = (r)s (22Eu, 2T5), (107)
my

(0r0Vha(Tug) = (00"} (mITaa). (108)
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6 Data Fits for Collision Rates

6.1 Rates for the Monte Carlo Description

The collision rates for the Monte Carlo description (section 3.2) are functions of the two
independent variables E, (neutral beam energy in eV') and T (ion temperature in eV) and

can be expressed in terms of the I!'") integrals which are represented by a two-parameter

fit:

8 8
167~ 5™ 8N A (m n) (In E,)™ (In Tp)™. (109)

m=0n=0

1(00), ](1,0), 7(11).

R1 - Figs. 14, 15, 16, Tabs. 5, 6, 7
R2 - Figs. 17, 18, 19, Tabs. 8, 9, 10
R3 - Figs. 21, 21, 22, Tabs. 11, 12, 13
R4 - Figs. 23, 24, 25, Tabs. 14, 15, 16

Rya - Figs. 26, 27, 28, 29 (R1 - R4)
Rgq - Figs. 30, 31, 32, 33 (R1 - R4)
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E-Index: 0

T-Index:

0
1
2
3
4
5
6
7
8

=1.
g L%
2.
-8.
_2.
4.
6.
=1
1.

823472394862D+01
218869427323D-01
183144859635D-02
144414285471D-03
414158185489D-03
042335482230D-04
684610364551D-05
814826813629D-05
049993252610D-06

E-Index: 3

T-Index:
0

W ~N O ;e W N

.048059867515D-03
.404776509987D-03
.660137737426D-03
.907814505083D-03
.801892116713D-04
.063144974289D-05
.043290334814D-05
.798870422148D-06
.006730549005D-07

E-Index: 6

T-Index:

0
1
2
3
4
5
6
7
8

Max. rel. Error:

Table 5: R1 H+ + H I-0,0: <sigma*vrel>(Ti,Ebeam)

=1

.673201510283D-04
.536937592691D-05
.224423097417D-04
.858120151811D-05
.747846551451D-05
.360748557750D-07
.738436960565D-06
3.
.655735806555D-08

156490387804D-07

0.5284 Y Mean rel. Error:

.043929094352D-01
.071776515805D-02
.947238019788D-03
.950619428888D-03
.610515523206D-03
.333068266837D-04
.395481729149D-04
.589238118662D-05
.124957529757D-07

.577324303045D-03
.448141329729D-04
.687354957150D-03
.558232467687D-05
.945348864215D-04
.875034864587D-05
.493675458929D-05
.269371275613D-06
.854263211106D-07

.451268371503D-05
.054714466075D-06
.126181472934D-05
.112919746718D-06

45

.385021298310D-02
.163024588310D-03
.029753867911D-02
.480212482573D-03
.147576632073D-03
.109287055048D-04
.872093410396D-05
.137141330233D-05
.966443729323D-07

.174052650323D-05
.017991251450D-04
.123876140912D-05
.587671168547D-04
.556467005779D-05
.746625582656D-06
.216371174204D-06
.202325463122D-07
.033863743276D-08

.199498285047D-06
.596768109209D-07
.100195177512D-06
.374805864224D-08

.380086290415D-06 2.202510674285D-07
.783870577323D-07 -2.732689440408D-08
.3633710569212D-07 -1.072861195261D-08
.006550452098D-08 2.526895478569D-09
.801053970232D-09 -1.467609659450D-10
0.0853 ¥
(cm*+*3/s)



(cm**3/s)

|—0,0:<sigma*vrel>(Ti,Ebeam)

10

10
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10

10

10

Elastic collision between protons and hydrogen R

m
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xm

lon Temperature (eV)

Figure 14: R1 [(©9)
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E-Index: 0

T-Index:

0 ~N @ 0o W N =+ O

|
-

1
-

.934778779385D+01
.400121290584D-04
.072570686950D-02
.329656452946D-03
.548110966373D-03
.780715214347D-05
.351915617491D-05
.0719156223480;05
.468789447600D-07

E-Index: 3

T-Index:

0 ~N o 0 s W N O

.555854995025D~-03
.213464571187D-02
.222678509228D-03
.530314087059D-03
.894095127078D-03
.806873100807D-04
.386998803904D-04
.936468195914D-05
.077060263537D-06

E-Index: 6

T-Index:

W N O o W N = O

Max. rel. Error:

.023499873278D-04
.794896057762D-04
.352460376261D-04
.365796504952D-04
.083092577128D-04
.584828965214D-05
.358046593907D-05
.216781743757D-06
.154459633382D-07

.193162842747D-02
.025758478606D-02
.258217951174D-02
.017355462044D-02
.141816249813D-03
.483013774324D-04
.711920962053D-04
.653900655552D-05
.989227802803D-06

.071069026823D-03
.615417883123D-03
.181349883244D-03
.707627243838D-03
.173359548467D-04
.147859100868D-04
.947217842552D-05
.609704117822D-05
.298532548793D-07

.375997865613D-05
.011568552117D-05
.210499686989D-05

3.759133611684D-05

2.5240 % Mean rel. Error:

.817871861306D-05
.554030249359D-06
.254690862488D-06
.678764178035D-07
.906633038081D-08

0.4077 %

.787610534513D-04
.405606314808D-03
.629292880371D-03
.212101744320D-03
.623377903131D-03

.371503461028D-04

.702351291260D-04
.828377077442D-05
.457895095025D-06

.668304238739D-04
.289738887452D-04
.491076548317D-04
.285319171515D-04
.268607651578D-04
.036026302326D-05
.676927171418D-05
.801579443731D-06
.504259503231D-07

