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ABSTRACT

This paper offers a resolution of the lower-hybrid-current-drive spectral-gap prob-
lem via modifications in the Landau damping spectrum for the high-phase-velocity
waves in the toroidal geometry. The emergence of parametric resonances produced by
the beating of the particles’ periodicity with the wave periodicity spreads out Landau
damping in velocity space, enhances the net energy absorption, and could lead to the
generation of superthermal tails. Also, the existence of the lower-hybrid density limit

and alpha-particle heating are explained within the context of linear theory.

PACS numbers: 52.25.Mq;52.35.Hr



Present-day tokamaks rely upon pulsed ohmic-heating transformers to inductively
supply the toroidal current needed for sustaining the plasma. Non-inductive current
drive necessary for steady-state tokamak operation can be obtained by suitably launched
radio-frequency waves in the torus. Lower-hybrid waves have been among the most
successful approaches to non-inductive current drive so far.!=® Yet the precise nature
of their operation is shrouded in mystery. Two of the notably puzzling experimental
features of lower-hybrid current drive (LHCD) in a tokamak are: (1) The parallel phase
velocity of the waves launched by the antenna typically exceeds the electron thermal
speed by a large factor. The small number of resonant electrons corresponding to an
initial Maxwellian distribution would be unable to sustain current drive unless a fresh
supply was forthcoming, presumably by acceleration of the bulk population. However,
it remains unexplained how the electrons in the bulk plasma could interact with the
much faster phase velocity of the wave. The anomaly is often referred to as the LHCD
spectral-gap problem. (2) Equally strangely, there is circumstantial evidence that some
of the tail electrons are accelerated well beyond the wave phase velocity despite the

conspicuous absence of an appropriate component of the antenna spectrum.

Critical problems in reconciling the experimental results to the theoretical expec-
tations are outlined in Ref.4. It has long been recognized that only a small amount of
power absorbed by the slower electrons in the plasma bulk might account for the ob-
served discrepancy; the absorption presumably caused by an upshift in the parallel-wave-
number spectrum.® A number of possible explanations for the occurrence of the upshift
has been proposed: edge bouncing of the rays®, strong edge-density fluctuations’, non-
linear effects in caustics®, effect of Parail-Pogutse instability®, ponderomotive effects!?,
diffraction effects'!, ray stochasticity!?, wave scattering from toroidal inhomogeneity

like the magnetic ripple’?, and effects of parametric instability!*.

This paper offers a resolution of the spectral-gap anomaly via modifications in
the Landau damping spectrum for high-phase-velocity waves in a toroidal plasma. Also,

existence of the lower-hybrid density limit and alpha-particle heating are explained
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within the context of linear theory.

In Ref.15, it is shown that the wave absorption in a torus differs significantly
from the classical Landau damping result. Instead of the isolated resonance at v = w /k,
the parametric beating between the particles’ periodicity and the wave periodicity gives
rise to an infinite set of discrete resonances. The principal resonance occurs for the
group of particles moving on the average at the parallel phase velocity of the wave.
Secondary resonances correspond to the case when the particle either gains or loses N
complete wavelengths during one period of its orbit. For & = r /Ro — 0 (r is the radial
location of the particle and Ry is the major torus radius), the secondary resonances
contribute very little to the damping process. For larger ¢, and most particuiarly for
large toroidal wave numbers n, even a small slippage in phase destroys any semblance
of cohesion between the wave and the particle, and Landau damping at the primary
resonance would be drastically reduced. However, the secondary resonances begin to
gain prom_inence, both enhancing absorption and enlarging the velocity spread over
which Landau damping extends. The enhancement in damping is most pronounced for
the large-phase-velocity waves (relative to electron thermal speed) since the secondary
resonances occurring at lower velocities involve a much larger population of particles
in the acceleration process. At the same time, the secondary resonances on the high-
velocity end enhance the production of superthermal electrons beyond that warranted
by the runaway mechanism. These effects are documented in Figs.(1-3) of Ref.15.

In cylindrical geometry, the radial absorption length of the lower-hybrid wave

may be estimated from the approximate dispersion relation
k2 = ek ~ 2EU2Z2(U, k2 (1)
1=akpx U Z'(Up)ky

where ¢ is the dielectric-tensor component along the magnetic field direction, wp. is
the plasma frequency, U, = w/+/2kjve., and Z(U,) is the plasma dispersion function?®.
For U, 2 2, the radial energy absorption length becomes

1 c exp(U;) @)

Aeyt = (2k1i) ' =
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where k; is the imaginary part of k. Assuming n ~ 2, and ¢/wpe ~ 1073 m, gives
Aeyt ~ 107 exp(U2)/ Us. For U, 2 3.5, the radial damping length exceeds the dimen-
sions of currently operating tokamaks; yet the lower-hybrid wave is completely absorbed
in typical experiments with U, ~ 4. The anomaly can be resolved by referring to Fig.3
of Ref.15 showing that the toroidal effects enhance Landau damping, particularly for
the high-phase-velocity waves. Figure 1 shows the toroidally modified damping length
Ator @s a function of U, and .