.554762032992D-06
.413857855011D-06
.314387560956D-06
.934588738006D-06
.758474990215D-07
.314431146313D-07
.202340694084D-07
.970465840287D-08
.021379321893D-09

Table 6: R1 H+ + H I-1,0:<sigmad*vrel>(Ti,Ebeam) (cm**3/s)
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I-1,0:<sigmad*vrel>(Ti,Ebeam) (cm**3/s)

Elastic collision between protons and hydrogen R1

10
-6
10
Ebeam/eV
O 1.00D+03
10”7 X 1.00D0+02
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Figure 15: R1 (1.9
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E-Index: 0

T-Index:

0 ~N O ;b W N = O

] | | | I |
L N I | - T <2 B o T S

.893280308383D+01
.813705745114D-01
.573973280768D-02
.847919043287D-03
.821566918646D-03
.638780826729D-04
.209068836223D-04
.895897158953D-05
.297598261156D-07

E-Index: 3

T-Index:

® N O s W N+ O

.206664404116D-02
.922888262508D-03
.194590008826D-02
.098216188335D-03
.240963831081D-03
.174626810400D-05
.173447589758D-04
.460070103047D-05
.751536468437D~96

E-Index: 6

T-Index:

W N O 0o W N » O

Max. rel. Error:

.879199183529D-05
.278298736045D-05
.328248055432D-04
.936290403211D-05
.080370300365D-04
.182907372321D-06
.278264277649D-05
.600477805112D-06
.543811101222D-07

2.4038 Y, Mean rel. Error:

.809332485148D-01
.429682065885D-01
.973236921355D-02
.646421713245D-03
.981254569951D-03
.798221624203D-04
.767720758207D-04
.247954124608D-04
.279964818905D-06

.112631526425D-03
.238872561608D-03
.419600901668D-04
.011921632250D-04
.223959313737D-04
.211981605184D-05
.853140104261D-05
.209270360903D-05
.904476779972D-07

.425931906907D-05
.927298683908D-05
.009304248550D-05
.526644351318D-05
.292049390518D-05
.733100495282D-07
.680525966610D-06
.409251954936D-07
.042813606586D-08

0.4386 Y

.037805412246D-01
.669799030821D-02
.207157450405D-02
.531680606595D-03
.271774294591D-03
.495724706466D-04
.428771763633D-04
.057955472741D-05
.506748043711D-08

.331149639804D-03
.291726428852D-04
.077456946411D-03
.654423894351D-04
.237721432584D-04
.870111863120D-06
.258534557599D-05
.305362305960D-06
.576070642518D-07

.666077961877D-06
.316844084907D-06
.267336072663D-07
.226433714787D-07
.536714827713D-07
.117187369787D-08
.746785072481D-08
.5455898066661D-08
.268970196457D~-10

Table 7: R1 H+ + H I-1,1:<vr*sigmad*vrel>(Ti,Ebeam) (cm*#*3/s)
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I—1,1:<vr*sigmad*vrel>(Ti,Ebeam) (cm**3/s)

Flastic collision between protons and hydrogen R1
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Figure 16: R1 1M1

o O xX O

*

Ebeam/eV

1.00D+03
1.000+02
1.00D0+01
1.00D0+00
1.00D0-01




=1.

934393021918D+01

.301350106064D-01
.828664127573D-02
.572566883649D-02
.651243630315D-02
.536731193440D-03
.407936221176D-03
.024575206489D;04
.717075379788D-05

E-Index: 3

T-Index:

0 ~N ;o W N = O

2.

108203840264D-02

.145056754712D-03
.343836845279D-03
.316616725294D-03
.115185323595D-04
.096646478748D-04
.694523090258D-05
.076330117601D-06
.837947019108D-09

E-Index: 6

T-Index:

0
1
2
3
4
5
6
i
8

Max. rel. Error:
Table 8: R2 H+ + He

-5.
1.
2.
3.

396242466413D-03
273531852240D-03
238463116916D-04
644852940119D-05

.296832307757D-05
.404629231556D-06
.004305767140D-06
.116821151336D-07
.670471248063D-09

.563446707236D-02
.071555273225D-02
.460635793653D-02
.953675178715D-03
.847284094044D-04
.204625005620D-04
.273303544933D-04
.258652128299D-05
.489657191575D-07

.126981927132D-02
.207683748654D-02
.643817205066D-03
.328603688720D-04

3.305924890461D-04

43.0372 % Mean rel. Error:

.907753719257D-05
.137559296212D-05
.934064976552D-06
.543181228289D-07

.236276138019D-03
.057392495993D-04
.822708605029D-05
.948705115200D-06
.703124977270D-06
.730873892378D-07
.823864866020D-07
.985170981511D-08
.366953072466D-09

51

3.6615 ¥
I-0,0:<sigma*vrel>(Ti,Ebeam) (cm**3/s)

=1
2

.132533853318D-01
.016906859537D-02
.745665311224D-03
.747850519967D-03
.016420463987D-03
.110404741405D-04
.874267771795D-05
.943699290077D-06
.942435517534D-07

.332060792240D-03
.T77916409735D-04
.122233549648D-04
.025202074732D-04
.422649148500D-05
.750257851569D-05
.054573401396D-06
.117080375326D-08
.142825149606D-09

.628885182442D-05
.949879233267D-05
.713522343609D-06
.772902778994D-08
.560603032570D-07
.238131969596D-08
.370653749977D-08
.366645009836D-09
.308492125136D-11



1-0,0:<sigma*vrel>(Ti,Ebeam) (cm**3/s)

Elastic collision between protons and helium R2
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Figure 17: R2 [(%0)
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E-Index: 0

T-Index:

0 ~N o 0 e W N, O

.038078616420D+01
.301657139332D-01
.250516030333D-01
.328424290736D-03
.127524699096D-02
.287708708939D-03
-368309748535D-04
.421859797928D-04
.055939868827D-06

E-Index: 3

T-Index:

W ~N o 00 e W NN = O

|
-y

.517017165274D-02
.040700264374D-02
.657174093701D-03
.321909525809D-03
.188908537635D-03
.089582619996D-05
.629197652130D-05
.800954064911D-06
.465334549154D-07

E-Index: 6

T-Index:

0
1
2
3
4
5
6
7
8

Max. rel. Error:

2
6

.120043324652D-03
.652125688558D-04
.556829101842D-04
.226460004470D-04
.341954089088D-04
.619326544178D-07
.360612397745D-06
.676084936402D-086
.843599781403D-08

.993496998398D-02
.084287321372D-02
.495799299565D-02
.821208294684D-03
.410962290755D-03
.847023005705D-04

4.413818051866D-05

4.5211  Mean rel. Error:
Table 9: R2 H+ + H I-1,0:<sigmad*vrel>(Ti,Ebeam)

.659744792044D-05
.038460845033D-06

.397648448576D-02
.593835985009D-03
.433666067399D-03
.614727149051D-04
.115315269461D-03
.699187722499D-06
.154996921696D-05
.473582389149D-05
.821310450330D-07

.206063712236D-04
.834612166641D-05
.582340533265D-04
.517380199975D-05
.572769659598D-05
.166331772717D-07
.830066731050D-06
.453407619810D-07
.879251002731D-08

53

25
1.
.424614705786D-02

=1

s O
.757598241612D-03
.455808977270D-05
.552922023412D-04
.551798508100D-05
.289836231544D-06

i
9

1.0118 %
(cm**3/s)

460551521383D-02
554461839749D-02

623627120526D-03

.029365163804D-03
.146176415388D-03
.191585645845D-04
.681001889717D-04
.859218322237D-05
.863762072239D-06
.796356820001D-06
.040382986474D-08
.548297648690D-08

.229462400161D-05
.127219264426D-08
.789744795492D-06
.070841562603D-07
.459166812937D-06
.093661426041D-08
.043424396036D-07
.029350887316D-08
.123059882608D-09



I-1,0:<sigmad*vrel>(Ti,Ebeam) (cm**3/s)

Elastic collision between protons and helium R2
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Figure 18: R2 1119
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E-Index: 0

T-Index:

0 ~N @ 0 P+ W NN = O

.004262674664D+01
.797764352869D-01
.737174089599D-02
.858089549375D-03
.388729900726D-03
.504574356457D-05
.476770214249D-04
.341320590920D-05
.390962355387D-06

E-Index: 3

T-Index:

0 N O O P+ W N = O

.738221512682D-03
.650521345152D-02
.891965944862D-02
.671491036801D-03
.308490461853D-03
.078613592366D-05
.145126223323D-04
.102795185965D-05
.262313786878D~96

E-Index: 6

T-Index:

0 N O b W N R O

Max. rel. Error:

Table 10: R2 H+ + He

.535354337471D-03
.010776605309D-04
.223456065458D-04
.187254434187D-05
.336318399731D-04
.631297718648D-05
.282426495611D-06
.774399156600D-06
.078832469048D-07

.648788466793D-01
.589808822195D-01
.451574686690D-02
.300116465449D-02
.056813465073D-02
.276319679821D-04
.274874468379D-04
.152282812127D-04
.178247531671D-06

.901339515018D-02
.453680140262D-03
.358231901363D-03
.222846070981D-03
.985060699640D-04

1.963992719243D-04

4.1291 Y Mean rel. Error:

.375988559671D-05
.327072526267D-05
.562456646479D-07

.866801577896D-04
.225211354986D-05
.243832224007D-04
.403000390400D-05
.877384276977D-05
.130542032283D-06
.082225071317D-07
.521618280322D-07
.597831941309D-08

55

0.7842 Y%

.064561889610D-01
.877014349235D-02
.935292568884D-02
.529310584181D-03
.159091590529D-03
.858013316042D-04
.058851113237D-05
.416987285310D-05
.856948074661D-06

.343037793374D-03
.282325570479D-03
.147601395752D-03
.129698568122D-04
.436577400879D-04
.960007005625D-06
.763349019291D-05
.079164153708D-06
.623733246626D-07

.439791534963D-05
.112713443335D-06
.129991458811D-06
.871340103785D-07
.784316542217D-07
.720444423354D-07
.861661099382D-08
.180298559372D-08
.678677547486D-10

I-1,1:<vr*sigmad*vrel>(Ti,Ebeam) (cm**3/s)



(¥ 3 /s)

|- 1,1:<vr*sigmad*vrel>(Ti,Ebeam)

Flastic collision between protons and helium R2
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Figure 19: R2 711

lon Temperature (eV)
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Ebeam/eV

1.00D+03
1.00D+02
1.00D+01
1.00D+00
1.00D-01



E-Index: 0

T-Index:
0
1

2
3
4
5
6
7
8

=1.
2,
2.
=1
=3
T
2.
6.
=1

849409655754D+01
081196490227D-01
269143436656D-02
773337829348D-02
401294776240D-03
343036400267D-04
652476273846D-05
3373314187860;06
578591104791D-06

E-Index: 3

T-Index:

0 ~N o ;0 o W N = O

.537075343502D-02
.867292112155D-02
.767913695117D-03
.606852983370D-03
.111251759459D-03
.986437587006D-05
.107081868448D-05
.083969091569D-05
.187460034531D-07

E-Index: 6

T-Index:

W ~N O O s W N = O

Max. rel. Error:

.037914229016D-03
.262887221191D-03
.T5T785677951D-05
.199601152587D-05
.893643028282D-05
.022503903813D-06
.828423548214D-06
.782666407450D-07
.933252554179D-08

.283419330269D-01
.595770725433D-02
.280835259137D-02
.439634080507D-03
.696330270142D-03
.038654949880D-04
.927604876128D-04
.897453013352D-05
.406208601823D-06

.761917937356D-02
.369885267014D-03
.290960318722D-03
.325916848483D-05
.558450822527D-05

3.876946204606D-05

24.2419 Y, Mean rel. Error:

.879840170679D-06
.902641341133D-06
.283013287947D-07

.138466433594D-03
.416533313825D-04
.129953020508D-05
.558766184985D-06
.458585462832D-06
.928998880663D-07
.625630760445D-07
.315692860387D-08
.613689510186D-09

.298076119636D-02
.590705202119D-03
.136623918103D-03
.676970175345D-03
.940218497937D-04
.593949718670D-05
.809419316709D-05
.426825700338D-06
.508973082776D-07

.553053848041D-03
.401790822053D-04
.788867997223D-04
.224912824963D-04
.220029473342D-04

9.247368834482D-06

3.5613 Y

.871705406541D-06
.004649260515D-06
.553630018999D-08

.014258440180D-05
.404526178368D-05
.994931683705D-06
.610597401676D-07
.646447259350D-08
.229893426780D-08
.381327118590D-08
.028993633703D-09
.620889707449D-10

Table 11: R3 H+ + H2 1I-0,0:<sigmaxvrel>(Ti,Ebeam) (cm**3/s)

57




I

Elastic collision between protons and hydrogen molecules R3
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Figure 20: R3 1(0.0)




E-Index: 0

T-Index:
0

0 N O ;e W N e

.919275366997D+01
.947780482087D-02
.004077564531D-02
.870459871354D-02

.491376597764D-02
.563126960467D-04

-330077285945D-03

.020583687196D-04

.277851726161D-06

E-Index: 3

T-Index:

0
1
2
3
4
5
6
7
8

-8

1
-1
-2

=-5.

2

6.

=1
8

.932266130300D-03

.637194804434D-02

.308998760658D-03

.828299306442D-04

326505552258D-04
.493241008729D-05
595946297185D-05
.420945572125D-05
.431661832790D-07

E-Index: 6

T-Index:

0
1
2
3
4
5
6
7
8

Max. rel. Error:

2

1.
=1
=1
H2

4.

.790218940150D-03
443370523034D-04
712112384677D-04
902274102571D-05
847616427622D-05
669438326556D-06

3.257943960303D-06

.361574596535D-07
.318078186713D-08

.865238346305D-02
.971382726967D-02
.225709371997D-02
.438038218134D-03
.614133948666D-03
.707880488168D-04
.353962725785D-05
.849923024482D-06
.082429350941D-07

.903882752834D-02
.291459604645D-04
.367849536658D-03
.686890203582D-07
.673303613736D-04
.434562819338D-05
.509630806820D-05
.290869308799D-06
.002257378192D-07

.908438427090D-04

2.409850106077D-05

.233619961041D-05

2.446426035585D-06

5.2866 %, Mean rel. Error:

.578927723952D-06
.601170248698D-07
.775908920414D-07
.290522448864D-07
.385721089159D-09

1.2591 Y%

.682617815803D-02
.854568958623D-03
.402554946956D-03
.190778358004D-03
.009422051586D-03
.731975035804D-05
.351235395106D-04
.550615695507D-05
.441579661485D-06

.477806471368D-03
.492225099738D-03
.633913429665D-04
.818941917867D-05

6.564947466483D-05

.585591947606D-06
.474903148493D-086
.207885423899D-06
.135379893415D-08

.338681573230D-05
.849926680503D-06
.665571098691D-06
.693955463859D-08
.517016799547D-07
.823110747713D-08
.342435491722D-08
.505820743915D-09
.277930018700D-10

Table 12: R3 H+ + H2 1I-0,1:<sigmad*vrel>(Ti,Ebeam) (cm#**3/s)
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(cm**3/s)

I-1,0:<sigmad*vrel>(Ti,Ebeam)

Elastic collision between protons and hydrogen molecules R3
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Figure 21: R3 1(10)
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lon Temperature (eV}
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10 <

103

Ebeam/eV
O 1.00D0+03
X 1.000+02
O 1.000+01
< 1.00D0+00
* 1.00D0-01




E-Index:
T-Index:

0 -1.885898159191D+01
1 -1.142551728176D-01
2 5.269447194063D-02
3 -5.859028934034D-03
4 4.963643933604D-03
5 6.273092424172D-04
6 —6.668683746445D-04
7 9.698091658029D;05
8 -4.119108753583D-06

E-Index:
T-Index:

-4.742405501071D-03
3.765795665438D-02
-4.608950153007D-03
-8.449447888792D-03
.833331856490D-03
6.475870274156D-04
—-2.837797987792D-04
3.727608212769D-05

W ~N ;e W N O
-

—1.688838198945D-06

E-Index:
T-Index:

0 2.825016549631D-03
1 4.562732456525D-04
2 -4.912030915473D-04
3 -2.814162490200D-04
4 1.194502891300D-04
5 2.202273223120D-05
6 -1.516681298686D-05
7 2.317594651850D-06
8 -1.156976062895D-07

Max. rel. Error:

.688742905730D-02
.215442885845D-01

3.599963694446D-02
2.937916336270D-02

.526710593352D-03
.687023563665D-03
.486594274767D-04
.393125909791D-05
.034865399708D-06

.108751699462D-02
.352463912513D-03
.497109332889D-03

1.839512419771D-03

.225797593418D-03
.102956384497D-04
.242725396467D-04
.033930573360D-05
.045631687925D-06

.817991936508D-04
.170529795689D-06
.501442890057D-05

3.749919921800D-05

5.3290 % Mean rel. Error:

.047826139669D-05
.809057152922D-06
.419606326774D-06
.893258058753D-07
.005593649245D-08

1.2016 ¥

.582000037005D-01
.200002792532D-02
.743328945056D-02
.635042388527D-03
.446380490362D-03
.546192352476D-04
.809911360537D-04
.290146271669D-05
.851860740278D-06

.176766890632D-03
.649501890791D-03
.491179263739D-04
.213043072631D-04
.486796463097D-05
.565277982267D-05
.853928286841D-05
.132867354414D-06
.675038559898D-08

.244138278321D-05
.752440295665D-06
.283202586212D-06
.708722663175D-06
.077170260238D-06
.247331052428D-07
.235024924784D-07
.044727340968D-08
.072246817479D-09

Table 13: R3 H+ + H2 I-1,1:<vr*sigmad*vrel>(Ti,Ebeam) (cm**3/s)
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Flgstic collision between protons and hydrogen molecules R3
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Figure 22: R3 )




E-Index: 0

T-Index:

0 ~N O o W N = O

1
-

.932287393135D+01

7.420452433663D-02

.578246117879D-02

9.376519610500D-03

.232363387636D-02
.307054294818D-03
.118562583548D-03
.434031268233D-04
.358989072610D-06

E-Index: 3

T-Index:

W N o Uk W N R O

.838505558116D-02
.884565424365D-02
.495042935023D-03
.047050990056D-03
.434976678383D-04
.117168152610D-04
.881739628460D-05
.666955388827D-06
.367498282831D-07

E-Index: 6

T-Index:

0 ~N G ;e W N = O

Max. rel. Error:

.764403463819D-03
.389644457539D-03
.171591875990D-06
.598805546650D-05
.280702702425D-05
.131389375108D-07
.603031094261D-07
.056486811884D-07
.141132772747D-09

45.6817 % Mean rel. Error:
Table 14: R4 He+ + He

.254173654177D-02
.124812231885D-02
.807748349427D-03
.743869063612D-03
.100675144650D-03
.910211076373D-05
.617956521495D-05
.365356860650D-06
.334269507353D-07

.793201134092D-02
.123857510199D-02
.439511185350D-04
.947991019023D-04
.730384293613D-05
.115251093953D-05
.308533305864D-05
.380955160803D-06
.427503775556D-07

.408466490224D-04
.161107270253D-04
.196874977368D-05
.311078550298D-06
.877322455546D-07
.650222503579D-07
.683294115673D-07
.540020523528D-08
.324505150923D-09

63

5.1917 %
I-0,0:<sigma*vrel>(Ti,Ebeam) (cm**3/s)

.946623543420D-02
.699799758379D-02
.767337797049D-03
.935668442071D-03
.439916049619D-04
.851109052007D-04
.722943119535D-05
.103013883339D-06
.090109024266D-07

.954061526499D-03
.596841699378D-03
.861967025267D-04
.018359028340D-04
.250784297096D-05
.325389437604D-05
.051250040246D-06
.094040977952D-07
.786934787376D-08

.412518246520D-06
.049187773127D-05
.094079145119D-06
.483893468689D-07
.482501133602D-09
.688165319879D-08
.140269704662D-08
.124298972987D-09
.328831955405D-10




(cm**3/s)

I-0,0:<sigma*vrel>(Ti,Ebeam)
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Figure 23: R4 [(00)
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lon Temperature (eV:

Elastic collision between helium ions and helium R4
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E-Index: 0

T-Index:

0 N O ;s W N = O

.005856706409D+01
.723033466633D-01
.480540790141D-02
.583772608067D-02
.141918601934D-03
.050415524504D-03
.609743409859D-04
.528775780351D-05
.298487796038D-06

E-Index: 3

T-Index:

W N O ;O kW N = O

.609374902789D-02
.484173774740D-02
.437796246116D-03
.722003993817D-04
.836120750894D-04
.871424676206D-05
.401396318081D-05
.539210289621D-06
.529392826633D-07

E-Index: 6

T-Index:

o

@ ~N O O e W N e

Max. rel. Error:

| | | J
Lol e - B < T R L R o I N ]

.466827019035D-03
.943338501590D-04
.610884437671D-04
.134360853468D-05
.844730630933D-05
.298801064099D-06
.074150104979D-06
.048375199655D-06
.357991449124D-08

4.6006 % Mean rel. Error:
Table 15: R4 He+ + He

.416298567134D-02
.876974997211D-02
.121102722373D-02

.831738365425D-04

.712847139884D-03
.514199969505D-04
.114910501595D-04
.849479698839D-05
.744141312203D-06

.051842775759D-02
.259800535085D-02
.933320600619D-03
.577284882295D-04
.279763008829D-04
.610771935311D-06
.184619145829D-05
.524059409052D-06

.084304524420D-07

.195450363238D-04
.676144873446D-04
.659019201525D-05
-293505569914D-07
.119496625366D-05
.988842872544D-08
.029965177536D-06
.905679254148D-07
.021819231976D-08

I-1,0:<sigmad*vrel>(Ti,Ebeam)

65

1.4030 Y
(cm*#*3/s)

.290643907647D-01
.358697996829D-02
.060648053441D-03
.604228124024D-04
.390046088713D-03
.430457735837D-04
.776137463792D-04
.957402039735D-05
.511018855995D-06

.700343984959D-03
.314345389346D-04
.197110013265D-04
.165904265498D-04
.329216329788D-05
.934442032629D-06
.985193070868D-06
.297672500003D-07
.932611004947D-09

.275624910534D-06
.508217370560D-06
.019277552554D-06
.249357290876D-07
.759041144367D-07
.924160039487D-09
.399132209393D-08
.033208843896D-08
.6569599344410D-10




I—1,0:<sigmad*vrel>(Ti,Ebeam) (cm**3/s)

Elastic collision between helium ions and helium R4
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Figure 24: R4 [(1,0)
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1.000+01
1.00D0+00
1.00D0-01

0 O X O

¥




E-Index: 0

T-Index:

0w ~N O 00 P W N = O

|
-

I
-

.971841089063D+01
.021129107175D-01
.312686516296D-02
.131603337384D-02
.372279656275D-04
.197496216945D-04
.546872796026D-05
.404336436508D;05
.145393186470D-06

E-Index: 3

T-Index:

0w N O o W N+ O

]
-~

.188457180471D-02
.894601328535D-02
.296618463705D-02
.011807860079D-03
.871916988104D-03

3.595112707997D-04

1
=N

.787448883177D-05
.507555005698D-05
.567816078760D-06

E-Index: 6

T-Index:

@ ~N @ b W N e O

Max. rel. Error:

.192070799975D-03
.111722282165D-03
.937830444880D-04
.2717556094339D-04
.252300950102D-05
.243641416480D-05
.172726597347D-07
.006255833068D-07
.549917411141D-08

4,3483 Y, Mean rel. Error:
Table 16: R4 He+ + He

.328765891080D-02
.609736943206D-01
.138581379431D-02
.708943095018D-02
.450989688689D-03
.262006156495D-03
.355206530675D-04
.894573516008D-05
.036098852278D-06

.700074938281D-02
.437496876274D-02
.376854211214D-04
.779968374464D-03
.204394122651D-04
.285009061291D-04
.320568895670D-05
.280086851128D-086
.474230539862D-08

.960877020940D-04
.651931882424D-04
.622220551477D-06
.037772536199D-05
.752170751509D-07
.683451044181D-086
.374797313219D-07
.619043934512D-08
.891395046704D-10
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.245916015334D-06

.003940077275D-03
.045514358604D-03
.265992229210D-03
.322638402017D-05
.988822588653D-04
.961633516217D-05
.208420235447D-05
.688408341473D-06
.559378727675D-07

.835692931077D-06
.727138359170D-06
.940184224074D-07
.002903796084D-06
.483686590519D-07
.373587051673D-08
.527501107844D-08
.715431242193D-09
.433802280274D-11
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6.2 Rates for Hydrodynamic Description

The collision rates for the hydrodynamic description (section 3.3) are functions of the

effective temperature T, g (in eV) and are represented by a one-parameter fit (for R =
8Q(°9 and the Q") integrals), e.g.:
8
In QO™(T,5) ~ Eag"') (InTy )" (113)
n=0
R, Q1) q2) Q3) 2).
Figs. 34 (R1), 35 (R2), 36 (R3), 37 (R4)

Fits for R: Tab 17

Fits for Q(1): Tab 18
Fits for Q(22): Tab 19
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\ 1

R(T) (cm**3/s) R1 H + H+
a0 -1.820301019850D+01 al 2.129097882981D-01 a2 -3.319721546062D-02

a3 -9.219441585651D-03 a4 5.351258558196D-04 a5 3.784499807334D-04
a6 -1.021209574651D-04 a7 1.044107275669D-05 a8 -3.8937241365267D-07

R(T) (cm**3/s) R2 H + He
a0 -1.837488793273D+01 al 1.7591089715339D-01 a2 -1.693965011113D-02
a3 -2.164290342772D-02 a4 -1.394395875351D-02 ab 2.443778636181D-03
a6 1.082584067859D-03 a7 =2.740989886580D-04 a® 1.663374157798D-05
R(T) (cm**3/s) R3 H2 + H+
a0 -1.852351664804D+01 al 2.697718272304D-01 a2 1.350651671297D-02
a3 -1.354211329590D-02 ad -1.236691940121D-02 ab 1.289363581693D-03
a6 1.027842439916D-03 a7 -2.222408616640D-04 a8 1.252988405338D-05
R(T) (cm**3/s) R4 He + He
a0 -1.927232246647D+01 al 1.490667894727D-01 a2 2.149231447853D-02
a3 -5.690616121964D-03 a4 -1.908223060123D-02 a5 1.394534352967D-03

a6 1.523437071234D-03 a7 -3.156990924124D-04 a8 1.763329693714D-05

Table 17: R(T)




OMEGA11 (cm**3/s) R1 H + H+

a0 -2.067495970296D+01
a3 -7.429922782229D-03
a6 -4.050666345184D-05

OMEGA11 (cm**3/s) R2 H

a0 -2.203507049378D+01

a3 7.285987500237D-02

a6 1.170265885717D-03

OMEGA11 (cm**3/s) R3 H2

a0 -2.058948378358D+01

a3 5.940618635367D-02
a6 -2.415856443530D-04

OMEGA11 (cm**3/s) R4 He
a0 -2.167965486890D+01
a3 6.762120367287D-02

a6 3.881535032205D-04

Table 18: OMEGA11(T)

al
ad
a7

+ He

al

ad
a7

+ H+

al
a4
a’