Further broadening of the absorption spectrum occurs due to the finite width of

the launched antenna spectrum n,,, as well as from the shift (g is the safety factor)
m ‘

n| = n, (1 + 'n._q) (3)
in the n| spectrum due to the finite azimuthal wave numbers. At the high-phase-velocity
current drive, even small extensions in the n| spectrum play a vital role in the wave
absprption and contribute towards further reduction of A, Figure.2 shows damping
enhancement due to finite m values, particularly in the plasma interior. Assuming that
the lower-hybrid antenna has an azimuthal span of about 60° implies that, in comparison
with the m = 0 mode, there is approximately 40%, 5% and 2% power in the m = 3,
m = 9 and m = 15 modes, respectively. The higher m modes would be the first to be
damped in an initially low-temperature plasma, followed by ever decreasing m modes
till the entire spectrum is subject to Landau damping at the elevated values of T.. The
detailed treatment of the dynamic evolution of the damping process is beyond the scope
of this study.

Figure 3 shows the toroidal diffusivity D deduced from Eq.(10) of Ref.15, the
power absorption P, as well as the power-absorbed per electron P/E (drawn to relative
scales) as a function of U). The main absorption occurs near U ~ 3.3, although the
wave phase velocity corresponds to U, = 5. However P/E has a relatively flat spectrum
implying continued acceleration of electrons even at very high phase velocities, greatly
in excess of U,. This would contribute a mechanism for high-energy tail formation,

acting in conjunction with the runaway effect associated with the ohmic heating electric
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field.

In the cylindrical geometry, the power is absorbed in a narrow range of U); the
resultant diffusivity gives rise to a plateau formation in the Maxwellian tail.? However, in
a torus, since the diffusivity and power absorption are more evenly distributed, the tail
formation does not cause a precipitate flattening of the velocity distribution function.
Figures 4 and 5 show diffusivity D, quasilinear flattening of the distribution function
—f'/2U f, abundance of tail electrons relative to the maxwellian f/f,,, current density
J, power absorption P, as well as P/E for three different relative input power levels
using the approximate analytical formulae of Ref.2 and employing the diffusivity values
obtained from Eq.(10) of Ref.15. Notwithstanding the elevated number of tail electrons,
the principal absorption region (as well as the current carrying part of the velocity
distribution function) remains essentially that found in the linear results of Fig.3.

During its radial traverse into the plasma interior, the lower-hybrid wave is sub-
Ject to linear absorption at the lon-cyclotron-harmonic resonances. The wave attenua-

tion due to the pth harmonic is given by exp(—I') wherel”

2
o Rodky (w3 ) e L(A)  [Rowpe ) [eMI,(A)
S (r A S\ eyt 0 @

A =k3r2/2, r i is the ion gyroradius, and it is assumed that w ~ wpi. The expression
in the curly brackets typically exceeds the value 5 x 10% while that in the square brackets
rapidly increases with A as the plasma interior is approached, as shown in Fig.6. For
I' ~ 1, the wave would be absorbed by the ions (instead of the electrons), resulting
in the cessation of current drive. The density limit for a deuterium plasma assuming
Ry ~ 2m and n) ~ 2 is shown in Fig.7. The density limit increases for high-frequency
operation corresponding to high-p values. For a deuterium plasma, one should be able
to operate at densities upto 3 x 102 m~2 for an ion temperature of 20 keV. For the

alpha particles in a deuterium plasmal”

—-A
Wpe 2 € QIPD(AG) 5
- "IPD AL ) (5)

I'n ~ aRy

where a is the fraction of alpha particles while, the subscripts D and a refer to deuterium
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and alpha particles, respectively. For!® A, ~ %

wye 0.242
g n| : (6)
PD

'™ ~ R,

roughly corresponds to the maximum wave attenuation due to alpha particles. This
presents a more formidable hurdle to lower-hybrid wave penetration than the density
limit. The actual attenution due to the alpha particles, after taking their energy distri-
bution into account, might be significantly lower than that given by Eq.(6). In Ref.19,
it was shown by comparing linear analytic results with the non-linear computational
results that the linear cyclotron-harmonic acceleration remains valid even for extremely
large field amplitudes. Alternative derivations of density limit and alpha-particle ab-
sorption, using the non-linear stochastic model of Karney??, are to be found in Refs.21
and 22.

The derivation of Landau damping and diffusivity tacitly assumes a fixed repet-
itive step size Av per period for a given particle. In practice, due to the presence of
fluctuations or statistical irregularities, the step sizes (Av + §) are scattered symmet-
rically around Av. The actual diffusivity exceeds the calculated value by an amount
[< 82>/ < (Av)? >]. Thus, the results of this paper represent the lower bound for
the linear Landau damping in a torus.

The foremost conclusion of this paper is that the LHCD spectral-gap anomaly
can be resolved by properly accounting for Landau damping in toroidal geometry. Also
the density limit and the alpha particle acceleration can be explained in terms of ion-
cyclotron-harmonic acceleration. Due to the approximate dispersion relation of Eq.(1)
and the neglect of the alpha-particle energy distribution, the results obtained in this
paper are approximate. Further detailed work is needed to refine the quantitative
conclusions, particularly with regard to the alpha-particle acceleration.

We are thankful to Dr. M. Ballico, Dr. F. Leuterer and Dr. J.-G. Wegrowe for

their help during the course of this work.
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Fig.1 Damping length A, in toroidal geometry.
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Fig.2 Damping enhancement for finite m.
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Fig.4 D, quasilinear —f'/2U f and f/fm versus Uj.
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Fig.6 e™AI,(A)/A versus A.
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Fig.7 Density limit for a deuterium plasma for p = 70 (solid curve), p = 80 (dashed

curve) and p = 90 (dotted curve).