+ He+

al
ad
a7

-6.
=L

754454386651D-02
808813003874D-05

.836578913379D-05

.666508829508D-01
.511137058200D-03
.290932193552D-05

.091608300462D-01
.580654599527D-03
.981931289049D-04

.460360301179D-01
.761214449593D-03
.237252600152D-05

83

a2
ab
a8

a2
ab
a8

a2
ab
a8

az2
ab
a8

.906186179718D-02
.032158595103D-04
.377982388469D-06

.301634332761D-02
.064240875152D-03
.611435091385D-07

.1567943457107D-01
.467511099899D-03
.443879934691D-05

.181746519736D-01
.300088703885D-03
.356271943058D-06




OMEGA22 (cm**3/s) R1 H + H+

a0 -1.970770010292D+01
a3 -5.020232904192D-03

a6 1.455101056679D-04

al
a4
a’7

OMEGA22 (cm**3/s) R2 H + He

a0 -2.119718118212D+01
a3 8.754381039703D-02

a6 1.286949073730D-03

OMEGA22 (cm**3/s) R3 H2

a0 -1.982520199889D+01

a3 5.709736784682D-02

ab -4.624966207800D-04

OMEGA22 (cm**3/s) R4 He

a0 -2.086953660006D+01

a3 7.173876575209D-02

a6 2.665521010922D-05

Table 19: OMEGA22(T)

al
ad
a’T

+ H+

al
ad

a’

+ He

al
ad
a7

.750547016654D-02
.897148429605D-03
.113726187722D-06

.047938325697D-01
.745795404802D-03
.373371121283D-05

.045986618368D-01
.535016658865D-02
.996893330964D-04

.470227740985D-01
.094500514641D-02
.035371868694D-04

84

a2
a5
a8

a2
ab
a8

a2
ab
a8

az
ab
ad

.717043480643D-02
.978277546350D-04
.495444636173D-06

.105016966801D-01
.120538441431D-03
.452213060435D-06

.398594524973D-01
.113316092217D-03
.193592594926D-05

.654791308926D-01
.279575206851D-03
.639359039345D-05




7 Appendix 1: Diffusion Cross Section

In this section we discuss the dependence of the diffusion cross section ¢?(E,) on the
cut-off angle | xo |. We relate the diffusion cross section for the cut-off angles | xo |=
0.5,0.4,0.3,0.1,0.05 to that calculated for | xo |= 0.01 as reference value (Figs. 38 - 41).
For R1 (Fig. 38) the influence of xo is the greatest at large energies where x is small.
The same behaviour shows the diffusion cross section for the other collision processes for
energies larger than E,,. For small energies E, < E.. the cut-off angle has no effect on
the result. Deviations may occur between the two characteristic energies. But, however,

| xo |= 0.1 seems to be a good approximation.
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8 Appendix 2: Semi-Classical Approach

Given the fundamental quantum mechanical formulae for the calculation of the elastic

cross sections (cf. e.g. [6]):

do)d0 = o(0, E,) =| £(0) |, (114)

£(6) = % 2 Lizo(20+1) eXP(?im) Pr(COS'T?z)-, 8 #0, (115)
Y20 (204 1) sin2n exp(in), 6 =0,

o' (E,) =2‘r] df sinf o(8,E,) = kzZsm 1 (116)

- % 3/(0). (117)

with k? = ?,mrE,/—Ez. f(8) is the scattering amplitude, n; the /th order phase shift.
Py(cos 8) are Legendre’s Polynomials.

We assume additionally the following WKB expression for the phase shifts (cf. [6]) as
being valid:

. ’ a7 1/2 - 121172
"':k([r- dr [1_1/1;) B (lﬁ/?) } _]b dr [1_ (H:/‘z) } ) (118)

Semi-classical methods compute cross sections (i) by means of the above formulae

replacing there the sums by integrals and (ii) using appropriate approximations for the
Legendre functions. The first assumption is justified when the number of contributing
terms is large. The second assumption restricts the range of validity of the parameters
for Legendre’s polynomials. The most employed approximation (ii) which has often been
described in the literature (cf. [6]),
o x 12
Pi(cos 0) ~ ( - ) cos [(I +1/2)0 — = /4], (119)

wlsinf

is valid only for Isin8 >> 1.
The main results of this approximation are used here:
Identifying

E, = E*R*/2m,, L= (l+1/2)h = m,v,b = khb, (120)

(L is the angular momentum)

x(b, Er) = ~=-n(b, E;), (121)

Erd )
SIS




which relates the classical deflection function x eq. (5) to the WKB phase shift eq. (118).

Because we want to calculate the total cross section ot only in order to justify are clas-
sical approach of section 2, especially the | xo |= 0.1 approximation, we use as the starting
point of our semi-classical calculations not the scattering amplitude but the expression

(116) in its integral form
oc'(E,) & 4r /w 2bdb sin’q(b, E,). (122)
0

Contrary to the classical total cross section (7) the semi-classical one is weighted by the
phase shift and is only divergent for potentials V ~ r7% a < 2 [16].

Because the fully WKB expression (118) for the phase shift is not so easy to be
numerically computed, a simplified expression has often been used which results from eq.
(118) for the case that b is sufficiently large so that V(r) can be treated as a perturbation.
The result is:

n = “22— fboo dr V(r) (1 - bz/rz) R . (123)

The philosophy of the following semi-classical approach is to use

(1) the exact relation (121),

(ii) the exact expression (5) for the deflection function x and

(ii1) the approximated expression (123) for the phase shift function 7.

Case I: Repulsive polential
In Fig. 42 the qualitative behaviour of the phase shift 7 and the deflection function x
which are related to one another according to eq. (121) is displayed. 7 is like x a one-
to-one relation of b. For Case I it is always negative and increases monotonically to 0 for
increasing b.

We compute the total cross section ¢! by means of eq. (122) and break up the integral

into two parts as follows (cf. e.g. [19]):

by 00
oME,) = dx ( [ 2bdb + ] deb) sin 29 (b, E,) (124)

0 by
bt i 2

~ 47 2 - 2bdb n*(b, E,) (125)

by
with
by(E;) = {b: (b, E;) = no}. (126)
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In the first integral sin 27 is replaced by its mean value 1/2 and in the second one sin ? ~ 7.
by is calculated solving the eq. (126). 7o has to be estimated by the last condition resulting
in o ~ 1. Then 7 indeed is small so that the approximation eq. (123) can be used.

In Fig. 43 classical and semi-classical results for the total cross section are shown
for the collisions process R1 H* + H for ng ~ 7/2 and 1 which leads to a satisfactory
agreement with the classical result for xo ~ 0.1. As known, the semi-classical cross section
does not depend very strongly on the precise value of the the parameter 7o. But, however,

it is somewhat larger than our classical result.




Figure 42: Qualitative behaviour of the WKB phase shift 7 and the classical deflection

function y for Case I (repulsive potential).
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Figure 43: Classical and semi-classical total cross section calculations for elastic A* +
H collisions. 1 - classical for xo = 0.1, 2 - semi-classical for 7o = 7/2, 3 - semi-classical

fOI‘ o = 1
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Figure 44: Qualitative behaviour of the WKB phase shift 7 and the classical deflection

function y for Case II (short range repulsive - long range attractive potential.
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Case II: Morse-like potential
The qualitative behaviour of y and 7 for Case II is shown in Fig. 44. 7 increases with
increasing b from negative values, crossing the zero line to a maximium b,, which corre-
sponds to the glory angle y = 0. Then it tends to +0 for b — oo.

The total cross section ¢f now results in

by bs bg

~ dn [% (82— 82+ ) - f_i bdb cos 2y + (]bb +]b°°) 2bdb ?;2] . (128)

The first integral in eq. (128) can be calculated using the method of stationary phases.

by bs be co
o'(E,) = 4r (/ + [/ +/ + ) 2bdb sin *n(b, E,) (127)
0

n(b) can be expanded near the maximum i

10

~ _ 2 —
1(b, Ex) = 1 + B(b— bn)?, B =507

(b= bn, E,). (129)

Calculating this integral we obtain the final expression for the total cross section i

t ~ 1o 10 2y A ( _E) b N\ 2
G(E,)—4W[2(b4 bs-i—bﬁ) b 2|)6,Icos 05 1 + ,[b —I—b6 n°(b, E,)| .

4

(130)
The impact parameters b;(E,) are defined as follows (s. Fig. 44):
bi(Er) = {b |T](b,Er) ‘: 7o A b4 S bs _<__ bs}, 3= 4,5,6; (131)
and b5 < b, < b..
According to relation (121) it follows
ko
b,, is the b value where y = 0. We expand x near bn,
4
Y = ?ﬁ(b—bm) (133)
with (132). Then 7 follows by integration:
o B % ~ 2 2
=10+ 73 bdb(b—bm):n0+ﬁ{(b-—bm) — (bs = bm)?] (134)
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from which 7., can be obtained:
Mm = To — 6(55 - bm)zg (135)

provided that this expansion is valid. Note that the relation (121) was used whose validity
requires that one of the approximation eq. (119) which ceases to be valid for § = 0. But

on the other hand we can y expand near the rainbow point b, which leads to

~ oy o a(h— b )2 A — }_22_ _
and
- k ky 3 3 -
10+ 35X (b be) + 5 [(6—6)° — (b6 = b)) (137)

from which 7,, can also be calculated. If one does this, the Airy function Ai(x) which is
the familar special function in the rainbow theory, will appear in the final expresssion for
the cross section.

Consider at last the two limiting cases for estimating the cross section:

(1) be large (rainbow case):

b2 T T
t o~ -6 __ TR ey
o _47:‘{2 bm/zlﬂ[ cos (QT]m 4)] (138)

(i1) bs =~ b, = b, ~ bg (glory case)
b2 o
ot~ dn [g + /:, 2bdb n?(b,E,)] (139)

which indeed is the result (125) for Case I so that this case is also included in our final
expression (130).

In Fig. 45 classical and semi-classical cross section calculations for the collision process
R2 H* + He are shown for the same parameters as in Fig. 43. The differently calculated

results agree rather satisfactorily.
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9 Concluding Remarks

The aim of this report is to provide data for elastic collisions between neutral particles
and ions in such a format that they may easily be implemented in neutral gas transport
codes.

We derived a complete and consistent set of data on the basis of the classical theory
of binary collisions. This applies at first to the following quantities: classical deflection
angle y, total, diffusion and viscosity cross sections. Because the potentials, used in
this paper, have an infinite range, the total cross section becomes infinite. So a cut-off
angle | xo |= 0.1 was introduced to obtain a finite value. This result was obtained by
evaluating the diffusion cross section (considered as the physically more relevant quantity
with regard to transport effects) for a decreasing sequence of cut-off angles until it does
not change significantly anymore. Furthermore, a semi-classical approach for calculating
the total cross section was developed which supports the above choice. However, this
problem could be dealt with more rigorously in a quantum mechanical treatment only.

Polynomial fits to the cross sections are presented together with asymptotic represen-
tations. These results were used to calculate collision rates (i.e. Maxwellian averaged
momentum and energy exchange rates) that enter both kinetic and hydrodynamic trans-
port models. Fits to those integrals which determine these rates are also given.

Though this report is concentrated on elastic collisions in hydrogen-helium plasmas,
both methods of solution and algorithms may also be applied to other collision processes.

Data and data fits will be made avalaible by the authors on request.
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